Package ‘epanetReader’

June 26, 2018

Type Package
Title Read Epanet Files into R
Version 0.7.3
Date 2018-06-27
Author Bradley J. Eck
Maintainer Bradley Eck <brad@bradeck.net>
Depends R (>= 3.0.0), graphics, utils
Suggests testthat, epanet2toolkit, data.table (>= 1.11.2)
Description Reads water network simulation data in 'Epanet' text-based '.inp' and '.rpt' formats into R. Also reads results from 'Epanet-msx'. Provides basic summary information and plots. The README file has a quick introduction. See <http://www2.epa.gov/water-research/epanet> for more information on the Epanet software for modeling hydraulic and water quality behavior of water piping systems.
License MIT + file LICENSE
URL https://github.com/bradleyjeck/epanetReader
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-06-26 04:44:58 UTC

R topics documented:

binBreaker ... 2
epanetDefaultOptions ... 3
epanetReader ... 3
expandedLinkTable .. 4
is.epanet.inp ... 4
is.epanet.rpt .. 5
binBreaker

Description

Generate break points for use with cut() and range labels based on sample max and min

Usage

binBreaker(x, nbin)

Arguments

x vector to find cuts for
nbin number of bins
epanetDefaultOptions

Details
Helpful in making labels use the actual max and min rather than the +/- 1

Value
list with elements Breaks and Labels

epanetDefaultOptions
Epanet Default Options

Description
A list of Epanet’s default options

Usage
epanetDefaultOptions()

Details
Provides a named list in the form of OPTION = default_value where the values are taken from pages 152-154 of the manual.

References

Examples
epanetDefaultOptions()

epanetReader
Read text files from Epanet into R

Description
epanetReader is a package for reading water network information and simulation results in Epanet’s .inp and .rpt files into R. See functions read.inp, read.rpt, and read.msxrpt for some examples.

Author(s)
Bradley J. Eck
Description
Create an expandedLinkTable object by adding node coordinates to a data frame of pipes, pumps, or valves.

Usage
expandedLinkTable(Links, Coordinates)

Arguments
Links data frame of Pipes, Pumps or Valves of from epanet.inp
Coordinates table of epanet.inp

Value
an expandedLinkTable object

Examples
x <- expandedLinkTable(Net1$Pipes, Net1$Coordinates)
print(x)
plot(x)

Description
Check if an object as class 'epanet.inp'

Usage
is.epanet.inp(x)

Arguments
x an R object
is.epanet.rpt Check if an object has class 'epanet.rpt'

Description
Check if an object has class 'epanet.rpt'

Usage
is.epanet.rpt(x)

Arguments
x an R object

is.epanetmsx.rpt Check if an object has class 'epanetmsx.rpt'

Description
Check if an object has class 'epanetmsx.rpt'

Usage
is.epanetmsx.rpt(x)

Arguments
x an R object

is.expandedLinkTable Check if an object has class 'expandedLinkTable'

Description
Check if an object has class 'expandedLinkTable'

Usage
is.expandedLinkTable(x)

Arguments
x an R object
is.sparkline

Description

Check if an object has class 'sparkline'

Usage

`is.sparkline(x)`

Arguments

- `x`: an R object

is.sparklineTable

Description

Check if an object has class 'sparklineTable'

Usage

`is.sparklineTable(x)`

Arguments

- `x`: an R object

Net1

Epanet's Net1 Example

Description

A dataset created by reading the Net1.inp file distributed with Epanet using this package’s read.inp() function.

Usage

Net1

Format

An object of class `epanet.inp` created by `read.inp`.
Source

http://www.epa.gov/sites/production/files/2014-06/en2setup_0.exe

Examples

#confirm built-in dataset matches output of read.inp
inp <- file.path(find.package("epanetReader"), "extdata","Net1.inp")
nl <- suppressWarnings(read.inp(inp))
ok <- isTRUE(all.equal(Net1, nl))
if(ok==FALSE) stop("built-in Net1 doesn't match read.inp")

net1rpt

Epanet's Net1 Example

Description

A dataset created by reading the Net1.rpt file distributed with Epanet using this package's read.rpt() function.

Usage

Net1rpt

Format

An object of class epanet.rpt created by read.rpt.

