Package ‘epiDisplay’

October 13, 2022

Version 3.5.0.2
Date 2022-05-09
Title Epidemiological Data Display Package
Author Virasakdi Chongsuvivatwong <cvirasak@medicine.psu.ac.th>
Maintainer Virasakdi Chongsuvivatwong <cvirasak@medicine.psu.ac.th>
Depends R (>= 2.6.2), foreign, survival, MASS, nnet

Suggests

Description Package for data exploration and result presentation. Full 'epicalc' package with data management functions is available at '<https://medipe.psu.ac.th/epicalc/>'.

License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-18 14:20:02 UTC

R topics documented:

- Age at marriage .. 3
- aggregate numeric 4
- aggregate plot ... 6
- Air Pollution .. 9
- alpha .. 9
- ANC Table .. 12
- Antenatal care data 12
- Attitudes dataset 13
- Bangladesh Fertility Survey 14
- Blood pressure .. 14
- Cancer survival 15
- cc ... 16
- CI ... 18
- Codebook .. 21
- Data for cleaning 22
- des ... 23
R topics documented:

- DHF99 .. 24
- dotplot .. 25
- Ectopic pregnancy 27
- Familydata 28
- Follow-up Plot 29
- Hakimi’s data 31
- Hookworm 1993 32
- Hookworm and blood loss 32
- IUD trial admission data 33
- IUD trial discontinuation data 34
- IUD trial follow-up data 34
- kap ... 35
- List non-function objects 37
- lookup .. 38
- lrtest .. 39
- Matched case-control study 40
- matchTab 41
- mhor .. 42
- Montana ... 43
- Oswego ... 44
- Outbreak investigation 44
- poisgof .. 46
- Power ... 47
- print alpha 48
- print cci 48
- print des 49
- print kap.ByCategory 50
- print kap.table 50
- print lrtest 51
- print matchTab 52
- print n.for.2means 52
- print n.for.2p 53
- print n.for.cluster.2means 54
- print n.for.cluster.2p 54
- print n.for.equi.2p 55
- print n.for.lqas 56
- print n.for.noninferior.2p 56
- print n.for.survey 57
- print power.for.2means 58
- print power.for.2p 58
- print statStack 59
- print summ.data.frame 60
- print summ.default 60
- print tableStack 61
- pyramid .. 62
- Risk.display 63
- ROC .. 67
- sampsize 69
Age at marriage

Description

This dataset contains data on age at first marriage of attendants at a workshop in 1997.

Usage

```r
data(Marryage)
```

Format

A data frame with 27 observations on the following 7 variables.

- **id**: a numeric vector
- **sex**: a factor with levels male female
- **birthyr**: a numeric vector indicating year of birth
- **educ**: a factor with levels bach bachelor or higher
- **marital**: a factor with levels Single Married
- **maryr**: a numeric vector indicating year of marriage
- **endyr**: a numeric vector indicating year of analysis

Examples

```r
data(Marryage)
des(Marryage)
```
Summary statistics of a numeric variable by group

Description

Split the numeric variable into subsets, compute summary statistics for each, and return the results in a data frame.

Usage

```r
## S3 method for class 'numeric'
aggregate(x, by, FUN=c("count","sum","mean","median","sd","se","min","max"), na.rm=TRUE, length.warning=TRUE, ...)
```

Arguments

- **x**: a numeric variable
- **by**: a list of grouping elements, each as long as the variables in 'x'. Names for the grouping variables are provided if they are not given. The elements of the list will be coerced to factors (if they are not already factors).
- **FUN**: scalar functions to compute the summary statistics which can be applied to all data subsets.
- **na.rm**: whether missing values will be removed during the computation of the statistics.
- **length.warning**: show warning if x has any missing values
- **...**: additional arguments passed on to 'aggregate'

Details

This is the ‘aggregate’ method for objects inheriting from class ‘numeric’.

If Epicalc is loaded, applying ‘aggregate’ to a numeric variable ‘x’ will call ‘aggregate.numeric’. If ‘x’ is a data frame, ‘aggregate.data.frame’ will be called.

If the Epicalc package is not loaded, ‘aggregate’, from the stats package, coerces numeric variables (including 'ts' objects) into a data frame and calls ‘aggregate.data.frame’.

The ‘FUN’ argument in ‘aggregate.data.frame’ can accept only one function. ‘aggregate.numeric’ takes a different approach. More than one function can be supplied to the ‘FUN’ argument, however it can only be applied to one numeric variable.

‘aggregate’ in Epicalc is ‘backward compatible’ with the ‘aggregate’ function from the stats package. In other words, Epicalc users do not need to change basic syntax or arguments. However, the naming system of the returned object is slightly different. In addition to the ability to provide more statistics in one command, another useful feature of ‘aggregate.numeric’ in Epicalc is the default values of FUN. Without typing such an argument, ‘aggregate.numeric’ gives commonly wanted statistics in a shorter line of command.
Note that 'na.rm' set to TRUE by default to allow computation of descriptive statistics such as 'mean', and 'sd', when they are in the FUN argument, and 'length' is computed with missing records included. In standard R functions, the equivalent argument is "na.rm"=TRUE'.

The default value of the argument 'length.warning' is TRUE. A condition where 'x' has any missing value will be noticed, which is useful during data exploration. In further analysis, after missing values have been recognized, users may change 'length.warning' to FALSE to make the output look nicer. Both 'na.rm' and 'length.warning' will have no effect if there are no missing values in x.

'count' is an additional function specific to 'aggregate.numeric'. It displays the number of non-missing records in each subgroup.

'aggregate.plot' makes use of the above function in drawing bar plots with error lines computed from 'aggregate.numeric'. When 'FUN="mean"', the automatic choice of error values is "se". Users can also choose "sd" or "ci". 'alpha' is effective only for 'error="ci"'. If 'FUN="median"', the error values are inter-quartile range.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'aggregate', 'summ' and 'tapply'

Examples

data(Compaq)
.data <- Compaq
attach(.data)

If 'x' is a data frame, the default S3 aggregate method from the stats package is called.
aggregate(data.frame(id,year), by=list(HOSPITAL=hospital, STAGE=stage),
FUN="mean")
The two additional columns are means of 'id' and 'year'

If 'x' is a numeric vector, 'aggregate.numeric' from Epicalc package is called.
aggregate(year, by = list(HOSPITAL = hospital, STAGE = stage),
FUN = mean)
The above command is the same as the one below.
However, note the difference in the name of the last column of the returned
data frame.
aggregate.data.frame(year, by = list(HOSPITAL = hospital,
STAGE = stage), FUN = mean)

aggregate in Epicalc can handle multiple functions
aggregate(year, by = list(HOSPITAL = hospital, STAGE = stage),
FUN = c("mean", "sd", "length"))

Handling of missing values
.data$year[8] <- NA
detach(.data)
aggregate.plot

 aggregate.plot

 Plot summary statistics of a numeric variable by group

 Description

 Split a numeric variable into subsets, plot summary statistics for each

 Usage

 ```r
 aggregate.plot

 aggregate.plot

 aggregate.plot

 aggregate.plot
 ```

 Arguments

 ```r
 x a numeric variable
 ```
aggregate plot

by a list of grouping elements for the bar plot, or a single numeric or integer variable which will form the X axis for the time line graph

grouping further stratification variable for the time line graph

FUN either "mean" or "median"

error statistic to use for error lines (either 'se' or 'sd' for barplot, or 'ci' or 'none' for time line graph). When FUN = "median", can only be 'IQR' (default) or 'none'.

alpha level of significance for confidence intervals

lwd relative width of the "time" lines. See 'lwd' in ?par

lty type of the "time" lines. See 'lty' in ?par

line.col colour(s) of the error and time lines

bin.time number bins in the time line graph

bin.method method to allocate the "time" variable into bins, either with 'fixed' interval or equally distributed sample sizes based on quantiles

legend presence of automatic legend for the time line graph

legend.site a single character string indicating location of the legend. See details of ?legend

legend.bg background colour of the legend

xlim X axis limits

ylim Y axis limits

bar.col bar colours

cap.size relative length of terminating cross-line compared to the range of X axis

lagging lagging value of the error bars of two adjacent categories at the same time point. The value is result of dividing this distance with the range of X axis

main main title of the graph

return.output whether the dataframe resulted from aggregate should be returned

... additional graphic parameters passed on to other methods

Details

This function plots aggregated values of 'x' by a factor (barplot) or a continuous variable (time line graph).

When 'by' is of class 'factor', a bar plot with error bars is displayed.

When 'by' is a continuous variable (typically implying time), a time line graph is displayed.

Both types of plots have error arguments. Choices are 'se' and 'sd' for the bar plot and 'ci' and IQR for both bar plot and time line graph. All these can be suppressed by specifying 'error'="none".

'bin.time' and 'bin.method' are exclusively used when 'by' is a continuous variable and does not have regular values (minimum frequency of 'by' <3). This condition is automatically and silently detected by 'aggregate.plot' before 'bin.method' chooses the method for aggregation and bin.time determines the number of bins.

If 'legend = TRUE" (by default), a legend box is automatically drawn on the "topright" corner of the graph. This character string can be changed to others such as, "topleft", "center", etc (see examples).

'cap.size' can be assigned to zero to remove the error bar cap.
aggregate plot

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'aggregate.data.frame', 'aggregate.numeric', 'tapply'

Examples

data(Compaq)
.data <- Compaq
attach(.data)
aggregate.plot(x=year, by=list(HOSPITAL = hospital, STAGE = stage),
return = TRUE)
 # moving legend and changing bar colours
aggregate.plot(x=year, by=list(HOSPITAL = hospital, STAGE = stage), error="ci",
legend.site = "topleft", bar.col = c("red","blue"))
detach(.data)

Example with regular time intervals (all frequencies > 3)
data(Sitka, package="MASS")
.data <- Sitka
attach(.data)
tabl(Time, graph=FALSE) # all frequencies > 3
aggregate.plot(x=size, by=Time, cap.size = 0) # Note no cap on error bars
For black and white presentation
aggregate.plot(x=size, by=Time, grouping=treat, FUN="median",
line.col=3:4, lwd =2)
detach(.data)

Example with irregular time intervals (some frequencies < 3)
data(BP)
.data <- BP
attach(.data)
des(.data)
age <- as.numeric(as.Date("2008-01-01") - birthdate)/365.25
aggregate.plot(x=sbp, by=age, grouping=saltadd, bin.method="quantile")
aggregate.plot(x=sbp, by=age, grouping=saltadd, lwd=3,
line.col=c("blue","green"), main = NULL)
title(main="Effect of age and salt adding on SBP", xlab="years",ylab="mm.Hg")
points(age[saltadd=="no"], sbp[saltadd=="no"], col="blue")
points(age[saltadd=="yes"], sbp[saltadd=="yes"], pch=18, col="green")
detach(.data)
rm(list=ls())

For a binary outcome variable, aggregated probabilities is computed
data(Outbreak)
.data <- Outbreak
attach(.data)
.data$age[.data$age == 99] <- NA
detach(.data)
attach(.data)
aggregate.plot(diarrhea, by=age, bin.time=5)
diarrhea1 <- factor(diarrhea)
levels(diarrhea1) <- c("no", "yes")
aggregate.plot(diarrhea1, by=age, bin.time=5)
detach(.data)
rm(list=ls())

Air Pollution

Dataset on air pollution and deaths in UK

Description

Deaths in London from 1st-15th Dec 1952

Usage

```r
data(SO2)
```

Format

A data frame with 15 observations on the following 4 variables.

