Package ‘emoa’

January 26, 2024

Title Evolutionary Multiobjective Optimization Algorithms

Description Collection of building blocks for the design and analysis of evolutionary multiobjective optimization algorithms.

License GPL-2

URL https://github.com/olafmersmann/emoa/

LazyData yes

Version 0.5-2

Suggests testthat

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Olaf Mersmann [aut, cre] (<https://orcid.org/0000-0002-7720-4939>)

Maintainer Olaf Mersmann <olafm@p-value.net>

Repository CRAN

Date/Publication 2024-01-26 11:40:02 UTC

R topics documented:

emoa-package ... 2
cec2007 ... 3
coalessce .. 4
crowding_distance ... 4
dominance_matrix .. 5
dominated_hypervolume .. 5
emoa_console_logger .. 6
emoa_control .. 7
emoa_logger ... 7
emoa_null_logger ... 8
hypervolume_indicator ... 9
inbounds ... 10
is_dominated .. 10
This package provides functions to construct evolutionary multiobjective optimization algorithms (EMOA). The long term goal is to also provide standard implementations of the most common EMOA in use today.

Without the hard work of many researchers who have published their source code under a liberal license, this package would not have been possible. In alphabetical order they are

- Michael H. Buselli
- Wessel Dankers
- Carlos Fonseca
- Joshua Knowles
- Huang Ling
- Wudong Liu
- Manuel Lopez-Ibanez
- Luis Paquete
- Ponnuthurai Nagaratnam Suganthany
- Santosh Tiwar
- Qingfu Zhang
- Aimin Zhou
- Shizheng Zhaoy

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>
Description

This data set contains the hypervolume and R2 indicator results of the 8 different algorithms that took part in the CEC 2007 multiobjective optimization benchmark.

Usage

data(cec2007)

Format

A data frame with 456 observations of the following 9 variables.

algo Abbreviated name of algorithm
fun Name of benchmark function
d Dimension of objective space
n Number of function evaluations
metric Name of quality metric
pdef Unique id for each combination of fun, d, n and metric
best Largest value of metric
median Median value of metric
worst Smallest value of metric
mean Average value of metric
std Standard deviation of metric

Source

Examples

```r
## Not run:
data(cec2007)
require(lattice)
print(dotplot(algo ~ median | fun + metric, cec2007, groups=cec2007$n))
## End(Not run)
```
coalesce

Return first non null argument.

Description

This function is useful when processing complex arguments with multiple possible defaults based on other arguments that may or may not have been provided.

Usage

coalesc(...)

Arguments

... List of values.

Value

First non null element in

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>

crowding_distance

Crowding Distance

Description

Calculate crowding distances.

Usage

crowding_distance(front)

Arguments

front matrix of function values.

Value

crowding distance for each function value.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>
dominance_matrix

Calculate the dominance matrix of a set of points

Description

Calculate the dominance matrix of a set of points

Usage

dominance_matrix(points)

Arguments

points Matrix containing points one per column.

Value

Dominance matrix

dominated_hypervolume Dominated Hypervolume calculation

Description

dominated_hypervolume calculates the dominated hypervolume of the points in points.

Usage

dominated_hypervolume(points, ref)

hypervolume_contribution(points, ref)

Arguments

points Matrix containing the points one per column.
ref Optional reference point. If not provided the maximum in each dimension is used.

Details

hypervolume_contribution calculates the hypervolume contribution of each point. If no reference point ref is given, one is automatically calculated by determining the maximum in each coordinate. Currently only one general algorithm is implemented due to Fonseca et.al. but work is underway to include others such as the Beume & Rudolph approach as well as the approach by Bradstreet et.al. The 1D and 2D cases are handle seperately by efficient algorithms. Calculates the exact dominated hypervolume of the points given in x subject to the reference point ref.
emoa_console_logger

Value
For dominated_hypervolume the dominated hypervolume by the points in points with respect to the reference point ref. For hypervolume_contribution a vector giving the hypervolume soley dominated by that point.

