Package ‘endogeneity’

October 13, 2022

Type Package
Title Recursive Two-Stage Models to Address Endogeneity
Version 2.0.1
Date 2022-02-02
Author Jing Peng
Maintainer Jing Peng <jing.peng@uconn.edu>
Description Various recursive two-stage models to address the endogeneity issue of treatment variables in observational study or mediators in experiments. The details of the models are discussed in Peng (2022) <doi:10.2139/ssrn.3494856>.
License GPL (>= 3)
Encoding UTF-8
Imports pbivnorm, maxLik, statmod, MASS
RoxygenNote 7.1.2
NeedsCompilation no
Repository CRAN
Date/Publication 2022-02-03 09:10:05 UTC

R topics documented:

bilinear ... 2
biprobit ... 3
biprobit_latent ... 4
biprobit_partial ... 6
endogeneity .. 8
pln ... 9
pln_linear .. 10
pln_probit .. 12
probit_linear .. 13
probit_linear_latent ... 15
probit_linear_partial ... 16

Index 19
bilinear

Recursive Bivariate Linear Model

Description

Estimate two linear models with bivariate normally distributed error terms. This command still works if the first-stage dependent variable is not a regressor in the second stage. The identification of a recursive bilinear model requires an instrument for the first dependent variable.

Usage

```r
bilinear(
    form1,
    form2,
    data = NULL,
    par = NULL,
    method = "BFGS",
    verbose = 0,
    accu = 10000
)
```

Arguments

- `form1`: Formula for the first linear model
- `form2`: Formula for the second linear model
- `data`: Input data, a data frame
- `par`: Starting values for estimates
- `method`: Optimization algorithm. Default is BFGS
- `verbose`: Level of output during estimation. Lowest is 0.
- `accu`: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim

Value

A list containing the results of the estimated model

References

See Also

Other endogeneity: `biprobit_latent()`, `biprobit_partial()`, `biprobit()`, `pln_linear()`, `pln_probit()`, `probit_linear_latent()`, `probit_linear_partial()`, `probit_linear()`
Examples

```r
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

y1 = -1 + x + z + e1
y2 = -1 + x + y1 + e2

est = bilinear(y1~x+z, y2~x+y1)
est$estimates
```

biprobit

Recusrive Bivariate Probit Model

Description

Estimate two probit models with bivariate normally distributed error terms. This command still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```r
biprobit(
  form1,
  form2,
  data = NULL,
  par = NULL,
  method = "BFGS",
  verbose = 0,
  accu = 10000
)
```

Arguments

- `form1`: Formula for the first probit model
- `form2`: Formula for the second probit model
- `data`: Input data, a data frame
- `par`: Starting values for estimates
- `method`: Optimization algorithm. Default is BFGS
- `verbose`: Level of output during estimation. Lowest is 0.
biprobit_latent

Value

A list containing the results of the estimated model

References

See Also

Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), pln_linear(), pln_probit(), probit_linear_latent(), probit_linear_partial(), probit_linear()

Examples

```r
library(MASS)
N = 2000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = as.numeric(1 + x + z + e1 > 0)
y2 = as.numeric(1 + x + z + y1 + e2 > 0)
est = biprobit(y1~x+z, y2~x+z+y1)
est$estimates
```

biprobit_latent

Recursive Bivariate Probit Model with Latent First Stage

Description

Estimate two probit models with bivariate normally distributed error terms, in which the dependent variable of the first stage model is unobserved. The identification of this model is weak if the first-stage does not include regressors that are good predictors of the first-stage dependent variable.
Usage

biprobity latent(
 form1,
 form2,
 data = NULL,
 EM = FALSE,
 par = NULL,
 method = "BFGS",
 verbose = 0,
 accu = 10000,
 maxIter = 500,
 tol = 1e-05,
 tol_LL = 1e-06
)

Arguments

 form1 Formula for the first probit model, in which the dependent variable is unob-
 served. Use a formula like ~x to avoid specifying the dependent variable.
 form2 Formula for the second probit model, the latent dependent variable of the first
 stage is automatically added as a regressor in this model
 data Input data, a data frame
 EM Whether to maximize likelihood use the Expectation-Maximization (EM) algo-
 rithm.
 par Starting values for estimates
 method Optimization algorithm. Default is BFGS
 verbose Level of output during estimation. Lowest is 0.
 accu 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high ac-
 curacy. See optim
 maxIter max iterations for EM algorithm
 tol tolerance for convergence of EM algorithm
 tol_LL tolerance for convergence of likelihood

Value

A list containing the results of the estimated model

References

Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Frame-
work for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available
at SSRN: https://ssrn.com/abstract=3494856

See Also

Other endogeneity: bilinear(), biprobity_partial(), biprobity(), pln_linear(), pln_probit(),
probit_linear_latent(), probit_linear_partial(), probit_linear()
Examples