- **day** a numeric vector: the day in Dec 1952
- **deaths** a numeric vector: number of deaths
- **smoke** a numeric vector: atmospheric smoke (mg/cu.m)
- **SO2** a numeric vector: atmospheric sulphur dioxide (parts/million)

Source

from John F. Osborn, Statistical Exercises in Medical Research, Blackwell 1979

alpha

Cronbach’s alpha

Description

Calculate reliability coefficient of items in a data frame

Usage

```r
alpha (vars, dataframe, casewise = FALSE, reverse = TRUE, decimal = 4, vars.to.reverse = NULL, var.labels = TRUE, var.labels.trunc = 150)
alphaBest (vars, dataframe, standardized = FALSE)
```
Arguments

vars a vector containing at least three variables from the data frame
dataFrame data frame where items are set as variables
casewise whether only records with complete data will be used
reverse whether item(s) negatively correlated with other majority will be reversed prior to computation
decimal number of decimal places displayed
var.labels presence of descriptions of variables in the last column of the output
var.labels.trunc number of characters used for variable descriptions, long labels can be truncated
vars.to.reverse variable(s) to reverse prior to computation
standardized whether choosing the best subset of items is based on the standardized alpha coefficient, if FALSE then the unstandardized alpha coefficient is used

Details

This function is based on the 'reliability' function from package 'Rcmdr', which computes Cronbach's alpha for a composite scale.

There must be at least three items in 'vars' specified by their names or their index in the data frame. The argument 'reverse' (default = TRUE) automatically reverses items negatively correlated with other majority into negative and reports the activities in the first column of the last result section. This can be overwritten by the argument 'vars.to.reverse'.

Similar to the 'reliability' function, users can see the effect of removing each item on the coefficients and the item-rest correlation.

'alphaBest' is a variant of 'alpha' for successive removal of items aiming to reach the highest possible Cronbach alpha. The resultant values include variable indices of excluded and remaining items, which can be forwarded to 'tableStack' to achieve total and mean scores of the best selected items. However, there is no promise that this will give the highest possible alpha. Manual attempts may also be useful in making comparison.

Value

A list.

'alpha' returns an object of class "alpha"

alpha unstandardized alpha coefficient
std.alpha standardized alpha coefficient
sample.size sample size
use.method method for handling missing values
rbar the average inter-item correlation
items.selected names of variables included in the function
alpha

alpha.if.removed

A matrix of unstandardized and standardized alpha coefficients and correlation of each item with the rest of the items.

result

As above but includes a column showing the items that were reversed (if TRUE) and a column of item description. As a matrix, it could be sent to a spreadsheet software using 'write.csv'.

decimal

Decimal places.

item.labels

A character vector containing descriptions of the items.

'alpha.Best' returns a list of the following elements:

best.alpha

The possible highest alpha obtained from the function.

removed

Indices of items removed by the function.

remaining

Indices of the remaining items.

items.reversed

Names of items reversed.

Author(s)

Virasakdi Chongsuvivatwong <cvirasak@gmail.com>

See Also

'cronbach' from 'psy' package and 'reliability' from 'Rcmdr' package and 'tableStack' and 'unclassDataFrame' of Epicalc.

Examples

data(Cars93, package="MASS")
.data <- Cars93
attach(.data)
alpha(vars=c(Min.Price:MPG.highway, EngineSize), .data)
detach(.data)

data(Attitudes)
.data <- Attitudes
attach(.data)
alpha(qa1:qa18, .data) # Needs full screen of R console
alpha(qa1:qa18, var.labels.trunc=30, .data)
 # Fits in with default R console screen
alpha(qa1:qa18, reverse=FALSE, .data)

alphaBest(qa1:qa18, .data) -> best.alpha
best.alpha # .7621

tableStack(best.alpha$remaining, dataFrame=.data, reverse=TRUE)

Manual attempts by trial and error give the following
alpha(c(qa1:qa9, qa15, qa18), .data) # .7644
detach(.data)
rm(list=ls())
Antenatal care data

ANC Table

Dataset on effect of new ANC method on mortality (as a table)

Description
This dataset contains frequency of various combinations of methods of antenatal care in two clinics with the outcome being perinatal mortality.

Usage
data(ANCtable)

Format
A data frame with 8 observations on the following 4 variables.
death a numeric vector: 1=no, 2=yes
anc a numeric vector indicating antenatal care type: 1=old 2=new
clinic a numeric vector indicating clinic code: 1=clinic A, 2=clinic B
Freq a numeric vector of frequencies

Examples
data(ANCtable)
glm1 <- glm(death==2 ~ factor(anc) + factor(clinic),weights=Freq, family=binomial, data=ANCtable)
logistic.display(glm1)
glm2 <- glm(death==2 ~ factor(anc) + factor(clinic),weights=Freq, family=binomial, data=ANCtable)
summary(glm2)$coefficients

Antenatal care data

Dataset on effect of new antenatal care method on mortality

Description
This dataset contains records of high risk pregnant women under a trial on new and old methods of antenatal care in two clinics. The outcome was perinatal mortality.

Usage
data(ANCdata)

Format
A data frame with 755 observations on the following 3 variables.
death a factor with levels no yes
anc a factor with levels old new
clinic a factor with levels A B
Dataset from an attitude survey among hospital staff

Description
Survey on attitudes related to services among hospital staff.
Codes for the answers qa1 to qa18 are

1 = strongly disagree
2 = disagree
3 = neutral
4 = agree
5 = strong agree

Usage
data(Attitudes)

Format
A data frame with 136 observations on the following 7 variables.

id identifying code of respondent
sex gender of respondent
dep code of department
qa1 I have pride in my job
qa2 I’m happy to give service
qa3 I feel difficulty in giving service
qa4 I can improve my service
qa5 A service person must have patience
qa6 I would change my job if had the chance
qa7 Devoting some personal time will improve oneself
qa8 Hard work will improve oneself
qa9 Smiling leads to trust
qa10 I feel bad if I cannot give service
qa11 A client is not always right
qa12 Experienced clients should follow the procedure
qa13 A client violating the regulation should not bargain
qa14 Understanding colleagues will lead to understanding clients
qa15 Clients like this place due to good service
Blood pressure

Clients who expect our smiling faces create pressure on us
Clients are often self-centered
Clients should be better served

Bangladesh Fertility Survey

Dataset from 1988 Bangladesh Fertility Survey

Description
The file consists of a subsample of 1934 women grouped in 60 districts.

Usage
data(Bang)

Format
A data frame with 1934 observations on the following 7 variables.

woman identifying code of each woman
district identifying code for each district
user 1 = using contraceptive 0 = not using
living.children Number of living children at time of survey

1 = none
2 = 1
3 = 2
4 = 3 or more

age_mean age of woman in years, centred around the mean
urban Type of region of residence: 1 = urban, 0 = rural
constant constant term = 1

Source

Blood pressure

Dataset on blood pressure and determinants
Description
This dataset contains information on the records of 100 adults from a small cross-sectional survey in 2001 investigating blood pressure and its determinants in a community.

Usage
data(BP)

Format
A data frame containing 100 observations and 6 variables with variable descriptions.

Examples
data(BP)
des(BP)

Description
A dataset on cancer survival checking whether there is a survival difference between cancer patients in private and public hospitals.

Usage
data(Compaq)

Format
A data frame with 1064 observations on the following 7 variables.

id a numeric vector
hospital a factor with levels Public hospital Private hospital
status a numeric vector
stage a factor with levels Stage 1 Stage 2 Stage 3 Stage 4
agegr a factor with levels <40 40-49 50-59 60+
ses a factor with levels Rich High-middle Poor-middle Poor
year a numeric vector indicating the year of recruitment into the study

Examples
data(Compaq)
des(Compaq)
Odds ratio calculation and graphing

Description

Odds ratio calculation and graphing

Usage

cc(outcome, exposure, decimal = 2, cctable = NULL, graph = TRUE,
original = TRUE, design = "cohort", main, xlab = "auto", ylab,
alpha = .05, fisher.or = FALSE, exact.ci.or = FALSE)
ccci(caseexp, controlex, casenonex, controlnonex, cctable = NULL,
graph = TRUE, design = "cohort", main, xlab, ylab, xaxis, yaxis,
alpha = .05, fisher.or = FALSE, exact.ci.or = FALSE, decimal = 2)
cs(outcome, exposure, cctable = NULL, decimal = 2, method="Newcombe.Wilson",
main, xlab, ylab, cex, cex.axis)
csi(caseexp, controlex, casenonex, controlnonex, cctable = NULL,
decimal = 2, method="Newcombe.Wilson")
graph.casecontrol(caseexp, controlex, casenonex, controlnonex,
decimal=2)
graph.prospective(caseexp, controlex, casenonex, controlnonex,
decimal=2)
labelTable(outcome, exposure, cctable = NULL, cctable.dimnames = NULL)
make2x2(caseexp, controlex, casenonex, controlnonex)

Arguments

cctable.dimnames Dimension names of the variables, usually omitted
decimal number of decimal places displayed
outcome, exposure two dichotomous variables
cctable A 2-by-2 table. If specified, will supercede the outcome and exposure variables
graph If TRUE (default), produces an odds ratio plot
design Specification for graph; can be "case control","case-control", "cohort" or "prospective"
caseexp Number of cases exposed
controlex Number of controls exposed
casenonex Number of cases not exposed
controlnonex Number of controls not exposed
original should the original table be displayed instead of standard outcome vs exposure table
main main title of the graph
Details

'cc' usually reads in two variables whereas in 'cci' four number are entered manually. However, both the variables and the numbers should be omitted if the analysis is directly on a table specified by 'cctable'.

From both functions, odds ratio and its confidence limits, chisquared test and Fisher's exact test are computed. The odds ratio calculation is based on cross product method unless 'fisher.or' is set as TRUE. It's confidence limits are obtained by the exact method unless exact.ci.or is set as FALSE.

'cs' and 'csi' are for cohort and cross-sectional studies. It computes the absolute risk, risk difference, and risk ratio. When the exposure is a risk factor, the attributable fraction exposure, attributable fraction population and number needed to harm (NNH) are also displayed in the output. When the exposure is a protective factor, protective efficacy or percent of risk reduced and number needed to treat (NNT) are displayed instead.

If there are more than 2 exposure categories and the sample size is large enough, a graph will be plotted.

'method' in 'csi' and 'cs' chooses whether confidence limits of the risk difference should be computed by Newcomb-Wilson method. Both this and the standard method may give non-sensible values if the risk difference is not statistically significant.

'make2x2' creates a 2-by-2 table using the above orientation.

'graph.casecontrol' and 'graph.prospective' draw a graph comparing the odds of exposure between cases and controls or odds of diseased between exposed and non-exposed.

These two graphic commands are automatically chosen by 'cc' and 'cci', depending on the 'design' argument.

Alternatively, a contingency table saved from 'make2x2' can be supplied as the 'cctable' argument for the 'cc' function and so on.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'fisher.test', 'chisq.test' and 'mhor'
Examples

data(Oswego)
 .data <- Oswego
 attach(.data)
 cc(ill, chocolate)
 cc(ill, chocolate, design="case-control")
 cs(ill, chocolate) # The outcome variable should come first.