Examples

#confirm built-in dataset matches output of read.rpt
rpt <- file.path(find.package("epanetReader"), "extdata","Net1.rpt")
nlr <- read.rpt(rpt)
ok <- isTRUE(all.equal(Net1rpt, nlr))
if(ok==FALSE) stop("built-in Net1rpt doesn't match read.rpt")

plot.epanet.inp

Plot Method for epanet.inp

Description

Make a plot of the network using base graphics

Usage

S3 method for class 'epanet.inp'
plot(x, plot.junctions = TRUE,
 legend.locn = "topright", plot.labels = FALSE, link.lwd = 3,
 link.col = "black", ...)

plot.epanet.inp

Arguments

- **x**: object of class epanet.inp
- **plot.junctions**: logical indicating whether to plot junctions
- **legend.locn**: character string passed to legend() specifying the location of the legend on the plot
- **plot.labels**: logical indicating whether to plot the labels using text()
- **link.lwd**: value of lwd passed to segments()
- **link.col**: value of col passed to segments()
- **...**: other arguments passed to plot()

Details

Implements the generic plot function for S3 objects of class epanet.inp. The plot is built from base graphics by creating a blank plot and then calling the helper functions plotInpLinks(), plotInpNodes(), plotElementsLegend().

Examples

```r
plot(Ne1)
plot(Ne1, plot.labels=TRUE)
```

plot.epanet.rpt
Plot Simulation Results

Description

Plots simulation results for a single time step in map form

Usage

```r
## S3 method for class 'epanet.rpt'
plot(x, inp, Timestep = "0:00:00", juncQty = "Demand",
     linkQty = "Velocity", legend1.locn = "topright",
     legend2.locn = "topleft", ...)
```

Arguments

- **x**: epanet.rpt object
- **inp**: epanet.inp object associated with x
- **Timestep**: string indicating the time to plot
- **juncQty**: string specifying which column of x$nodeResults (Demand, Head, Pressure, Chlorine, etc.) to show by circle size at network junctions
- **linkQty**: string specifying which column of x$linkResults (Flow, Velocity, Headloss) to show by line width on network links
plot.epanetmsx.rpt

Details

juncQty plots and values for Junctions only; Tanks and Reservoirs are not included. In contrast, linkQty is scaled over all of the link types: Pipes, Pumps & Valves. These choices aim at a map showing demand at junctions and velocity in links.

plot.epanetmsx.rpt Plot method for epanetmsx.rpt

Description

Plots a sparkline table of Epanet-msx results

Usage

S3 method for class 'epanetmsx.rpt'
plot(x, elementType = "Nodes", ...)

Arguments

x epanetmsx.rpt object
elementType character indicating whether results for "nodes" or links" should be plotted
... further arguments passed to plotSparklineTable

See Also

plotSparklineTable

plot.expandedLinkTable plot an expanded link table

Description

plot an expanded link table

Usage

S3 method for class 'expandedLinkTable'
plot(x, add = FALSE, label = FALSE,
 linewidths = 3, color = "black", ...)

plot.epanetmsx.rpt Plot method for epanetmsx.rpt

Details

legendQNlocn string passed to legend() for placing legend of network elements
legendRNlocn string passed to legend() for placing legend of junction and link quantities
... further arguments passed to plot

Legend

The legend is used for placing the legend of network elements. The first argument to `legend()`.

Description

Plots a sparkline table of Epanet-msx results

Usage

S3 method for class 'epanetmsx.rpt'
plot(x, elementType = "Nodes", ...)

Arguments

x epanetmsx.rpt object
elementType character indicating whether results for "nodes" or links" should be plotted
... further arguments passed to plotSparklineTable

See Also

plotSparklineTable

plot.expandedLinkTable plot an expanded link table

Description

plot an expanded link table

Usage

S3 method for class 'expandedLinkTable'
plot(x, add = FALSE, label = FALSE,
 linewidths = 3, color = "black", ...)
Arguments

- **x**: object of type expandedLinkTable
- **add**: logical indicating whether to add to the currently active plot. `add=FALSE` creates a new plot.
- **label**: logical indicating if the links should be labeled at the mid points
- **linewidths**: passed to `lwd` argument in `segments()`
- **color**: passed to `col` argument in `segments()`
- **...**: further arguments passed to `segments()`

Details

An implementation of the generic plot function for expandedLinkTable objects. Links are drawn using `segments()`. Useful for building up network plots.

plot.sparkline

Plot a sparkline

Description

Plot a sparkline

Usage

```r
## S3 method for class 'sparkline'
plot(x, ...)
```

Arguments

- **x**: sparkline object
- **...**: further arguments passed to `plot.default`

Details

Implementation of the generic plot function for a single sparkline object. The primarily used to build up plots of a sparklineTable

See Also

```
sparkline
```
plot.sparklineTable Plot Sparkline Table

Description
Plot Sparkline Table

Usage
S3 method for class 'sparklineTable'
plot(x, ...)