```r
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

y1 = as.numeric(1 + x + z + e1 > 0)
y2 = as.numeric(1 + x + z + y1 + e2 > 0)

est = biprobit(y1~x+z, y2~x+z+y1)
est$estimates

est_latent = biprobit_latent(~x+z, y2~x+z)
est_latent$estimates
```

biprobit_partial

Recursive Bivariate Probit Model with Partially Observed First Stage

Description

Estimate two probit models with bivariate normally distributed error terms, in which the dependent variable of the first stage model is partially observed (or unobserved)

Usage

```r
biprobit_partial(
  form1,
  form2,
  data = NULL,
  EM = FALSE,
  par = NULL,
  method = "BFGS",
  verbose = 0,
  accu = 10000,
  maxIter = 500,
  tol = 1e-05,
  tol_LL = 1e-06
)
```
biprobite_partial

Arguments

form1 Formula for the first probit model, in which the dependent variable is partially observed.

form2 Formula for the second probit model, the partially observed dependent variable of the first stage is automatically added as a regressor in this model (do not add manually)

data Input data, a data frame

EM Whether to maximize likelihood use the Expectation-Maximization (EM) algorithm.

par Starting values for estimates

method Optimization algorithm. Default is BFGS

verbose Level of output during estimation. Lowest is 0.

accu 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim

maxIter max iterations for EM algorithm

tol tolerance for convergence of EM algorithm

tol_LL tolerance for convergence of likelihood

Value

A list containing the results of the estimated model

References

See Also

Other endogeneity: bilinear(), biprobite_latent(), biprobite(), pln_linear(), pln_probit(), probit_linear_latent(), probit_linear_partial(), probit_linear()

Examples

library(MASS)
N = 5000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
endogeneity

Recursive two-stage models to address endogeneity

Description

This package supports various recursive two-stage models to address the endogeneity issue. The details of the implemented models are discussed in Peng (2022). In a recursive two-stage model, the dependent variable of the first stage is an endogenous regressor in the second stage. The dependent variable of the second stage is the outcome of interest. The endogeneity is captured by the correlation in the error terms of the two stages.

Recursive two-stage models can be used to address the endogeneity of treatment variables in observational study and the endogeneity of mediators in experiments.

The first-stage supports linear model, probit model, and Poisson lognormal model. The second-stage supports linear and probit models. These models can be used to address the endogeneity of continuous, binary, and count variables. When the endogenous variable is binary, it can be unobserved or partially unobserved, but the identification can be weak.

Functions

bilinear: recursive bivariate linear model

biprobit: recursive bivariate probit model

biprobit_latent: recursive bivariate probit model with latent first stage

biprobit_partial: recursive bivariate probit model with partially observed first stage

probit_linear: recursive probit-linear or linear-probit model

probit_linear_latent: recursive probit-linear model with latent first stage

```r
y1 = as.numeric(1 + x + 3*z + e1 > 0)
y2 = as.numeric(1 + x + z + y1 + e2 > 0)
est = biprobit(y1~x+z, y2~x+z+y1)
est$estimates
observed_pct = 0.2
yp = y1
yp[sample(N, N*(1-observed_pct))] = NA
est_partial = biprobit_partial(yp~x+z, y2~x+z)
est_partial$estimates
```
probit_linear_partial: recursive probit-linear model with partially observed first stage

pln: Poisson lognormal (PLN) model

pln_linear: recursive PLN-linear model

pln_probit: recursive PLN-probit model

References

pln Poisson Lognormal Model

Description
Estimate a Poisson model with a log-normally distributed heterogeneity term. Also referred to as Poisson-Normal model.

Usage
pln(form, data = NULL, par = NULL, method = "BFGS", init = c("zero", "unif", "norm", "default")[4], H = 20, verbose = 0, accu = 10000)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>form</td>
<td>Formula</td>
</tr>
<tr>
<td>data</td>
<td>Input data, a data frame</td>
</tr>
<tr>
<td>par</td>
<td>Starting values for estimates</td>
</tr>
<tr>
<td>method</td>
<td>Optimization algorithm.</td>
</tr>
<tr>
<td>init</td>
<td>Initialization method</td>
</tr>
<tr>
<td>H</td>
<td>Number of quadrature points</td>
</tr>
</tbody>
</table>
pln_linear

Recursive PLN-Linear Model

Description
Estimate a Poisson Lognormal model (first-stage) and a linear model (second-stage) with bivariate normally distributed error terms. This command still works if the first-stage dependent variable is not a regressor in the second stage.

Usage
pln_linear(
 form_pln,
 form_linear,
 data = NULL,
 par = NULL,
 method = "BFGS",
 init = c("zero", "unif", "norm", "default")[4],
 H = 20,
 verbose = 0,
 accu = 10000
)
Arguments

- **form_pln**: Formula for the first-stage Poisson lognormal model
- **form_linear**: Formula for the second-stage linear model
- **data**: Input data, a data frame
- **par**: Starting values for estimates
- **method**: Optimization algorithm.
- **init**: Initialization method
- **H**: Number of quadrature points
- **verbose**: Level of output during estimation. Lowest is 0.
- **accu**: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim

Value

A list containing the results of the estimated model

References

See Also

Other endogeneity: `bilinear()`, `biprobit_latent()`, `biprobit_partial()`, `biprobit()`, `pln_probit()`, `probit_linear_latent()`, `probit_linear_partial()`, `probit_linear()`

Examples