 # For the following table
 # chocolate
 # ill FALSE TRUE
 # FALSE 7 22
 # TRUE 20 25
 #
 cci(25, 22, 20, 7)
 graph.casecontrol(25, 22, 20, 7)
 graph.prospective(25, 22, 20, 7)
 # Each of the above two lines produces untitled graph, which can be decorated
 # additionally decorated

 # Alternatively
 table1 <- make2x2(25, 22, 20, 7)
 cc(outcome=NULL, exposure=NULL, cctable=table1)
 cs(outcome=NULL, exposure=NULL, cctable=table1)
 agegr <- pyramid(age, sex, bin=30)$ageGroup
 cs(ill, agegr, main="Risk ratio by age group", xlab="Age (years)")
 rm(list=ls())
 detach(.data)

CI

Confidence interval of probabilit, mean and incidence

Description

Compute confidence interval(s) of variables or values input from keyboard.

Usage

ci(x, ...)

Default S3 method:
ci(x, ...)

S3 method for class 'binomial'
ci(x, size, precision, alpha = 0.05, ...)

S3 method for class 'numeric'
ci(x, n, sds, alpha = 0.05, ...)
S3 method for class 'poisson'

ci(x, person.time, precision, alpha = 0.05, ...)

Arguments

- `x`: a variable for 'ci', number of success for 'ci.binomial', mean(s) for 'ci.numeric', and counts for 'ci.poisson'
- `size`: denominator for success
- `precision`: level of precision used during computation for the confidence limits
- `alpha`: significance level
- `n`: sample size
- `sds`: standard deviation
- `person.time`: denominator for count
- `...`: further arguments passed to or used by other methods

Details

These functions compute confidence intervals of probability, mean and incidence from variables in a dataset or values from keyboard input.

'ci' will try to identify the nature of the variable 'x' and determine the appropriate method (between 'ci.binomial' and 'ci.numeric') for computation. 'ci' without a specified method will never call 'ci.poisson'.

The specific method, ie. 'ci.binomial', 'ci.numeric' or 'ci.poisson', should be used when the values are input from the keyboard or from an aggregated data frame with columns of variables for the arguments.

'ci.binomial' and 'ci.numeric' employ exact probability computation while 'ci.numeric' is based on the t-distribution assumption.

Value

'ci.binomial' and 'ci.poisson' return a data frame containing the number of events, the denominator and the incidence rate. 'ci.numeric' returns means and standard deviations. All of these are followed by the standard error and the confidence limit, the level of which is determined by 'alpha'

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'summ'
Examples

data(Oswego)
.data <- Oswego
attach(.data)
logical variable
ci(ill)
numeric variable
ci(age)
factor
ci(sex=="M")
ci(sex=="F")
detach(.data)

Example of confidence interval for means
library(MASS)
.data <- Cars93
attach(.data)
car.price <- aggregate(Price, by=list(type=Type), FUN=c("mean","length","sd"))
car.price
.ci.numeric(x=car.price$mean, n=car.price$length, sds=car.price$sd.Price)
detach(.data)
rm(list=ls())

Example of confidence interval for probability
.data <- ANCdata
attach(.data)
death1 <- death="yes"
death.by.group <- aggregate.numeric(death1, by=list(anc=anc, clinic=clinic), FUN=c("sum","length"))
death.by.group
.ci.binomial(death.by.group$sum.death1, death.by.group$length)
detach(.data)
rm(list=ls())

Example of confidence interval for incidence
.data <- Montana
attach(.data)
des(.data)
age.Montana <- aggregate.data.frame(Montana[,1:2], by=list(agegr=Montana$agegr),FUN="sum")
age.Montana
.ci.poisson(age.Montana$respdeath, person.time=age.Montana$personyrs)
detach(.data)
rm(list=ls())

Keyboard input
What is the 95 % CI of sensitivity of a test that gives all
positive results among 40 diseased individuals
.ci.binomial(40,40)
What is the 99 % CI of incidence of a disease if the number
of cases is 25 among 340,000 person-years
\[
\text{ci.poisson(25, 340000, alpha=.01)} \quad \# \quad 4.1 \text{ to } 12.0 \text{ per } 100,000 \text{ person-years}
\]

Description

Print description, summary statistics and one-way tabulation of variables

Usage

\[
\text{codebook(dataFrame)}
\]

Arguments

- **dataFrame**: A data frame for printing the codebook

Details

The default value of dataFrame (ie if no argument is supplied) is `.data`

While 'summ' produces summary statistics of both numeric and factor variables, 'codebook' gives summary statistics of all numeric variables and one-way tabulation of all factors of the data frame.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'use', 'summ', 'tab1' and 'tableStack'

Examples

\[
\text{data(Familydata)}
\]

\[
\text{codebook(Familydata)}
\]
Data for cleaning

Description

The data come from clients of a family planning clinic.
For all variables except id: 9, 99, 99.9, 888, 999 represent missing values

Usage

data(Planning)

Format

A data frame with 251 observations on the following 11 variables.

ID a numeric vector: ID code
AGE a numeric vector
RELIG a numeric vector: Religion

1 = Buddhist
2 = Muslim

PED a numeric vector: Patient’s education level

1 = none
2 = primary school
3 = secondary school
4 = high school
5 = vocational school
6 = university
7 = other

INCOME a numeric vector: Monthly income in Thai Baht

1 = nil
2 = < 1,000
3 = 1,000-4,999
4 = 5,000-9,999
5 = 10,000

AM a numeric vector: Age at marriage
REASON a numeric vector: Reason for family planning
1 = birth spacing
2 = enough children
3 = other

BPS a numeric vector: systolic blood pressure
BPD a numeric vector: diastolic blood pressure
WT a numeric vector: weight (Kg)
HT a numeric vector: height (cm)

Examples

data(Planning)
des(Planning)

Change var. name to lowercase
names(Planning) <- tolower(names(Planning))
.data <- Planning
des(.data)

Check for duplication of 'id'
attach(.data)
any(duplicated(id))
 duplicated(id)
 id[duplicated(id)] #215

Which one(s) are missing?
setdiff(min(id):max(id), id) # 216

Correct the wrong on
id[duplicated(id)] <- 216
detach(.data)
rm(list=ls())

des

Description of a data frame or a variable

Description

Description of a data frame or a variable or wildcard for variable names

Usage

des(dataFrame)

Arguments

dataFrame a data frame
Details

The variable names will be listed with class and the description of each variable

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'summ', 'label.var', 'subset' and 'keepData'

Examples

```r
data(Oswego)
.data <- Oswego
des(.data)
```

DHF99

Dataset for exercise on predictors for mosquito larva infestation

Description

Dataset from a community survey on water containers infested by mosquito larvae.

Usage

```r
data(DHF99)
```

Format

A data frame with 300 observations on the following 5 variables.

- **houseid**: a numeric vector
- **village**: a numeric vector indicating village ID
- **education**: a factor with levels Primary Secondary High school Bachelor Other
- **containers**: a numeric vector indicating number of containers infested
- **viltype**: a factor with levels rural urban slum

References

dotplot

Description

Plot of frequency in dots

Usage

dotplot (x, bin = "auto", by = NULL, xmin = NULL, xmax = NULL,
 time.format = NULL, time.step = NULL, pch = 18, dot.col = "auto",
 main = "auto", ylab = "auto", cex.X.axis = 1, cex.Y.axis = 1, ...)

Arguments

x a numeric vector. Allowed types also include "Date" and "POSIXct"
bin number of bins for the range of 'x'
by stratification variable
xmin lower bound of x in the graph
xmax upper bound of x in the graph
time.format format for time or date at the tick marks
time.step a character string indicating increment of the sequence of tick marks
pch either an integer specifying a symbol or a single character to be used as the
dot.col a character or a numeric vector indicating the colour of each category of 'by'
main main title
ylab Y axis title
cex.X.axis character extension scale of X axis
cex.Y.axis character extension scale of Y axis
... graphical parameters for the dots when there is no stratification

Details

'dotplot' in Epicalc is similar to a histogram. Each dot represents one record. Attributes of the
dots can be further specified in '...' when there is no stratification. Otherwise, the dots are plotted
as a diamond shape and the colours are automatically chosen based on the current palette and the
number of strata.

When 'bin="auto"' (by default), and the class of the vector is 'integer', 'bin' will be automatically
set to max(x)-min(x)+1. This strategy is also applied to all other time and date variables. Users can
try other values if the defaults are not to their liking. See the example of 'timeExposed' below.

The argument 'xmin' and 'xmax' indicate the range of x to be displayed on the graph. These two
arguments are independent from the value of 'bin', which controls only the number of columns for
the original data range.
Dotplot usually starts the first tick mark on the X-axis at 'xmin' (or min(x) if the 'xmin' is not specified). The argument 'time.step' is typically a character string, containing one of 'sec', 'min', 'hour', 'day', 'DSTday', 'week', 'month' or 'year'. This can optionally be preceded by an integer and a space, or followed by "s", such as "2 weeks".

Setting proper 'xmin', 'xmax' and 'time.step' can improve the location of tick marks on the X-axis. The 'time.format' argument can then be given to further improve the graph. See the last two examples for a better understanding.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'summ', 'hist', 'seq.Date' and 'seq.POSIXt'

Examples

```r
a <- rep(1:2, 250)
b <- rnorm(500, mean=a)
dotplot(b)
dotplot(b, pch=1)
dotplot(b, by=a)
dotplot(b, by=a, pch=1) # You may try other values of 'pch'
```

For the commands below,
if dates in X axis are not readable,
try omitting '# ' from the next line
Sys.setlocale("LC_ALL", "C")

The number of dots in each column is the frequency
of 'x' for the exact value on the X axis.
data(Outbreak)
.data <- Outbreak
attach(.data)
class(age) # numeric
dotplot(age) # 40 columns
age.as.integer <- as.integer(age)
dotplot(age.as.integer)
'bin' is the number of columns in the data range.
Specifying 'min' and 'max' only expands or truncates
the range of the X axis and has no effect on the distribution
of the dots inside the data range.
dotplot(age.as.integer, xmin=0, xmax=150) # Just for demonstration.
dotplot(age.as.integer, xmin=0, xmax=70) # the "99"s are now out of the plot.
dotplot(age.as.integer, xmin=0, xmax=70, by=sex)

Controlling colours of the dots
sex1 <- factor(sex); levels(sex1) <- list("M"=1, "F"=0)
dotplot(age.as.integer, xmin=0, xmax=70, by=sex1, dot.col="chocolate")
dotplot(age.as.integer, xmin=0, xmax=70, by=sex1, dot.col=c(2,5))
dotplot(age.as.integer, xmin=0, xmax=70, by=sex1,
```
Ectopic pregnancy

Dataset of a case-control study looking at history of abortion as a risk factor for ectopic pregnancy

Description

This case-control study has one case series and two control groups. The subjects were recruited based on three types of pregnancy outcome.

Usage

data(Ectopic)

Format

A data frame with 723 observations on the following 4 variables.

<table>
<thead>
<tr>
<th>id</th>
<th>a numeric vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>outc</td>
<td>a factor with levels EP IA Deli</td>
</tr>
<tr>
<td></td>
<td>EP = ectopic pregnancy</td>
</tr>
<tr>
<td></td>
<td>IA = women coming for induced abortion</td>
</tr>
<tr>
<td></td>
<td>Deli = women admitted for full-term delivery</td>
</tr>
<tr>
<td>hia</td>
<td>a factor with levels never IA ever IA</td>
</tr>
<tr>
<td>gravi</td>
<td>a factor with levels 1<del>2 3</del>4 &gt;4</td>
</tr>
</tbody>
</table>

Examples

data(Ectopic)
library(nnet)
data(Ectopic)
.data <- Ectopic
multi1 <- multinom(outc ~ hia + gravi, data=.data)
summary(multi1)
mlogit.display(multi1)

# Changing referent group of outcome
.data$outcIA <- relevel(.data$outc, ref="IA")
multi2 <- multinom(outcIA ~ hia + gravi, data=.data)
summary(multi2)
mlogit.display(multi2)
Familydata

Dataset of a hypothetical family

Description

Anthropometric and financial data of a hypothetical family

Usage

data(Familydata)

Format

A data frame with 11 observations on the following 6 variables.

code a character vector
age a numeric vector
ht a numeric vector
wt a numeric vector
money a numeric vector
sex a factor with levels F M

Examples

data(Familydata)
.data <- Familydata
des(.data)
summ(.data)
age2 <- with(.data, age)^2
with(.data, plot(age, money, log="y"))
dots.of.age <- seq(0,80,0.01)
new.data.frame <- data.frame(age=dots.of.age, age2=dots.of.age^2)
lm1 <- lm(log(money) ~ age + age2, data=.data)
summary(lm1)$coefficients
dots.of.money <- predict.lm(lm1, new.data.frame)
lines(dots.of.age, exp(dots.of.money), col="blue")
**Follow-up Plot**

*Longitudinal followup plot*

---

**Description**

Plot longitudinal values of individuals with or without stratification.

**Usage**

