Package ‘entrymodels’

October 13, 2022

Type Package

Title Estimate Entry Models

Version 0.2.1

Maintainer Guilherme Jardim <gnjardim1@gmail.com>

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports stats, magrittr, dplyr, readr

RoxygenNote 6.1.1

NeedsCompilation no

Author Guilherme Jardim [aut, cre],
Arthur Bragança [ctb],
Pedro Fernandes [ctb]

Repository CRAN

Date/Publication 2020-05-06 13:20:03 UTC

R topics documented:

aux_matrix ... 2
br1 ... 2
br2 ... 3
e_m_2var ... 3
e_m_basic ... 5
load_example_data .. 6

Index 7
aux_matrix

Build our auxiliary matrices to estimate entry models

Description

Build our auxiliary matrices to estimate entry models

Usage

```r
aux_matrix(data, y, N_max, n)
```

Arguments

- `data`
 A `data.frame` object containing your data
- `y`
 A string indicating the outcome variable
- `N_max`
 An integer indicating the maximum number of competitors
- `n`
 Number of observations in `data`

Value

A list of the auxiliary matrices

br1

Build our optimization function

Description

Build our optimization function

Usage

```r
br1(params, n, N_max, l_params, A1, A2, S, N)
```

Arguments

- `params`
 Parameters to construct function
- `n`
 Number of observations in data
- `N_max`
 An integer indicating the maximum number of competitors
- `l_params`
 Length of parameters vector
- `A1`
 Auxiliary matrix A1
- `A2`
 Auxiliary matrix A2
- `S`
 Size of the market
- `N`
 Vector of zeros
Value

The function to be optimized

br2

Build our optimization function

Description

Build our optimization function

Usage

```r
br2(params, n, N_max, A1, A2, S1, S2, N)
```

Arguments

- `params`: Parameters to construct function
- `n`: Number of observations in data
- `N_max`: An integer indicating the maximum number of competitors
- `A1`: Auxiliary matrix A1
- `A2`: Auxiliary matrix A2
- `S1`: First variable for size of the market
- `S2`: Second variable for size of the market
- `N`: Vector of zeros

Value

The function to be optimized

em_2var

Two-Variable Entry Model

Description

Estimate entry model with two variables for the market size.

Usage

```r
em_2var(data, Sm1, Sm2, y, N_max = 5, alpha0 = rep(0.1, N_max),
         gamma0 = rep(1, N_max))
```
Arguments

- **data**: A `data.frame` object containing your data
- **Sm1**: A string indicating the main market size variable, present in data
- **Sm2**: A string indicating the second market size variable, present in data
- **y**: A string indicating the outcome variable, present in data
- **N_max**: An integer indicating the maximum number of competitors. Defaults to 5.
- **alpha0**: A vector of type numeric and length `N_max` indicating the initial condition for alpha. Defaults to a vector of 0.1's.
- **gamma0**: A vector of type numeric and length `N_max` indicating the initial condition for gamma. Defaults to a vector of 1's.

Value

A tibble with critical market sizes and estimated parameters, as explained in Bresnahan and Reiss (1991)

Author(s)

Guilherme N. Jardim, Department of Economics, Pontifical Catholic University of Rio de Janeiro

References

Examples

```r
tb <- data.frame(Sm1 = 1:5, Sm2 = 1:5, y = 1:5)

# estimate default model
em_n5 <- em_2var(tb, "Sm1", "Sm2", "y")

# estimate model with 3 competitors only
em_n3 <- em_2var(tb, "Sm1", "Sm2", "y", N_max = 3)

## Not run:
# estimate model with different initial conditions
em_difc <- em_2var(tb, "Sm1", "Sm2", "y", alpha0 = rep(0.2, 5), gamma0 = rep(1.1, 5))

# estimate model with example data
tb <- load_example_data()
em <- em_2var(tb, "Populacao", "RendaPerCapita", "n_agencias")

## End(Not run)
```
em_basic

\[\text{em_basic}(\text{data}, \text{Sm}, \text{y}, \text{N_max}=5, \text{alpha0}=\text{rep}(0.1, \text{N_max}), \text{gamma0}=\text{rep}(1, \text{N_max}))\]

\begin{itemize}
 \item **data**: A data.frame object containing your data
 \item **Sm**: A string indicating the market size variable, present in data
 \item **y**: A string indicating the outcome variable, present in data
 \item **N_max**: An integer indicating the maximum number of competitors. Defaults to 5.
 \item **alpha0**: A vector of type numeric and length N_max indicating the initial condition for alpha. Defaults to a vector of 0.1’s.
 \item **gamma0**: A vector of type numeric and length N_max indicating the initial condition for gamma. Defaults to a vector of 1’s.
\end{itemize}

Value

A tibble with critical market sizes and estimated parameters, as explained in Bresnahan and Reiss (1991)

Author(s)

Guilherme N. Jardim, Department of Economics, Pontifical Catholic University of Rio de Janeiro

References

Examples

tb <- data.frame(Sm = 1:5, y = 1:5)

estimate default model
em_n5 <- em_basic(tb, "Sm", "y")

estimate model with 3 competitors only
em_n3 <- em_basic(tb, "Sm", "y", N_max = 3)
load_example_data

Load example dataset

Description

Load example dataset

Usage

```r
load_example_data()
```

Value

Example dataset as tibble

Author(s)

Guilherme N. Jardim, Department of Economics, Pontifical Catholic University of Rio de Janeiro
Index

aux_matrix, 2
br1, 2
br2, 3
em_2var, 3
em_basic, 5
load_example_data, 6