Arguments
x
object of class sparklineTable
...
further arguments passed to par

plotElementsLegend Plot Legend of Network Elements

Description
Add legend of network elements to the active plot

Usage
plotElementsLegend(legend.locn)

Arguments
legend.locn
keyword for location of legend. See details of legend() function.

Details
Helper function for adding a legend to the active plot. Uses plot characters 16, 15, 8 and 25 for Tanks, Reservoirs, Pumps and Valves for compatibility with plotInpNodes()

Examples
make a new blank plot
plot(c(0,1), c(0,1), type = 'n')
add the nodes, including junctions
plotElementsLegend('topright')
plotInpLinks
Plot .inp Links

Description

Add lines for pipes, pumps and valves from an epanet.inp object to an existing plot

Usage

```
plotInpLinks(x, lwd = 3, col = "black")
```

Arguments

- `x`: epanet.inp object
- `lwd`: width of lines
- `col`: color of lines

Details

Helper function for building up a plot of the network by adding links to an existing plot.

Examples

```r
## make a new blank plot
plot( range(Net1$Coordinates$X), range(Net1$Coordinates$Y), type = 'n'
## add the links
plotInpLinks(Net1)
```

plotInpNodes
Plot Node Elements

Description

Adds node elements from epanet.inp object to an existing plot

Usage

```
plotInpNodes(x, plot.junctions)
```

Arguments

- `x`: epanet.inp object
- `plot.junctions`: logical indicating whether to plot junctions
plotSparklineTable

Details

Helper function for building up a network plot. Tanks and Reservoirs are shown using plot characters (pch) 16 and 15. Junctions, if plotted, appear as pch = ".".

Examples

```r
## make a new blank plot
plot(range(Net1$Coordinates$X), range(Net1$Coordinates$Y), type = 'n')
## add the nodes, including junctions
plotInpNodes(Net1, TRUE)
```

plotSparklineTable
Plot Sparkline Table

Description

Generate a table of sparkline plots

Usage

```r
plotSparklineTable(df, row.var, col.vars, xvar = NULL, xrange.labels = NULL)
```

Arguments

df
data.frame of values to plot.
row.var
variable for rows of the table
col.vars
variables for columns of the table
xvar
optional name of variable for horizontal axis of sparkline plots
xrange.labels
optional vector of length 2 with labels for the first and last quantities plotted on x-axis, often a date and/or time

Details

Generates a table of 'sparkline' plots of data in df. rows the table correspond to different values of row.var. The table's first column gives the value of row.var. The remaining columns contain sparkline plots for the values of col.vars. When xvar is not provided values are plotted against their index in the extracted vector. The starting and ending values are labeled. Uses layout() function to arrange plots.

References

See Also

yaletoolkit and sparkTable packages
print.summary.epanet.rpt

Print rpt summary

Description

The function prints a summary of simulation results contained in the rpt file.

Usage

```r
## S3 method for class 'summary.epanet.rpt'
print(x, ...)
```

Arguments

- `x`: a summary.epanet.rpt object
- `...`: further arguments passed to print

print.summary.epanetmsx.rpt

Print msx rpt summary

Description

The function prints a summary of multi-species simulation results contained in the report file.

Usage

```r
## S3 method for class 'summary.epanetmsx.rpt'
print(x, ...)
```

Arguments

- `x`: a summary.epanetmsx.rpt object
- `...`: further arguments passed to print

Examples

```r
plotSparklineTable(Orange, row.var = 'Tree', col.vars = c('age', 'circumference'))
plotSparklineTable(Loblolly, row.var = 'Seed', col.vars = 'height')
## specify the x variable if you have it, especially if it differs
plotSparklineTable(Theoph, row.var = 'Subject', col.vars = 'conc')
## a warning is normally issued with the ranges of xvar differ
suppressWarnings(plotSparklineTable(Theoph, row.var = 'Subject', col.vars = 'conc', xvar = 'Time'))
```
Description

Read an Epanet .inp file into R

Usage

read.inp(file)

Arguments

file the name of the file to read

Details

This function reads a text file in Epanet’s .inp format and returns an S3 object with entries for sections of the .inp file. Sections of the .inp file that are implemented appear in the Value section.