```r
followup.plot(id, time, outcome, by = NULL, n.of.lines = NULL, legend = TRUE,
 legend.site = "topright", lty = "auto", line.col = "auto",
 stress = NULL, stress.labels = FALSE, label.col = 1, stress.col = NULL,
 stress.width = NULL, stress.type = NULL, lwd = 1, xlab, ylab, ...)
```

**Arguments**

- `id`: identification variable of the same subject being followed up.
- `time`: time at each measurement.
- `outcome`: continuous outcome variable.
- `by`: stratification factor (if any).
- `n.of.lines`: number of lines (or number of subjects in the data frame) randomly chosen for drawing.
- `legend`: whether a legend will be automatically included in the graph.
- `legend.site`: a single character string indicating location of the legend. See details of `?legend`.
- `lty`: type of the "time" lines. See `lty` in `?par`.
- `line.col`: line colour(s) for non-stratified plot.
- `stress`: subset of ids to draw stressed lines.
- `stress.labels`: whether the stressed lines should be labelled.
- `label.col`: single integer indicating colour of the stressed line labels.
- `stress.col`: colour values used for the stressed line. Default value is '1' or black.
- `stress.width`: relative width of the stressed line.
- `stress.type`: line type code for the stressed line.
- `lwd`: line width.
- `xlab`: label for X axis.
- `ylab`: label for Y axis.
- `...`: other graphic parameters.
Details

'followup.plot' plots outcome over time of the individual subjects.
If a stratification variable 'by' is specified, the levels of this variable will be used to color the lines.
'n.of.lines' is used to reduce the number of lines to allow the pattern to be seen more clearly.
'legend' is omitted if 'n.of.lines' is not NULL or the number of subjects exceeds 7 without stratification.
'line.col' works only for a non-stratified plot. It can be a single standard colour or "multicolor".
Values for 'stress.col', 'stress.width' and 'stress.type', if not NULL, should follow those for 'col', 'lwd' and 'lty', respectively

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'plot','lines'

Examples

```
.data <- Indometh
attach(.data)
followup.plot(Subject, time, conc)
followup.plot(Subject, time, conc, lty=1:6, line.col=rep("black",6))
detach(.data)

.data <- Sitka
attach(.data)
followup.plot(tree, Time, size)
followup.plot(tree, Time, size, line.col = "brown")
followup.plot(tree, Time, size, line.col = "multicolor")
followup.plot(tree, Time, size, n.of.lines=20, line.col = "multicolor")

Breakdown of color by treatment group
followup.plot(tree, Time, size, by=treat)

The number of lines reduced to 40
followup.plot(tree, Time, size, by=treat, n.of.lines=40)

Stress some lines
length(table(tree)) # 79 trees followed up

Identifying trees that sometimes became smaller
.data <- .data[order(.data$tree, .data$Time),]
detach(.data)
attach(.data)
next.tree <- c(tree[-1], NA)
next.size <- c(size[-1], NA)
next.size[tree != next.tree] <- NA
```
Hakimi's data

```r
smaller.trees <- tree[next.size < size]
followup.plot (tree, Time, size, line.col=5, stress=smaller.trees,
 stress.col=2, stress.width=2, stress.type=2)
followup.plot (tree, Time, size, line.col=5, stress=smaller.trees,
 stress.col=2, stress.width=2, stress.type=2, stress.labels=TRUE)
detach(.data)
rm(list=ls())
```

Hakimi's data

**Dataset on effect of training personnel on neonatal mortality**

**Description**

Subset of a dataset from an intervention trial of education on personnel and the effect on neonatal mortality. Non-fatal records were randomly selected from the original dataset, just for practice and interpretation of interaction term.

**Usage**

```r
data(Hakimi)
```

**Format**

A data frame containing 456 observations and 4 variables.

- **dead** neonatal death: 1=yes, 0=no
- **treatment** intervention programme: 1=yes, 2=no
- **malpres** malpresentation of fetus: 1=yes, 0=no
- **birthwt** birth weight for foetus in gram

**Examples**

```r
data(Hakimi)
.data <- Hakimi
attach(.data)
cc(dead, treatment)
mhor(dead, treatment, malpres)
detach(.data)
```
Hookworm 1993

Dataset from a study on hookworm prevalence and intensity in 1993

Description
A dataset from a cross-sectional survey in 1993 examining hookworm infection

Usage
data(HW93)

Format
A data frame with 637 observations on the following 6 variables.

- id  a numeric vector for personal identification number
- epg  a numeric vector for eggs per gram of faeces
- age  a numeric vector for age in years
- shoe  a factor for shoe wearing with levels no yes
- intense  a factor for intensity of infection in epg. with levels 0 1-1,999 2,000+
- agegr  a factor for age group with levels <15 yrs 15-59 yrs 60+ yrs

Examples
data(HW93)
des(HW93)
.data <- HW93
.data$order.intense <- ordered(.data$intense)
ord.hw <- polr(ordered(intense) ~ agegr + shoe, data=.data)
summary(ord.hw)
ordinal.or.display(ord.hw)

Hookworm and blood loss

Hookworm infection and blood loss: SEAJTM 1970

Description
A study using radio-isotope to examine daily blood loss and number of hookworms infecting the patients.

Usage
data(Suwit)
**IUD trial admission data**

**Format**

A data frame with 15 observations on the following 3 variables.

- **id** a numeric vector
- **worm** a numeric vector: number of worms
- **bloss** a numeric vector: estimated daily blood loss (mg/day)

**Source**


**References**

-- possibly secondary sources and usages --

**Examples**

```r
data(Suwit)
with(Suwit, plot(worm, bloss, type="n"))
with(Suwit, text(worm, bloss, labels=id))
abline(lm(bloss ~ worm, data=Suwit), col="red")
```

---

**IUD trial admission data**

*Dataset admission of cases for IUD trials*

**Description**

This dataset is a subset of WHO IUD trial. It should be merged with IudFollowup and IudDiscontinue.

**Usage**

```r
data(IudAdmit)
```

**Format**

A data frame containing 918 observations and 4 variables.

- **id** a numeric vector for personal identification number
- **idate** date of IUD insertion
- **lmptime** time since last menstrual period
- **a122** type of IUD

**Examples**

```r
data(IudAdmit)
```
IUD trial discontinuation data

*Dataset on discontinuation of the IUD trial cases*

**Description**
This dataset is a subset of WHO IUD trial. It should be merged with IudAdmit and IudFollowup.

**Usage**
data(IudDiscontinue)

**Format**
A data frame containing 398 observations and 3 variables.

- **id**: a numeric vector for personal identification number
- **discdate**: date of discontinuation
- **d23**: primary reason for discontinuation

**Examples**
data(IudDiscontinue)

IUD trial follow-up data

*Dataset follow up cases of IUD trials*

**Description**
This dataset is a subset of WHO IUD trial. It should be merged with IudAdmit and IudDiscontinue.

**Usage**
data(IudFollowup)

**Format**
A data frame containing 4235 observations and 6 variables.

- **id**: a numeric vector for personal identification number
- **vlmpdate**: date of last menstrual period before this visit
- **vdate**: date of visit
- **f22**: lactating
- **f51**: IUD threads visible
- **f61**: subject continuing
Examples

```
data(IudFollowup)
```

---

**Kappa statistic**

**Description**

Measurement of agreement in categorization by 2 or more raters

**Usage**

```
kap(x, ...)
```

---

**Arguments**

- **x**: an object serving the first argument for different methods

  - `FUNCTION`: 'x'
    - 'kap.table' table
    - 'kap.2.raters' rater1
    - 'kap.m.raters' data frame with raters in column
    - 'kap.ByCategory' data frame with categories in column

- **decimal**: number of decimal in the print

- **wttable**: cross tabulation of weights of agreement among categories. It can be NULL, "w" and "w2". Applicable only for 'kap.table' and 'kap.2.raters'

- **print.wttable**: whether the weights table will be printed out

- **rater2**: a vector or factor containing opinions of the second rater among two raters.

- **...**: further arguments passed to or used by other methods.
Details

There are two different principles for the calculation of the kappa statistic. 'kap.table' and 'kap.2.raters' use two fixed raters whereas 'kap.m.raters' and 'kap.ByCategory' are based on frequency of category of rating an individual received without a requirement that the raters must be fixed.

'kap.table' analyses kappa statistics from a predefined table of agreement of two raters.

'wttable' is important only if the rating can be more than 2 levels. If this argument is left as default or 'NULL', full agreement will be weighted as 1. Partial agreement is considered as non-agreement and weighted as 0.

When `wttable = "w"`, the weights are given by

\[1 - \frac{\text{abs}(i - j)}{1 - k}\]

where i and j index the rows and columns of the ratings and k is the maximum number of possible ratings. A weight of 1 indicates an observation of perfect agreement.

When `wttable = "w2"`, the weights are given by

\[1 - \left(\frac{\text{abs}(i - j)}{1 - k}\right)^2\]

In this case, weights of partial agreements will further increase.

'wttable' can otherwise be defined by the user.

'kap.2.raters' takes two vectors or factors, one for each of the two raters. Cross-tabulation of the two raters is displayed and automatically forwarded for computation of kappa statistic by 'kap.table'.

'kap.m.raters' is used for more than 2 raters. Although the variables are arranged based on columns of individual raters, only the frequency in each category rating is used. This function calculates the frequencies without any display and automatically forwards the results for computation by 'kap.ByCategory'.

'kap.ByCategory' is for the grouped data format, where each category (column) contains the counts for each individual subject being rated. As mentioned above, the frequencies can come from different sets of raters.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'table'

Examples