```r
library(MASS)
N = 1000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

y1 = rpois(N, exp(1 + x + z + e1))
y2 = 1 + x + y1 + e2

est = pln_linear(y1~x+z, y2~x+y1)
est$estimates
```
pln_probit

Recursive PLN-Probit Model

Description
Estimate a Poisson Lognormal model (first-stage) and a probit model (second-stage) whose error
terms are bivariate normally distributed. This model still works if the first-stage dependent variable
is not a regressor in the second stage.

Usage
pln_probit(
 form_pln,
 form_probit,
 data = NULL,
 par = NULL,
 method = "BFGS",
 init = c("zero", "unif", "norm", "default")[4],
 H = 20,
 verbose = 0,
 accu = 10000
)

Arguments
 form_pln Formula for the first-stage Poisson lognormal model
 form_probit Formula for the second-stage probit model
 data Input data, a data frame
 par Starting values for estimates
 method Optimization algorithm. Without gradient, NM is much faster than BFGS
 init Initialization method
 H Number of quadrature points
 verbose Level of output during estimation. Lowest is 0.
 accu 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high ac-
 curacy. See optim

Value
A list containing the results of the estimated model

References
Peng, Jing. (2022) Identification of Causal Mechanisms from Randomized Experiments: A Frame-
work for Endogenous Mediation Analysis. Information Systems Research (Forthcoming), Available
at SSRN: https://ssrn.com/abstract=3494856
See Also

Other endogeneity: `bilinear()`, `biprobit_latent()`, `biprobit_partial()`, `biprobit()`, `pln_linear()`, `probit_linear_latent()`, `probit_linear_partial()`, `probit_linear()`

Examples

```r
library(MASS)
N = 1000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = rpois(N, exp(-1 + x + z + e1))
y2 = as.numeric(1 + x + z + log(1+y1) + e2 > 0)
est = pln_probit(y1~x+z, y2~x+z+log(1+y1))
est$estimates
```

probit_linear

Recursive Probit-Linear Model

Description

Estimate probit and linear models with bivariate normally distributed error terms. This command supports two models with opposite first and second stages.

1) Recursive Probit-Linear: the endogenous treatment effect model
2) Recursive Linear-Probit: the ivprobit model. The identification of this model requires an instrument.

This command still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```r
probit_linear(
    form_probit,  # Probit model formula
    form_linear,  # Linear model formula
    data = NULL,  # Data frame
    par = NULL,    # Initial parameter values
    method = "BFGS",  # Optimization method
    init = c("zero", "unif", "norm", "default")[4],  # Initial values
    verbose = 0,  # Verbosity level
    accu = 10000  # Accuracy level
)
```
Arguments

- `form_probit`: Formula for the probit model
- `form_linear`: Formula for the linear model
- `data`: Input data, a data frame
- `par`: Starting values for estimates
- `method`: Optimization algorithm. Default is BFGS
- `init`: Initialization method
- `verbose`: Level of output during estimation. Lowest is 0.
- `accu`: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim

Value

A list containing the results of the estimated model

References

See Also

Other endogeneity: `bilinear()`, `biprobit_latent()`, `biprobit_partial()`, `biprobit()`, `pln_linear()`, `pln_probit()`, `probit_linear_latent()`, `probit_linear_partial()`

Examples

```r
library(MASS)
N = 2000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
y1 = as.numeric(1 + x + z + e1 > 0)
y2 = 1 + x + z + y1 + e2
est = probit_linear(y1~x+z, y2~x+z+y1)
est$estimates
```
probit_linear_latent Recursive Probit-Linear Model with Latent First Stage

Description
The first stage is a probit model with unobserved dependent variable, the second stage is a linear model that includes the first-stage dependent variable as a regressor.