Fields for node or link ID are stored as characters not factors or integers. However, some fields are stored as factors to allow more informative summaries. Examples include valve type and pipe status.

Sections that are absent from the .inp file are NULL in the list.

Columns of data.frames use the headings exported by the Epanet GUI.

The [OPTIONS] section in the .inp file is used to update a list of Epanet’s default options. In this way if an option such as units is not specified by the .inp file, the units that would be used by default are provided.

In the [PATTERNS] and [CURVES] sections, integers used as names of list elements are backquoted according to the default behavior in R. So if the .inp file has a pattern "1" this pattern will appear as element ‘1’ in the list that is returned. A warning is issued in this case.

Value

Returns an epanet.inp S3 object with elements of the following names and types corresponding to sections of the .inp file. Sections missing from the .inp file have a value of NULL.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>character</td>
</tr>
<tr>
<td>Junctions</td>
<td>data.frame</td>
</tr>
<tr>
<td>Tanks</td>
<td>data.frame</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>data.frame</td>
</tr>
<tr>
<td>Pipes</td>
<td>data.frame</td>
</tr>
<tr>
<td>Pumps</td>
<td>data.frame</td>
</tr>
<tr>
<td>Valves</td>
<td>data.frame</td>
</tr>
<tr>
<td>Demands</td>
<td>data.frame</td>
</tr>
</tbody>
</table>
Status data.frame
Emitters data.frame
Quality data.frame
Sources data.frame
Reactions character
Mixing data.frame
Patterns list
Curves list
Controls character
Rules character
Energy character
Times character
Report character
Options list
Coordinates data.frame
Vertices data.frame
Labels data.frame
Backdrop character
Tags character

References

http://nepis.epa.gov/Adobe/PDF/P1007WWU.pdf

Examples

path to Net1.inp example file included with this package
inp <- file.path(find.package("epanetReader"), "extdata","Net1.inp")

#read the network file into R
n1 <- read.inp(inp)
s1 <- read.inp(inp)
summary(n1)
names(n1)
s1 <- read.inp(inp)
summary(s1$Junctions)
summary(s1$Pipes)
plot(n1)
Description

reads an Epanet-msx .rpt file into R

Usage

read.msxrpt(file)

Arguments

file the name of the file to read

Details

Specify the needed outputs from an Epanet-msx simulation in the [REPORT] section of the .msx file to create reports for reading with this function.

The function returns an S3 object (list) with a data.frame for node results and data.frame for link results. These data.frames contain results from all the time periods to facilitate time series plots.

Value

Returns an epanetmsx.rpt S3 object .

nodeResults data.frame
linkResults data.frame

References

Examples

path to example file included with this package
msr <- file.path(find.package("epanetReader"), "extdata","example.rpt")

#read the results into R
x <- read.msxrpt(msr)
names(x)
summary(x)
plot(x)
read.rpt Read .rpt file

Description
reads an Epanet .rpt file into R

Usage
read.rpt(file)

Arguments
file the name of the file to read

Details
add lines "Page 0", "Links All" and "Nodes All" to the [REPORT] section of the .inp file to output info to read in with this function

In contrast to the treatment of .inp files, data from .rpt files is stored using a slightly different structure than the .rpt file. The function returns an object (list) with a data.frame for node results and data.frame for link results and a data.frame for energy usage. The node and link results data frames contain results from all the time periods to facilitate time series plots.

Value
Returns an epanet.rpt S3 object with two data.frame elements.

nodeResults data.frame
linkResults data.frame
energyUsage data.frame

References
http://nepis.epa.gov/Adobe/PDF/P1007WWU.pdf

Examples

path to Net1.rpt example file included with this package
rpt <- file.path(find.package("epanetReader"), "extdata","Net1.rpt")
nlr <- read.rpt(rpt)
summary(nlr)
names(nlr)

#Results for a chosen time period can be retrieved using the subset function.
subset(nlr$nodeResults, Timestamp == "0:00:00")
time series plot for a nodal value
plot(Chlorine ~ timeInSeconds,
data = subset(nlr$nodeResults, ID == "22")

Plotting the epanet.rpt object itself gives a map.
Note that the object created from the .inp file is required.
inp <- file.path(find.package("epanetReader"), "extdata","Net1.inp")
nr <- read.inp(inp)
plot(nr, nr)