Author(s)
Olaf Mersmann <olafm@statistik.tu-dortmund.de>

References

See Also
nondominated_points to extract the pareto front approximation from a given set of points and nds_hv_selection for a selection strategy based on the hypervolume contribution of each point.

emoa_console_logger console logger

Description
Logger object that outputs log messages to the console

Usage
emoa_console_logger(...)

Arguments
... passed to emoa_logger.

Details
This is a wrapper that calls emoa_logger(output=output,...) internally and returns that logger.

Value
An emoa_logger object.
emoa_control | Basic EMOA control parameters.

Description

The following control parameters are recognized by `emoa_control`:

- **logger** emoa_logger object used to log events.
- **n** Number of parameters, defaults to the length of the longer of `upper` or `lower`.
- **d** Number of dimensions.

Usage

```r
emoa_control(f, upper, lower, ..., control, default)
```

Arguments

- **f** Multiobjective optimization function.
- **upper** Upper bounds of parameter space.
- **lower** Lower bounds of parameter space.
- **...** Further arguments passed to `f`.
- **control** List of control parameters.
- **default** List of default control parameters.

Value

The control list with suitably adjusted arguments. Missing control parameters are taken from `default` or, if not present there, from an internal default.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>

emoa_logger | generic logger factory

Description

Basic logger object with a flexible output routine.

Usage

```r
emoa_logger(output, every = 10L, ...)
```
emoa_null_logger

Arguments

- `output`: function used to display logging messages.
- `every`: number of steps of the emoa between evaluations.
- `...`: passed to the parent logger factory.

Value

An emoa_logger object.

See Also

emoa_console_logger and emoa_null_logger for convinience wrappers around emoa_logger providing useful defaults.

emoa_null_logger

null logger

Description

Logger object that discards all log events.

Usage

emoa_null_logger(...)

Arguments

... ignored.

Value

An emoa_logger object.
hypervolume_indicator
Binary quality indicators

Description
Calculates the quality indicator value of the set of points given in \(x \) with respect to the set given in \(o \). As with all functions in emoa that deal with sets of objective values these are stored by column.

Usage

- `hypervolume_indicator(points, o, ref)`
- `epsilon_indicator(points, o)`
- `r1_indicator(points, o, ideal, nadir, lambda, utility = "Tchebycheff")`
- `r2_indicator(points, o, ideal, nadir, lambda, utility = "Tchebycheff")`
- `r3_indicator(points, o, ideal, nadir, lambda, utility = "Tchebycheff")`

Arguments

- `points`
 Matrix of points for which to calculate the indicator value stored one per column.
- `o`
 Matrix of points of the reference set.
- `ref`
 Reference point, if omitted, the nadir of the point sets is used.
- `ideal`
 Ideal point of true Pareto front. If omitted the ideal of both point sets is used.
- `nadir`
 Nadir of the true Pareto front. If omitted the nadir of both point sets is used.
- `lambda`
 Number of weight vectors to use in estimating the utility.
- `utility`
 Name of utility function.

Value
Value of the quality indicator.

Author(s)
Olaf Mersmann <olafm@statistik.tu-dortmund.de>

References
inbounds

Clip value to a given range

Description

Clip \(x \) to the interval \([l, u]\). This is useful to enforce box constraints.

Usage

```{r}
inbounds(x, l, u)
```

Arguments

- **x** Value to clip.
- **l** Lower limit.
- **u** Upper limit.

Value

\(l \) if \(x < l \), \(u \) if \(x > u \) else \(x \).

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>

is_dominated

Pareto dominance checks.

Description

\(\text{is_dominated} \) returns which points from a set are dominated by another point in the set. \(\%\text{dominates}\% \) returns true if \(x \) Pareto dominates \(y \) and \(\text{is_maximally_dominated} \) returns TRUE for those points which do not dominate any other points.