```r
Computation of kappa from a table
class <- c("Normal","Benign","Suspect","Cancer")
raterA <- gl(4,4, label=class)
raterB <- gl(4,16, label=class)
freq <- c(50,2,0,1,2,30,4,3,0,0,20,1,3,4,25)
table! <- xtabs(freq ~ raterA + raterB)
table!
kap(table!)
```
wt <- c(1, .5, 0, 0, .5, 1, 0, 0, 0, 1, .8, 0, 0, .8, 1)
wttable <- xtabs(wt ~ raterA + raterB)
wtttable # Agreement between benign vs normal is .5, suspect vs cancer is .8
kap(table1, wtttable = wtttable, print.wtttable = TRUE)

# The following two lines are computational possible but inappropriate
kap(table1, wtttable = "w", print.wtttable = TRUE)
kap(table1, wtttable = "w2", print.wtttable = TRUE)

## A data set from 5 raters with 3 possible categories.
category.lab <- c("yes", "no", "Don't know")
rater1 <- factor(c(1, 1, 3, 1, 1, 1, 1, 2, 1, 1), labels = category.lab)
rater2 <- factor(c(2, 1, 3, 1, 1, 2, 1, 2, 3, 1), labels = category.lab)
rater3 <- factor(c(2, 3, 1, 1, 2, 1, 2, 3, 1), labels = category.lab)
rater4 <- factor(c(2, 3, 1, 3, 2, 1, 2, 3, 3), labels = category.lab)
rater5 <- factor(c(2, 3, 3, 3, 2, 1, 3, 3), labels = category.lab)
kap.m.raters(data.frame(rater1, rater2, rater3, rater4, rater5))

# The above is the same as
YES <- c(1, 2, 0, 4, 3, 1, 5, 0, 1, 3)
NO <- c(4, 0, 0, 0, 0, 4, 0, 4, 0, 0)
DONTKNOW <- c(0, 3, 5, 1, 2, 0, 0, 1, 4, 2)
kap.ByCategory(data.frame(YES, NO, DONTKNOW))

# Using 'kap.m.raters' for 2 raters is inappropriate. Kappa obtained
# from this method assumes that the agreement can come from any two raters,
# which is usually not the case.
kap.m.raters(data.frame(rater1, rater2))
# 'kap.2.raters' gives correct results
kap.2.raters(rater1, rater2)

# When there are missing values,
rater3[9] <- NA; rater4[c(1, 9)] <- NA
kap.m.raters(data.frame(rater1, rater2, rater3, rater4, rater5))
# standard errors and other related statistics are not available.

# Two exclusive rating categories give only one common set of results.
# The standard error is obtainable even if the numbers of raters vary
# among individual subjects being rated.
totalRaters <- c(2, 2, 3, 4, 3, 4, 3, 5, 2, 4, 5, 3, 4, 4, 2, 2, 3, 2, 2, 4, 5, 3, 4, 3, 3, 2)
pos <- c(2, 0, 2, 3, 1, 0, 0, 4, 5, 3, 4, 3, 0, 2, 1, 1, 4, 2, 0, 0, 3, 2)

List non-function objects

**Description**

List all objects visible in the global environment except user created functions.
Usage

lsNoFunction()

Details

Compared to standard 'ls()', this function displays only the subset of 'ls()' which are not functions. The member of this list can be removed by 'zap()' but not the set of the functions created.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'use', 'detach', 'ls', 'rm'

Examples

object1 <- 1:5
object2 <- list(a=3, b=5)
function1 <- function(x) {x^3 +1}
ls()
lsNoFunction()

## To show only functions
as.character(lsf.str()[[1]])

---

lookup  

Recode several values of a variable

Description

Systematic replacement of several values of a variable using an array

Usage

lookup(x, lookup.array)

Arguments

x  a variable
lookup.array a n-by-2 array used for looking up the recoding scheme
Details

This command is used for changing more than one value of a variable using a n-by-2 look-up array. The first column of the look-up array (index column) must be unique.

If either the variable or the look-up table is character, the result vector will be character.

For changing the levels of a factor variable, `recode(vars, "old level", "new level")` or `levels(var) <-` instead.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'replace', 'recode'

Examples

```r
a <- c(1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, NA)
tx <- rbind(c(1,2),c(2,1),c(3,4),c(4,NA),c(NA,3))

Swapping values of 1 and 2; rotating 3, 4 and NA
new.a <- lookup(a, tx)
data.frame(a, new.a)

tableA <- table(a, new.a, exclude=NULL)
All non-diagonal cells which are non-zero are the recoded cells.
print(tableA, zero=".")

Character look-up table
b <- c(rep(letters[1:4],2), ".", NA)
tx1 <- cbind(c(letters[1:5], ".", NA), c("Disease A", "Disease B", "Disease C", "Disease D", "Disease E", NA, "Unknown"))
DiseaseName <- lookup(b, tx1)
data.frame(b, DiseaseName)
```

lrtest  

Likelihood ratio test

Description

Likelihood ratio test for objects of class 'glm'

Usage

```r
lrtest (model1, model2)
```

Arguments

model1, model2 Two models of class "glm" having the same set of records and the same type ('family' and 'link')
Matched case-control study

Details

Likelihood ratio test checks the difference between \(-2\times \text{logLikelihood}\) of the two models against the change in degrees of freedom using a chi-squared test. It is best applied to a model from `glm` to test the effect of a factor with more than two levels. The records used in the dataset for both models MUST be the same. The function can also be used with "clogit", which does not have real logLikelihood.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

`'glm'`, `'logLik'`, `'deviance'`

Examples

```r
model0 <- glm(case ~ induced + spontaneous, family=binomial, data=infert)
model1 <- glm(case ~ induced, family=binomial, data=infert)
lrtest (model0, model1)
lrtest (model1, model0) # same result
lrtest (model1, model0) -> a
a
```

Datasets on a matched case-control study of esophageal cancer

Description

Two different datasets for the same matched case-control study. VC1to6 has 1 case : varying number of controls (from 1 to 6) whereas VC1to1 has the number of control reduced to 1 for each case.

Usage

```r
data(VC1to1)
data(VC1to6)
```

Format

A data frame with the following 5 variables.

- `matset` a numeric vector indicating matched set number from 1 to 26
- `case` a numeric vector: 1=case, 0=control
- `smoking` a numeric vector: 1=smoker, 0=non-smoker
- `rubber` a numeric vector: 1=exposed, 0=never exposed to rubber industry
- `alcohol` a numeric vector: 1=drinker, 0=non-drinker
matchTab

Source


See Also

'infert' in the datasets package.

Examples

data(VC1to6)
.data <- VC1to6
des(.data)
with(.data, matchTab(case, alcohol, matset))
rm(.data)

matchTab               Matched tabulation

Description

Tabulation of outcome vs exposure from a matched case control study

Usage

matchTab (case, exposed, strata, decimal)

Arguments

case          Outcome variables where 0 = control and 1 = case
exposed       Exposure variable where 0 = non-exposed and 1 = exposed
strata        Identification number for each matched set
decimal       Number of digits displayed after the decimal point

Details

Tabulation for an unmatched case control study is based on individual records classified by outcome and exposure variables.

Matched tabulation is tallying based on each matched set. The simplest form is McNemar’s table where only one case is matched with one control. ‘matchTab’ can handle 1:m matching where m can vary from 1 to m. A MLE method is then used to compute the conditional odds ratio.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>
See Also

'table', 'cc' and 'clogit'

Examples

```r
.data <- infert
Not run:
matchTab(case, induced, stratum)
Tabulation successful but OR not computed
because 'induced' is not binary

End(Not run)
attach(.data)
ia <- induced > 0 # any induced abortion
matchTab(case, ia, stratum)

See also
clogit(case ~ ia + strata(stratum), data=infert)
detach(.data)
rm(list=ls())
```

---

**mhor**  
*Mantel-Haenszel odds ratio*

Description

Mantel-Haenszel odds ratio calculation and graphing from a stratified case-control study

Usage

```r
mhor(..., mhtable = NULL, decimal=2, graph = TRUE, design = "cohort")
```

Arguments

- `...`: Three variables viz. 'outcome', 'exposure' and 'stratification'.
- `mhtable`: a 2-by-2-by-s table, where s (strata) is more than one
- `decimal`: number of decimal places displayed
- `graph`: If TRUE (default), produces an odds ratio plot
- `design`: Specification for graph; can be "case control","case-control", "cohort" or "prospective"

Details

'mhor' computes stratum-specific odds ratios and 95 percent confidence intervals and the Mantel-Haenszel odds ratio and chi-squared test is given as well as the homogeneity test. A stratified odds ratio graph is displayed.
Montana

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'fisher.test', 'chisq.test'

Examples

```r
data(Oswego)
with(Oswego, cc(ill, chocolate))
with(Oswego, mhor(ill, chocolate, sex))

mht1 <- with(Oswego, table(ill, chocolate, sex))
dim(mht1)
mhor(mhtable=mht1) # same results
```

Montana  Dataset on arsenic exposure and respiratory deaths

Description

Dataset from a cohort study of exposure to arsenic from industry and deaths from respiratory diseases.

Usage

```r
data(Montana)
```

Format

A data frame with 114 observations on the following 6 variables.

- respdeath  a numeric vector indicating number of deaths from respiratory diseases
- personyrs  a numeric vector indicating person-years of exposure
- agegr     a numeric vector: 1=40-49, 2=50-59, 3=60-69, 4=70-79
- starting  a numeric vector indicating starting period: 1=pre-1925, 2=1925 & after
- arsenic   a numeric vector indicating years of exposure: 1=<1 year, 2=1-4 years, 3=5-14 years, 4=15+ years
Description

This dataset contains information on the records of 75 persons under investigation for the cause of acute food poisoning after a dinner party.

Usage

data(Oswego)

Format

A data frame containing 75 observations and 20 variables.

Source

EpiInfo package

Examples

data(Oswego)
.data <- Oswego
attach(.data)
pyramid(age, sex)
detach(.data)

Description

This dataset contains information from an outbreak investigation concerning food poisoning on a sportsday in Thailand 1990.

Dichotomous variables for exposures and symptoms were coded as follow:

0  = no
1  = yes
9  = missing or unknown
Outbreak investigation

Usage

data(Outbreak)

Format

A data frame with 1094 observations on the following 13 variables.

id  a numeric vector
sex a numeric vector

\[
\begin{align*}
0 & = \text{female} \\
1 & = \text{male} \\
\end{align*}
\]

age  a numeric vector: age in years

\[
99 = \text{missing}
\]

exptime  an AsIs or character vector of exposure times
beefcurry  a numeric vector: whether the subject had eaten beefcurry
saltegg  a numeric vector: whether the subject had eaten salted eggs
eclair  a numeric vector: pieces of eclair eaten

\[
\begin{align*}
80 & = \text{ate but could not remember how much} \\
90 & = \text{totally missing information}
\end{align*}
\]

water  a numeric vector: whether the subject had drunk water
onset  an AsIs or character vector of onset times
nausea  a numeric vector
vomiting  a numeric vector
abdpain  a numeric vector: abdominal pain
diarrhea  a numeric vector

References


Examples

data(Outbreak)
.
data <- Outbreak
# Distribution of reported pieces of eclair taken
attach(.data)
poisgof

Goodness of fit test for modeling of count data

Description

Poisson and negative binomial regression are used for modeling count data. This command tests the deviance against the degrees of freedom in the model thus determining whether there is overdispersion.

Usage

poisgof(model)

Arguments

model A Poisson or negative binomial model

Details

To test the significance of overdispersion of the errors of a Poisson or negative binomial model, the deviance is tested against degrees of freedom using chi-squared distribution. A low P value indicates significant overdispersion.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

‘glm’

Examples

library(MASS)
quine.pois <- glm(Days ~ Sex/(Age + Eth*Lrn), data = quine, family=poisson)
poisgof(quine.pois)
quine.nb1 <- glm.nb(Days ~ Sex/(Age + Eth*Lrn), data = quine)
poisgof(quine.nb1)
Description
Calculation of power given the results from a study

Usage
power.for.2p(p1, p2, n1, n2, alpha = 0.05)
power.for.2means(mu1, mu2, n1, n2, sd1, sd2, alpha = 0.05)

Arguments
- p1, p2: probabilities of the two samples
- n1, n2: sample sizes of the two samples
- alpha: significance level
- mu1, mu2: means of the two samples
- sd1, sd2: standard deviations of the two samples

Details
These two functions compute the power of a study from the given arguments

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'n.for.2means', 'n.for.2p'

Examples
# Suppose, in the example found in 'help(n.for.2p)',
# given the two proportions are .8 and .6 and the sample size
# for each group is 60.

power.for.2p(p1=.8, p2=.6, n1=60, n2=60) # 59 percent

# If the means of a continuous outcome variable in the same
# two groups were 50 and 60 units and the standard deviations were 30
# and 35 units, then the power to detect a statistical significance
# would be

power.for.2means(mu1=50, mu2=60, sd1=30, sd2=35, n1=60, n2=60)
# 39 percent. Note the graphic display
print alpha

**Print alpha object**

**Description**

Print results related to Cronbach’s alpha

**Usage**