Energy Usage table
print(nlr$energyUsage)

read_lines_wrapper Read lines wrapper

Description
Wrapper function for different implementations of readlines functions

Usage
read_lines_wrapper(file)

Arguments
file the name of the file to read

Details
calls Kmisc::readlines if available and base::readLines otherwise

Value
character vector where each entry corresponds to a line in the file.

sparkline Sparkline

Description
Create sparkline object by extracting from a data frame

Usage
sparkline(df, id.var, ID, yvar, xvar)
Arguments

- **df**: data.frame from which data for the sparkline is extracted
- **id.var**: variable in df with IDs
- **ID**: value in id.var on which to extract
- **yvar**: name of variable for the y values in the sparkline
- **xvar**: optional name of variable for horizontal axis of sparkline plots

Details

Creates an object with info for a single sparkline by extracting from a data.frame. The function works on data.frames with one column of ID variables and possibly several columns of other variables. The main use is as a helper function for building up a `sparklineTable`.

Examples

```r
# look at the names in the built-in data set Theoph
names(Theoph)
# make sparkline object for the concentration over time in subject 2
sl <- sparkline(df= Theoph, id.var = 'Subject', ID = 2, yvar='conc', xvar = 'Time')
plot(sl)
```

sparklineTable | Sparkline Table

Description

Create S3 object of data for table of sparklines

Usage

`sparklineTable(df, row.var, col.vars, xvar = NULL, xrange.labels = NULL)`

Arguments

- **df**: data.frame of values to plot.
- **row.var**: variable for rows of the table
- **col.vars**: variables for columns of the table
- **xvar**: optional name of variable for horizontal axis of sparkline plots
- **xrange.labels**: optional vector of length 2 with labels for the first and last quantities plotted on x-axis, often a date and/or time

See Also

`plotSparklineTable`
summary.epanet.inp

Summary Method for epanet.inp

Description

Summarizes the network by printing the Title of the network and the number of each type of elements.

Usage

```r
## S3 method for class 'epanet.inp'
summary(object, ...)
```

Arguments

- `object` of class `epanet.inp`
- `...` further arguments

summary.epanet.rpt

Summary of Epanet Simulation Results

Description

Provides a basic summary of simulation results

Usage

```r
## S3 method for class 'epanet.rpt'
summary(object, ...)
```

Arguments

- `object` of `epanet.rpt` class
- `...` further arguments passed to `summary()`

Details

Summary of pipe results shows positive and negative values of flow but only positive values of velocity as in the rpt file.
summary.epanetmsx.rpt Summary of Epanet-msx Simulation Results

Description

Provides a basic summary of simulation results

Usage

```r
## S3 method for class 'epanetmsx.rpt'
summary(object, ...)
```

Arguments

- `object` of epanetmsx.rpt class
- `...` further arguments passed to `summary()`

write.inp Write .inp file

Description

Write an epanet.inp object to a file

Usage

```r
write.inp(x, file)
```

Arguments

- `x` epanet.inp object to write
- `file` the name of the file where object is written

Details

Writes an epanet.inp object to a file suitable for simulation with EPANET.

Value

nothing

Examples

```r
write.inp(Net1, "Net1-fromR.inp")
n1 <- read.inp("Net1-fromR.inp")
all.equal(Net1, n1)
```
Index

binBreaker, 2

epanet.inp (read.inp), 15
epanetDefaultOptions, 3
epanetmsx.rpt (read.msxrpt), 17
epanetReader, 3
epanetReader-package (epanetReader), 3
expandedLinkTable, 4

is.epanet.inp, 4
is.epanet.rpt, 5
is.epanetmsx.rpt, 5
is.expandedLinkTable, 5
is.sparkline, 6
is.sparklineTable, 6

Net1, 6
Net1rpt, 7

plot.epanet.inp, 7
plot.epanet.rpt, 8
plot.epanetmsx.rpt, 9
plot.expandedLinkTable, 9
plot.sparkline, 10
plot.sparklineTable, 11
plotElementsLegend, 11
plotInpLinks, 12
plotInpNodes, 12
plotSparklineTable, 13
print.summary.epanet.rpt, 14
print.summary.epanetmsx.rpt, 14

read.inp, 3, 6, 15
read.msxrpt, 3, 17
read.rpt, 3, 7, 18
read_lines_wrapper, 19

sparkline, 19
sparklineTable, 20, 20
summary.epanet.inp, 21
summary.epanet.rpt, 21

summary.epanetmsx.rpt, 22
write.inp, 22