Usage

```{r}
is_dominated(points)
is_maximally_dominated(points)
```

Arguments

- **points** Matrix containing points one per column.
nds_hv_selection

Value

For is_dominated and is_maximally_dominated a boolean vector and for %dominates% a single boolean.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>

Description

Selection strategies for EMOA.

Usage

```r
nds_hv_selection(values, n = 1, ...)
nds_cd_selection(values, n = 1, ...)
```

Arguments

- `values`: Matrix of function values.
- `n`: Number of individuals to select for replacement.
- `...`: Optional parameters passed to `hypervolume_contribution`.

Details

The currently implemented strategies are nondominated sorting followed by either hypervolume contribution or crowding distance based ranking. Both of these implementations are currently limited to selecting a single individual for replacement.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>
nds_rank $\textit{Nondominated sorting ranks}$

Description

Perform (partial) nondominated sort of the points in points and return the rank of each point.

Usage

\[
\text{nds_rank}(\text{points}, \text{partial})
\]

\[
\text{nondominated_ordering}(\text{points}, \text{partial})
\]

Arguments

- **points**
 Matrix containing points one per column.
- **partial**
 Optional integer specifying the number of points for which the rank should be calculated. Defaults to all points.

Value

Vector containing the ranks of the first partial individuals or all individuals.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>

nondominated_points $\textit{Nondominated points}$

Description

Return those points which are not dominated by another point in points. This is the Pareto front approximation of the point set.

Usage

\[
\text{nondominated_points}(\text{points})
\]

Arguments

- **points**
 Matrix of points, one per column.

Value

Those points in points which are not dominated by another point.
normalize_points

Description
Rescale all points to lie in the box bounded by minval and maxval.

Usage
normalize_points(points, minval, maxval)

Arguments
points Matrix containing points, one per column.
minval Optional lower limits for the new bounding box.
maxval Optional upper limits for the new bounding box.

Value
Scaled points.

Author(s)
Olaf Mersmann <olafm@statistik.tu-dortmund.de>

pm_control
Polynomial mutation (PM) control parameters

Description
Control parameters:

pm.n Nu parameter of PM.

Usage
pm_control(f, upper, lower, ..., control, default = list())
pm_operator

Arguments

- **f**: Multiobjective optimization function.
- **upper**: Upper bounds of parameter space.
- **lower**: Lower bounds of parameter space.
- **...**: Further arguments passed to f.
- **control**: List of control parameters.
- **default**: List of default control parameters.

Value

The control list with suitably adjusted arguments. Missing control parameters are taken from default or, if not present there, from an internal default.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>

Description

Returns a polynomial mutation operator with the given parameters.

Usage

```
pm_operator(n, p, lower, upper)
```

Arguments

- **n**: Distance parameter mutation distribution (η).
- **p**: Probability of one point mutation.
- **lower**: Lower bounds of parameter space.
- **upper**: Upper bounds of parameter space.

Value

Function which implements the specified mutation operator.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>
sbx_control

Simulated binary crossover (SBX) control parameters

Description

`sbx_control` interprets the following parameters used to control the behaviour of the simulated binary crossover operator (see `sbx_operator`):

- **sbx.n**: Nu parameter of SBX.
- **sbx.p**: p parameter of SBX.

Usage

```
sbx_control(f, upper, lower, ..., control, default = list())
```

Arguments

- **f**: Multiobjective optimization function.
- **upper**: Upper bounds of parameter space.
- **lower**: Lower bounds of parameter space.
- **...**: Further arguments passed to `f`.
- **control**: List of control parameters.
- **default**: List of default control parameters.

Value

The `control` list with suitably adjusted arguments. Missing control parameters are taken from `default` or, if not present there, from an internal default.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>

sbx_operator

Simulated binary crossover operator

Description

Returns a simulated binary crossover operator with the given parameters.