```
S3 method for class 'alpha'
print(x, ...)
```

**Arguments**

- `x`: object of class ‘alpha’
- `...`: further arguments passed to or used by methods.

**Author(s)**

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

**See Also**

'tableStack'

**Examples**

```r
data(Attitudes)
alpha(qa1:qa18, dataFrame=Attitudes) -> a
print(a)
a
```

---

print cci

**Print cci results**

**Description**

Print results for cci and cc commands

**Usage**

```
S3 method for class 'cci'
print(x, ...)
```
Arguments

x  object of class 'cci'
...
  further arguments passed to or used by methods.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'cci'

Description

Print description of data frame of a variable

Usage

## S3 method for class 'des'
print(x, ...)

Arguments

x  object of class 'des'
...
  further arguments passed to or used by methods.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'des'
print kap.ByCategory  
Print kap.ByCategory results

Description
Print results for kap.Bycategory commands

Usage
## S3 method for class 'kap.ByCategory'
print(x, ...)

Arguments
x object of class 'kap.ByCategory'
... further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'kap.ByCategory'

print kap.table  
Print kap.table results

Description
Print results for kap.table commands

Usage
## S3 method for class 'kap.table'
print(x, ...)

Arguments
x object of class 'kap.table'
... further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>
Description

Print results for likelihood ratio test

Usage

## S3 method for class 'lrtest'
print(x, ...)

Arguments

x object of class 'lrtest'

... further arguments passed to or used by methods.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'logistic.display'

Examples

model0 <- glm(case ~ induced + spontaneous, family=binomial, data=infert)
model1 <- glm(case ~ induced, family=binomial, data=infert)
lrtest (model0, model1)
lrtest (model1, model0) -> a
a
print n.for.2means

print matchTab  

Description
Print matched tabulation results

Usage
## S3 method for class 'matchTab'
print(x, ...)

Arguments
x  object of class 'matchTab'
...  further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'matchTab'

print n.for.2means  

Description
Print results for sample size for hypothesis testing of 2 means

Usage
## S3 method for class 'n.for.2means'
print(x, ...)

Arguments
x  object of class 'n.for.2means'
...  further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>
See Also

'n.for.2p'

Examples

n.for.2means(mu1 = 10, mu2 = 14, sd1=3, sd2=3.5)
n.for.2means(mu1 = 10, mu2 = 7:14, sd1=3, sd2=3.5) -> a
a

print n.for.2p
Print n.for.2p results

Description

Print results for sample size for hypothesis testing of 2 proportions

Usage

## S3 method for class 'n.for.2p'
print(x, ...)

Arguments

x object of class 'n.for.2p'
...

further arguments passed to or used by methods.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'n.for.2p'

Examples

n.for.2p(p1=.1, p2=.2)
n.for.2p(p1=seq(1,9,.5)/10, p2=.5)
print n.for.cluster.2means

Print n.for.cluster.2means results

Description

Print results for sample size for hypothesis testing of 2 means in cluster RCT

Usage

## S3 method for class 'n.for.cluster.2means'
print(x, ...)

Arguments

x object of class 'n.for.cluster.2means'
...

further arguments passed to or used by methods.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'n.for.cluster.2means'

print n.for.cluster.2p

Print n.for.cluster.2p results

Description

Print results for sample size for hypothesis testing of 2 proportions in cluster RCT

Usage

## S3 method for class 'n.for.cluster.2p'
print(x, ...)

Arguments

x object of class 'n.for.cluster.2p'
...

further arguments passed to or used by methods.
print n.for.equi.2p

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'n.for.cluster.2p'

Description
Print results for sample size for hypothesis testing of 2 proportions in equivalent trial

Usage
## S3 method for class 'n.for.equi.2p'
print(x, ...)

Arguments
x   object of class 'n.for.equi.2p'
...
  further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'n.for.2p'

Examples
n.for.equi.2p(p=.85, sig.diff=.05)
print n.for.lqas  

Print n.for.lqas results

Description
Print results for sample size for lot quality assurance sampling

Usage

## S3 method for class 'n.for.lqas'
print(x, ...)

Arguments

x  
object of class 'n.for.lqas'

...  
further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

Examples

n.for.lqas(p0 = 0.05, q=0)
n.for.lqas(p0 = (10:1)/100, q=0 ) -> a
a

print n.for.noninferior.2p

Print n.for.noninferior.2p results

Description
Print results for sample size for hypothesis testing of 2 proportions in non-inferior trial

Usage

## S3 method for class 'n.for.noninferior.2p'
print(x, ...)

Arguments

x  
object of class 'n.for.noninferior.2p'

...  
further arguments passed to or used by methods.
print n.for.survey

Author(s)
    Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
    'n.for.2p'

Examples
    n.for.noninferior.2p(p=0.85, sig.inferior=.05)

print n.for.survey       Print n.for.survey results

Description
    Print results for sample size of a continuous variable

Usage
    ## S3 method for class 'n.for.survey'
    print(x, ...)

Arguments
    x          object of class 'n.for.survey'
    ...        further arguments passed to or used by methods.

Author(s)
    Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
    'n.for.2p'

Examples
    n.for.survey(p=seq(5,95,5)/100)
print power.for.2means

Print power.for.2means results

Description
Print results for power for hypothesis testing of 2 means

Usage

## S3 method for class 'power.for.2means'
print(x, ...)

Arguments

x

object of class 'power.for.2means'

...

further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'n.for.2means'

Examples

power.for.2means(mu1 = 10, mu2=14, n1=5, n2=7, sd1=3, sd2=3.5)
power.for.2means(mu1 = 10, mu2=7:14, n1=20, n2=25, sd1=3, sd2=3.5) -> a
a

print power.for.2p

Print power.for.2p results

Description
Print results for power of hypothesis testing of 2 proportions

Usage

## S3 method for class 'power.for.2p'
print(x, ...)

print statStack

Arguments
x object of class 'power.for.2p'
... further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'n.for.2p'

Examples
power.for.2p(p1=.1, p2=.2, n1=10, n2=15)
power.for.2p(p1=seq(1,9,.5)/10, p2=.5, n1=100, n2=120)

print statStack object

Description
Print a statStack object

Usage
## S3 method for class 'statStack'
print(x, ...)

Arguments
x object of class 'statStack'
... further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'statStack'
print summ.data.frame  

Print summary of the data frame

Description
Print summary of data frame

Usage
## S3 method for class 'summ.data.frame'
print(x, ...)

Arguments
x object of class 'summ.data.frame'
... further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also
'summ'

print summ.default  

Print summary of a variable

Description
Print summary of a variable

Usage
## S3 method for class 'summ.default'
print(x, ...)

Arguments
x object of class 'summ.default'
... further arguments passed to or used by methods.

Author(s)
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>
print tableStack

See Also

'summ'

Print tableStack object

Description

Print a tableStack object

Usage

## S3 method for class 'tableStack'
print(x, ...)

Arguments

x object of class 'tableStack'

... further arguments passed to or used by methods.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'tableStack'

Examples

data(Attitudes)
tableStack(qa1:qa18, dataFrame=Attitudes) -> a
print(a)
data(Ectopic)
tableStack(hia, gravi, by=outc, dataFrame=Ectopic) -> b
print(b)
Description

Create a population pyramid from age and sex

Usage