Usage
probit_linear_latent(
 form_probit,
 form_linear,
 data = NULL,
 EM = TRUE,
 par = NULL,
 method = "BFGS",
 verbose = 0,
 accu = 10000,
 maxIter = 500,
 tol = 1e-06,
 tol_LL = 1e-08
)

Arguments
form_probit Formula for the first-stage probit model, in which the dependent variable is latent
form_linear Formula for the second stage linear model. The latent dependent variable of the first stage is automatically added as a regressor in this model
data Input data, a data frame
EM Whether to maximize likelihood use the Expectation-Maximization algorithm. EM is slower but more robust
par Starting values for estimates
method Optimization algorithm. Default is BFGS
verbose Level of output during estimation. Lowest is 0.
accu 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim
maxIter max iterations for EM algorithm
tol tolerance for convergence of EM algorithm
tol_LL tolerance for convergence of likelihood

Value
A list containing the results of the estimated model
References

See Also

Other endogeneity: `bilinear()`, `biprobit_latent()`, `biprobit_partial()`, `biprobit()`, `pln_linear()`, `pln_probit()`, `probit_linear()`, `probit_linear_partial()`, `probit_linear()`

Examples

```r
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

y1 = as.numeric(1 + x + z + e1 > 0)
y2 = 1 + x + z + y1 + e2
est = probit_linear(y1~x+z, y2~x+z+y1)
est$estimates

est_latent = probit_linear_latent(~x+z, y2~x+z)
est_latent$estimates
```

probit_linear_partial
Recursive Probit-Linear Model with Partially Observed First Stage

Description

The first stage is a probit model with partially observed (or unobserved) dependent variable, the second stage is a linear model that includes the first-stage dependent variable as a regressor.

Usage

```r
probit_linear_partial(
  form_probit,
  form_linear,
  data = NULL,
  EM = TRUE,
)```
Arguments

form_probit  Formula for the first-stage probit model, in which the dependent variable is partially observed
form_linear Formula for the second stage linear model. The partially observed dependent variable of the first stage is automatically added as a regressor in this model (do not add manually)
data Input data, a data frame
EM Whether to maximize likelihood use the Expectation-Maximization algorithm. EM is slower but more robust
par Starting values for estimates
method Optimization algorithm. Default is BFGS
verbose Level of output during estimation. Lowest is 0.
accu 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See optim
maxIter max iterations for EM algorithm
tol tolerance for convergence of EM algorithm
tol_LL tolerance for convergence of likelihood

Value

A list containing the results of the estimated model

References


See Also

Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), pln_linear(), pln_probit(), probit_linear_latent(), probit_linear()
Examples

```r
library(MASS)
N = 1000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

y1 = as.numeric(1 + x + z + e1 > 0)
y2 = 1 + x + z + y1 + e2
est = probit_linear(y1~x+z, y2~x+z+y1)
est$estimates

observed_pct = 0.2
y1p = y1
y1p[sample(N, N*(1-observed_pct))] = NA
est_latent = probit_linear_partial(y1p~x+z, y2~x+z)
est_latent$estimates
```
Index

* endogeneity
  bilinear, 2
  biprobit, 3
  biprobit_latent, 4
  biprobit_partial, 6
  pln_linear, 10
  pln_probit, 12
  probit_linear, 13
  probit_linear_latent, 15
  probit_linear_partial, 16
  bilinear, 2, 4, 5, 7, 11, 13, 14, 16, 17
  biprobit, 2, 3, 5, 7, 11, 13, 14, 16, 17
  biprobit_latent, 2, 4, 4, 7, 11, 13, 14, 16, 17
  biprobit_partial, 2, 4, 5, 6, 11, 13, 14, 16, 17

endogeneity, 8

pln, 9
  pln_linear, 2, 4, 5, 7, 10, 13, 14, 16, 17
  pln_probit, 2, 4, 5, 7, 11, 12, 14, 16, 17
  probit_linear, 2, 4, 5, 7, 11, 13, 16, 17
  probit_linear_latent, 2, 4, 5, 7, 11, 13, 14, 15, 17
  probit_linear_partial, 2, 4, 5, 7, 11, 13, 14, 16, 16