Usage

```
sbx_operator(n, p, lower, upper)
```
steady_state_emoa_control

Description
steady_state_emoa_control interprets the following control parameters:

mu Population size.
maxeval Maximum number of function evaluations to use.

Usage
steady_state_emoa_control(f, upper, lower, ..., control, default = list())

Arguments
f Multiobjective optimization function.
upper Upper bounds of parameter space.
lower Lower bounds of parameter space.
... Further arguments passed to f.
control List of control parameters.
default List of default control parameters.
Value

The control list with suitably adjusted arguments. Missing control parameters are taken from default or, if not present there, from an internal default.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>

UF1

Functions from the CEC 2009 EMOA competition.

Description

Functions from the CEC 2009 EMOA competition.

Usage

sympart(x)

Arguments

x Parmater vector.

Value

Function value.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>
Usage

\[UF_1(x) \]
\[UF_2(x) \]
\[UF_3(x) \]
\[UF_4(x) \]
\[UF_5(x) \]
\[UF_6(x) \]
\[UF_7(x) \]
\[UF_8(x) \]
\[UF_9(x) \]
\[UF_{10}(x) \]

Arguments

\[x \] Parameter vector.

Value

Function value.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>

Description

Unary R2 indicator

Usage

\[\text{unary}_r2_indicator(\text{points, weights, ideal}) \]
which_points_on_edge

Arguments

- **points** Matrix of points for which to calculate the indicator value stored one per column.
- **weights** Matrix of weight vectors stored one per column.
- **ideal** Ideal point of true Pareto front. If omitted the ideal of points is used.

Value

Value of unary R2 indicator.

Author(s)

Olaf Mersmann <olafm@p-value.net>

which_points_on_edge Determine which points are on the edge of a Pareto-front approximation.

Description

Determine which points are on the edge of a Pareto-front approximation.

Usage

```r
which_points_on_edge(front)
```

Arguments

- **front** Pareto-front approximation.

Value

An integer vector containing the indicies of the points (columns) of front which are on the edge of the Pareto-front approximation.

Author(s)

Olaf Mersmann <olafm@statistik.tu-dortmund.de>
Index

* datasets
 cec2007, 3
* nonlinear
 nds_hv_selection, 11
* optimize
 dominated_hypervolume, 5
 is-dominated, 10
 nds_hv_selection, 11
 nds_rank, 12
 nondominated_points, 12
 sympart, 17
 UF1, 17
* package
 emoa-package, 2
 cec2007, 3
 coalesce, 4
 crowding_distance, 4
 dominance_matrix, 5
 dominated_hypervolume, 5
 emoa-package, 2
 emoa_console_logger, 6, 8
 emoa_control, 7
 emoa_logger, 6, 7
 emoa_null_logger, 8, 8
 epsilon_indicator
 (hypervolume_indicator), 9
 hypervolume_contribution, 11
 hypervolume_contribution
 (dominated_hypervolume), 5
 hypervolume_indicator, 9
 inbounds, 10
 is-dominated, 10
 is_maximally-dominated (is-dominated), 10
 nds_cd_selection (nds_hv_selection), 11
 nds_hv_selection, 6, 11
 nds_rank, 12
 nondominated_ordering (nds_rank), 12
 nondominated_points, 6, 12
 normalize_points, 13
 pm_control, 13
 pm_operator, 14, 16
 r1_indicator (hypervolume_indicator), 9
 r2_indicator (hypervolume_indicator), 9
 r3_indicator (hypervolume_indicator), 9
 sbx_control, 15
 sbx_operator, 15, 15
 steady_state_emoa_control, 16
 sympart, 17
 UF1, 17
 UF10 (UF1), 17
 UF2 (UF1), 17
 UF3 (UF1), 17
 UF4 (UF1), 17
 UF5 (UF1), 17
 UF6 (UF1), 17
 UF7 (UF1), 17
 UF8 (UF1), 17
 UF9 (UF1), 17
 unary_r2_indicator, 18
 which_points_on_edge, 19