```r
pyramid (age, sex, binwidth = 5, inputTable = NULL, printTable = FALSE,
percent = "none", col.gender = NULL,
bar.label = "auto", decimal = 1, col = NULL, cex.bar.value = 0.8,
cex.axis = 1, main = "auto", cex.main = 1.2, ...)
```

Arguments

- `age`: a numeric variable for age
- `sex`: a variable of two levels for sexes, can be numeric but preferably factor with labelled levels or characters
- `binwidth`: bin width of age for each bar
- `inputTable`: a table to read in with two columns of sexes and rows of age groups
- `printTable`: whether the output table should be displayed on the console
- `percent`: whether the lengths of the bars should be calculated from frequencies ("none" as default), percent of "each" sex or "total" percentages
- `col.gender`: vector reflecting colours of the two gender
- `bar.label`: whether the bars would be labelled with the values
- `decimal`: number of decimals displayed in the percent output table
- `col`: colour(s) of the bars
- `cex.bar.value`: character extension factor of the bar labels
- `cex.axis`: character extension factor of the axis
- `main`: main title
- `cex.main`: character extension factor of main title
- `...`: graph options for the bars, e.g. `col`

Details

'pyramid' draws a horizontal bar graph of age by sex.

The parameters of graph (par) options can be applied to 'font.lab' and those of the bars, e.g. 'col' but not of others.

Other lower level graph commands should be only for adding a 'title'.

'bar.label' when set as "auto", will be TRUE when 'percent="each"' or 'percent="total"'
Value

When the variables age and sex are input arguments, the return object includes age group variable and the output table. The argument `decimal` controls only decimals of the output displayed on the console but not the returned table.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

`'barplot`, `levels`, `table`'

Examples

data(Oswego)
.data <- Oswego
attach(.data)
pyramid(age, sex)
pyramid(age, sex, bar.label = TRUE)
pyramid(age, sex, printTable=TRUE)
pyramid(age, sex, percent = "each", printTable=TRUE)
pyramid(age, sex, percent = "total", printTable=TRUE)
pyramid(age, sex, percent = "total", bar.label = FALSE)
pyramid(age, sex, percent = "total", cex.bar.value = .5)

pyramid(age, sex, col="red")
pyramid(age, sex, col=1:16) # Too colorful!
pyramid(age, sex, col.gender = c("pink","lightblue"))
output <- pyramid(age, sex, binwidth = 10, percent="each", decimal=2)
agegr <- output$ageGroup
detach(.data)
rm(list=ls())

# Drawing population pyramid from an existing table
pyramid(inputTable=VADeaths[,1:2], font.lab=4)
pyramid(inputTable=VADeaths[,1:2], font.lab=4, main=NULL)
title("Death rates per 100 in rural Virginia in 1940")
Usage

logistic.display(logistic.model, alpha = 0.05, crude = TRUE,
    crude.p.value = FALSE, decimal = 2, simplified = FALSE)
clogistic.display(clogit.model, alpha = 0.05, crude=TRUE,
    crude.p.value=FALSE, decimal = 2, simplified = FALSE)
cox.display (cox.model, alpha = 0.05, crude=TRUE, crude.p.value=FALSE,
    decimal = 2, simplified = FALSE)
regress.display(regress.model, alpha = 0.05, crude = FALSE,
    crude.p.value = FALSE, decimal = 2, simplified = FALSE)
idr.display(idr.model, alpha = 0.05, crude = TRUE, crude.p.value = FALSE,
    decimal = 2, simplified = FALSE)
mlogit.display(multinom.model, decimal = 2, alpha = 0.05)
ordinal.or.display(ordinal.model, decimal = 3, alpha = 0.05)
tableGlm (model, modified.coeff.array, decimal)
## S3 method for class 'display'
print(x, ...)

Arguments

logistic.model  a model from a logistic regression
clogit.model    a model from a conditional logistic regression
regress.model   a model from a linear regression
cox.model       a model from a cox regression
idr.model       a model from a Poisson regression or a negative binomial regression
multinom.model  a model from a multinomial or polytomous regression
ordinal.model   a model from an ordinal logistic regression
alpha           significance level
crude           whether crude results and their confidence intervals should also be displayed
crude.p.value   whether crude P values should also be displayed if and only if 'crude=TRUE'
decimal         number of decimal places displayed
simplified       whether the display should be simplified
model            model passed from logistic.display or regress.display to tableGlm
modified.coeff.array array of model coefficients sent to the function 'tableGlm' to produce the final output
x                object obtained from these 'display' functions
...              further arguments passed to or used by methods

Details

R provides several epidemiological modelling techniques. The functions above display these results in a format easier for medical people to understand.

The function 'tableGlm' is not for general use. It is called by other display functions to receive the 'modified.coeff.array' and produce the output table.
The argument 'simplified' has a default value of 'FALSE'. It works best if the 'data' argument has been supplied during creation of the model. Under this condition, the output has three parts. Part 1 (the first line) indicates the type of the regression and the outcome. For logistic regression, if the outcome is a factor then the referent level is shown. Part 2 shows the main output table where each independent variable coefficient is displayed. If the independent variable is continuous (class numeric) then name of the variable is shown (or the descriptive label if it exists). If the variable is a factor then the name of the level is shown with the referent level omitted. In this case, the name of the referent level and the statistic testing for group effects are displayed. An F-test is used when the model is of class 'lm' or 'glm' with 'family=gaussian' specified. A Likelihood Ratio test is performed when the model is of class 'glm' with 'family = binomial' or 'family = poisson' specified and for models of class 'coxph' and 'clogit'. These tests are carried out with the records available in the model, not necessary all records in the full 'data' argument. The number of records in the model is displayed in the part 3 of the output. When 'simplified=TRUE', the first and the last parts are omitted from the display.

The result is an object of class 'display' and 'list'. Their appearance on the R console is controlled by 'print.display'. The 'table' attribute of these 'display' objects are ready to write (using 'write.csv') to a .csv file which can then be copied to a manuscript document. This approach can substantially reduce both the time and errors produced due to conventional manual copying.

Value

'logistic.display', 'regress.display', 'clogit.display' and 'cox.display', each produces an output table. See 'details'.

Note

Before using these 'display' functions, please note the following limitations.

1) Users **should** define the 'data' argument of the model.

2) The names of the independent variables **must** be a subset of the names of the variables in the 'data' argument. Sometimes, one of more variables are omitted by the model due to collinearity. In such a case, users have to specify 'simplified=TRUE' in order to get the display function to work.

3) Under the following conditions, 'simplified' will be forced to TRUE and 'crude' forced to FALSE.

   3.1) The names of the independent variables contain a function such as 'factor()' or any '\$' sign.

   3.2) The levels of the factor variables contain any ': ' sign.

   3.3) There are more than one interaction terms in the model.

   3.4) The 'data' argument is missing in the conditional logistic regression and Cox regression model.

4) For any other problems with these display results, users are advised to run 'summary(model)' or 'summary(model)$coefficients' to check the consistency between variable names in the model and those in the coefficients. The number in the latter may be fewer than that in the former due to collinearity. In this case, it is advised to specify 'simplified=TRUE' to turn off the attempt to tidy up the rownames of the output from 'summary(model)$coefficients'. The output when 'simplified=TRUE' is more reliable but less understandable.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>
See Also

'glm', 'confint'

Examples

```r
model0 <- glm(case ~ induced + spontaneous, family=binomial, data=infert)
summary(model0)
logistic.display(model0)

data(ANCdata)
glm1 <- glm(death ~ anc + clinic, family=binomial, data=ANCdata)
logistic.display(glm1)
logistic.display(glm1, simplified=TRUE)

library(MASS) # necessary for negative binomial regression
data(DHF99); .data <- DHF99
attach(.data)
model.poisson <- glm(containers ~ education + viltype,
 family=poisson, data=DHF99)

model.nb <- glm.nb(containers ~ education + viltype,
 data=.data)
idr.display(model.poisson) -> poiss
print(poiss) # or print.display(poiss) or poiss
idr.display(model.nb)
detach(.data)

data(VC1to6)
.data <- VC1to6
.data$fsmoke <- factor(.data$smoking)
levels(.data$fsmoke) <- list("no"=0, "yes"=1)
clr1 <- clogit(case ~ alcohol + fsmoke + strata(matset), data=.data)
clogistic.display(clr1)
rm(list=ls())

data(BP)
.data <- BP
attach(.data)
age <- as.numeric(as.Date("2000-01-01") - birthdate)/365.25
agegr <- pyramid(age, sex, bin=20)$ageGroup
.data$hypertension <- sbp >= 140 | dbp >=90
detach(.data)
model1 <- glm(hypertension ~ sex + agegr + saltadd, family=binomial,
 data=.data)
logistic.display(model1) -> table3
attributes(table3)
table3
table3$table
You may want to save table3 into a spreadsheet
write.csv(table3$table, file="table3.csv") # Note $table
Have a look at this file in Excel, or similar spreadsheet program
```
file.remove(file="table3.csv")
model2 <- glm(hypertension ~ sex * age + sex * saltadd, family=binomial, data=.data)
logistic.display(model2)
# More than 1 interaction term so ‘simplified turned to TRUE

reg1 <- lm(sbp ~ sex + agegr + saltadd, data=.data)
regress.display(reg1)

reg2 <- glm(sbp ~ sex + agegr + saltadd, family=gaussian, data=.data)
regress.display(reg2)

data(Compaq)
cox1 <- coxph(Surv(year, status) ~ hospital + stage * ses, data=Compaq)
cox.display(cox1, crude.p.value=TRUE)

# Ordinal logistic regression
library(nnet)
options(contrasts = c("contr.treatment", "contr.poly"))
house.plr <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
house.plr
ordinal.or.display(house.plr)

# Polytomous or multinomial logistic regression
house.multinom <- multinom(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
summary(house.multinom)
mlogit.display(house.multinom, alpha=.01) # with 99% confidence limits.

**ROC**

**Description**

Receiver Operating Characteristic curve of a logistic regression model and a diagnostic table

**Usage**

```r
lroc(logistic.model, graph = TRUE, add = FALSE, title = FALSE, line.col = "red", auc.coords = NULL, grid = TRUE, grid.col = "blue", ...)
roc.from.table(table, graph = TRUE, add = FALSE, title = FALSE, line.col = "red", auc.coords = NULL, grid = TRUE, grid.col = "blue", ...)
```

**Arguments**

- **logistic.model** A model from logistic regression
- **table** A cross tabulation of the levels of a test (rows) vs a gold standard positive and negative (columns)
graph  Draw ROC curve
add   Whether the line is drawn on the existing ROC curve
title If true, the model will be displayed as main title
line.col Color of the line
auc.coords Coordinates for label of 'auc' (area under curve)
grid   Whether the grid should be drawn
grid.col Grid colour, if drawn
... Additional graphic parameters

Details

'lroc' graphs the ROC curve of a logistic regression model. If 'table=TRUE', the diagnostic table based on the regression will be printed out.

'roc.from.table' computes the change of sensitivity and specificity of each cut point and uses these for drawing the ROC curve.

In both cases, the area under the curve is computed.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'glm'

Examples

# Single ROC curve from logistic regression
# Note that 'induced' and 'spontaneous' are both originally continuous variables
model1 <- glm(case ~ induced + spontaneous, data=infert, family=binomial)
logistic.display(model1)
# Having two spontaneous abortions is quite close to being infertile!
# This is actually not a causal relationship

lroc(model1, title=TRUE, auc.coords=c(.5,.1))
# For PowerPoint presentation, the graphic elements should be enhanced as followed
lroc(model1, title=TRUE, cex.main=2, cex.lab=1.5, col.lab="blue", cex.axis=1.3, lwd=3)
lroc1 <- lroc(model1) # The main title and auc text have disappeared
model2 <- glm(case ~ spontaneous, data=infert, family=binomial)
logistic.display(model2)
lroc2 <- lroc(model2, add=TRUE, line.col="brown", lty=2)
legend("bottomright", legend=c(lroc1$model.description, lroc2$model.description),
   lty=1:2, col=c("red","brown"), bg="white")
title(main="Comparison of two logistic regression models")
lrtest(model1, model2)
# Number of induced abortions is associated with increased risk for infertility
## Various form of logistic regression

### Case by case data

```r
data(ANCdata)
data <- ANCdata
glm1 <- glm(death ~ anc + clinic, binomial, data=data) # Note 'calc'
lroc(glm1)
```

### Frequency format

```r
data(ANCtable)
ANCtable
data <- ANCtable
attach(.data)
death <- factor(death)
levels(death) <- c("no","yes")
anc <- with(.data, factor(anc))
levels(anc) <- c("old","new")
clinic <- with(.data, factor(clinic))
levels(clinic) <- c("A","B")
data <- data.frame(death, anc, clinic)
data
glm2 <- glm(death ~ anc + clinic, binomial, weights=Freq, data=data)
lroc(glm2)
detach(.data)
```

### ROC from a diagnostic table

```r
table1 <- as.table(cbind(c(1,27,56,15,1),c(0,0,10,69,21)))
colnames(table1) <- c("Non-diseased", "Diseased")
rownames(table1) <- c("15-29","30-44","45-59","60-89","90+")
table1
roc.from.table(table1)
roc.from.table(table1, title=TRUE, auc.coords=c(.4,.1), cex=1.2)
```

### Application of the returned list

```r
roc1 <- roc.from.table(table1, graph=FALSE)
cut.points <- rownames(roc1$diagnostic.table)
text(x=roc1$diagnostic.table[,1], y=roc1$diagnostic.table[,2], labels=cut.points, cex=1.2, col="brown")
rm(list=ls())
```

---

### sampsize

**Sample size calculation**

**Description**

Sample size calculations for epidemiological studies

**Usage**

```r
n.for.survey (p, delta = "auto", popsize = NULL, deff = 1, alpha = 0.05)
n.for.2means (mu1, mu2, sd1, sd2, ratio = 1, alpha = 0.05, power = 0.8)
```
n.for.cluster.2means (mu1, mu2, sd1, sd2, alpha = 0.05, power = 0.8, ratio = 1, mean.cluster.size = 10, previous.mean.cluster.size = NULL, previous.sd.cluster.size = NULL, max.cluster.size = NULL, min.cluster.size = NULL, icc = 0.1)
n.for.2p (p1, p2, alpha = 0.05, power = 0.8, ratio = 1)
n.for.cluster.2p (p1, p2, alpha = 0.05, power = 0.8, ratio = 1, mean.cluster.size = 10, previous.mean.cluster.size = NULL, previous.sd.cluster.size = NULL, max.cluster.size = NULL, min.cluster.size = NULL, icc = 0.1)
n.for.equie.2p(p, sig.diff, alpha=.05, power=.8)
n.for.noninferior.2p (p, sig.inferior, alpha = 0.05, power = 0.8)
n.for.lqas (p0, q = 0, N = 10000, alpha = 0.05, exact = FALSE)

Arguments

p estimated probability
delta difference between the estimated prevalence and one side of the 95 percent confidence limit (precision)
popsize size of the finite population
deff design effect for cluster sampling
alpha significance level
mu1, mu2 estimated means of the two populations
sd1, sd2 estimated standard deviations of the two populations
ratio n2/n1
mean.cluster.size mean of the cluster size planned in the current study
previous.mean.cluster.size, previous.sd.cluster.size mean and sd of cluster size from a previous study
max.cluster.size, min.cluster.size maximum and minimum of cluster size in the current study
icc intraclass correlation coefficient
p1, p2 estimated probabilities of the two populations
power power of the study
sig.diff level of difference consider as being clinically significant
sig.inferior level of reduction of effectiveness as being clinically significant
p0 critical proportion beyond which the lot will be rejected
q critical number of faulty pieces found in the sample, beyond which the lot will be rejected
N lot size
exact whether the exact probability is to be computed
Details

'n.for.survey' is used to compute the sample size required to conduct a survey. When 'delta="auto"', delta will change according to the value of p. If 0.3 <= p <= 0.7, delta = 0.1. If 0.1 <= p < .3, or 0.7< p <=0.9, then delta=.05. Finally, if p < 0.1, then delta = p/2. If 0.9 < p, then delta = (1-p)/2.

When cluster sampling is employed, the design effect (deff) has to be taken into account. 'n.for.2means' is used to compute the sample size needed for testing the hypothesis that the difference of two population means is zero.

'n.for.cluster.2means' and 'n.for.cluster.2p' are for cluster (usually randomized) controlled trial.

'n.for.2p' is used to the compute the sample size needed for testing the hypothesis that the difference of two population proportions is zero.

'n.for.equi.2p' is used for equivalent trial with equal probability of success or fail being p for both groups. 'sig.diff' is a difference in probability considered as being clinically significant. If both sides of limits of 95 percent CI of the difference are within +sig.diff or -sig.diff, there would be neither evidence of inferiority nor of superiority of any arm.

'n.for.noninferior.2p' is similar to 'n.for.equi.2p' except if the lower limit of 95 percent CI of the difference is higher than the sig.inferior level, the hypothesis of inferiority would be rejected.

For a case control study, p1 and p2 are the proportions of exposure among cases and controls.

For a cohort study, p1 and p2 are proportions of positive outcome among the exposed and non-exposed groups.

'ratio' in a case control study is controls:case. In cohort and cross-sectional studies, it is non-exposed:exposed.

LQAS stands for Lot Quality Assurance Sampling. The sample size n is determined to test whether the lot of a product has a defective proportion exceeding a critical proportion, p0. Out of the sample tested, if the number of defective specimens is greater than q, the lot is considered not acceptable. This concept can be applied to quality assurance processes in health care.

When any parameter is a vector of length > 5, a table of sample size by the varying values of parameters is displayed.

Value

a list.

'n.for.survey' returns an object of class "n.for.survey"

'n.for.2p' returns an object of class "n.for.2p"

'n.for.2means' returns an object of class "n.for.2means"

'n.for.lqas' returns an object of class "n.for.lqas"

Each type of returned values consists of vectors of various parameters in the formula and the required sample size(s).

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>
References


See Also

'power.for.2means', 'power.for.2p'

Examples

```
In a standard survey to determine the coverage of immunization needed using
a cluster sampling technique on a population of approximately 500000, and
an estimated prevalence of 70 percent, design effect is assumed to be 2.

n.for.survey(p = .8, delta = .1, popsize = 500000, deff =2) # 123 needed

To see the effect of prevalence on delta and sample size
n.for.survey(p = c(.5, .6, .7, .8, .9, .95, .99))

Testing the efficacy of measles vaccine in a case control study .
The coverage in the non-diseased population is estimated at 80 percent.
That in the diseased is 60 percent.

n.for.2p(p1=.8, p2=.6) # n1=n2=91 needed

A randomized controlled trial testing cure rate of a disease of
90 percent by new drugs and 80 percent by the old one.

n.for.2p(p1=.9, p2=.8) # 219 subjects needed in each arm.

To see the effect of p1 on sample size
n.for.2p(p1=seq(1,9,.5)/10, p2=.5) # A table output

The same randomized trial to check whether the new treatment is 5 percent
different from the standard treatment assuming both arms has a common
cure rate of 85 percent would be

n.for.equi.2p(p=.85, sig.diff=0.05) # 801 each.

If inferior arm is not allow to be lower than -0.05 (5 percent less effective)

n.for.noninferior.2p(p=.85, sig.inferior=0.05) # 631 each.

A cluster randomized controlled trial to test whether training of village
volunteers would result in reduction of prevalence of a disease from 50 percent
in control villages to 30 percent in the study village with a cluster size
varies from 250 to 500 eligible subjects per village (mean of 350) and the
intraclass correlation is assumed to be 0.15

n.for.cluster.2p(p1=.5, p2=.3, mean.cluster.size = 350, max.cluster.size = 500,
 min.cluster.size = 250, icc = 0.15)
```
# A quality assurance to check whether the coding of ICD-10 is faulty
# by no more than 2 percent. The minimum sample is required.
# Thus any faulty coding in the sample is not acceptable.

n.for.lqas(p0 = .02, q=0, exact = TRUE) # 148 non-faulty checks is required
# to support the assurance process.

n.for.lqas(p0 = (1:10)/100, q=0, exact = FALSE)

---

**setTitle**

*Setting the displayed language of Epicalc graph title*

**Description**

Setting locale and internationalizing Epicalc graph title

**Usage**

`setTitle(locale)`

**Arguments**

- `locale` A string denoting international language of choice

**Details**

On calling `library(epicalc)`’, `.locale()` has an initial value of FALSE, i.e. the titles of Epicalc’s automatic graphs are displayed in the English language. `setTitle` has two effects. It selects the locale and resets the hidden object ‘.locale()’ to TRUE. The command internationalizes the title of automatic graphs created by Epicalc according to `locale` given in the function’s argument.

If `.locale()` is TRUE, then the automatic graphs produced by Epicalc commands, such as `summ(var)` or `tab1(var)` or `tabpct(var1, var2)`, will lookup a language conversion table for the graph title and the title will be changed accordingly.

Internationalization of the title can be disabled by typing `.locale(FALSE)`. This has no effect of locale as a whole unless it is reset to English by issuing the command `setTitle("English")`.

**Author(s)**

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

**See Also**

'Sys.setlocale', 'Sys.getlocale' and 'titleString'
Examples

```r
.data <- iris
attach(.data)
summ(Sepal.Length, by=Species)
setTitle("English")
dotplot(Sepal.Length, by=Species)
setTitle("Malay")
dotplot(Sepal.Length, by=Species)
setTitle("Spanish")
dotplot(Sepal.Length, by=Species)
detach(.data)
rm(.data)
```

**shapiro.qqnorm**

*Qqnorm plots with Shapiro-Wilk’s test*

Description

Quantile-normal plots with Shapiro-Wilk’s test result integrated

Usage

```r
shapiro.qqnorm (x, ...)
```

Arguments

- `x`: A numeric vector
- `...`: Graphical parameters passed to `par`

Details

To test a variable ‘x’ against the normal distribution, a qqnorm plot is integrated with the Shapiro-Wilk test to enhance interpretation.

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

*shapiro.test*, *qqnorm*, *par*

Examples

```r
x <- rnorm(10)
a <- LETTERS[1:10]
shapiro.qqnorm(x, pch=a, col="red")
qqline(x, lty=2, col="black")
```
Sleepiness

Dataset on sleepiness in a workshop

Description

Sleepiness among participants in a workshop

Usage

data(Sleep3)

Format

A data frame with 15 observations on the following 8 variables.

id  a numeric vector
gender a factor with levels male female
dbirth a Date vector for birth date
sleepy a numeric vector for any experience of sleepiness in the class: 0=no 1=yes
lecture a numeric vector for ever felt sleepy during a lecture: 0=no 1=yes
grwork a numeric vector for ever felt sleepy during a group work: 0=no 1=yes
kg a numeric vector
cm a numeric vector

Examples

data(Sleep3)
des(Sleep3)

statStack

Statistics of a continuous variable stratified by factors

Description

Compared the difference in means or medians of the levels of a factor or list of factors

Usage

statStack (cont.var, by, dataFrame, iqr="auto", var.labels = TRUE, decimal = 1, assumption.p.value = .01)
Arguments

- **cont.var**: a single continuous variable in the data frame
- **by**: a factor, or list of factors, each of length \(<\text{\texttt{nrow(dataFrame)}}\>\)
- **iqr**: to display median and inter-quartile range instead of mean and sd.
- **var.labels**: use descriptions of the 'by' variables if available
- **dataFrame**: source data frame of the variables
- **decimal**: number of digits displayed after decimal point
- **assumption.p.value**: level of Bartlett's test P value to judge whether the comparison and the test should be parametric

Details

This function computes means/medians of a continuous variable in each level of the specified factor(s) and performs an appropriate statistical test.

The classes of the variable to compute statistics must be either 'integer' or 'numeric' why all 'by' variables must be 'factor'.

Like in 'tableStack', the argument 'iqr' has a default value being "auto". Non-parametric comparison and test will be automatically chosen if Bartlett's test P value is below the 'assumption.p.value'. Like in 'tableStack', the default value for the 'iqr' argument is "auto", which means non-parametric comparison and test will be automatically chosen if the P-value from Bartlett's test is below the value of the 'assumption.p.value' argument (0.01).

The user can force the function to perform a parametric test by setting 'iqr=NULL' and to perform a non-parametric test by setting 'iqr' to the name or index of the continuous variable.

By default, 'var.labels=TRUE' in order to give nice output.

Value

an object of class 'statStack' and 'table'

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'tableStack'

Examples

```r
statStack(Price, by=c(DriveTrain, Origin), dataFrame=Cars93)
statStack(Price, by=c(DriveTrain, Origin), dataFrame=Cars93, iqr=NULL)

Cars93$log10.Price <- log10(Cars93$Price)# added as the 28th variable
statStack(log10.Price, by=c(DriveTrain, Origin), dataFrame=Cars93)
statStack(log10.Price, by=c(DriveTrain, Origin), dataFrame=Cars93, iqr=28)
```
**summ**  Summary with graph

### Description
Summary of data frame in a convenient table. Summary of a variable with statistics and graph

### Usage

```r
summ(x, ...)
Default S3 method:
summ(x, by=NULL, graph = TRUE, box = FALSE, pch = 18,
 ylab = "auto", main = "auto", cex.X.axis = 1, cex.Y.axis = 1,
 dot.col = "auto", ...)
S3 method for class 'factor'
summ(x, by=NULL, graph=TRUE, ...)
S3 method for class 'logical'
summ(x, by=NULL, graph=TRUE, ...)
S3 method for class 'data.frame'
summ(x, ...)
```

### Arguments

- **x**  'x' can be a data frame or a vector
- **by**  a stratification variable, valid only when x is a vector
- **graph**  automatic plot (sorted dot chart) if 'x' is a vector
- **box**  add a boxplot to the graph (by=NULL)
- **pch**  plot characters
- **ylab**  annotation on Y axis
- **main**  main title of the graph
- **cex.X.axis**  character extension scale of X axis
- **cex.Y.axis**  character extension scale of Y axis
- **dot.col**  colour(s) of plot character(s)
- **...**  additional graph parameters

### Details
For data frames, 'summ' gives basic statistics of each variable in the data frame. The other arguments are ignored.

For single vectors, a sorted dot chart is also provided, if graph=TRUE (default).
Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'summary', 'use', 'des'

Examples

data(Oswego)
.data <- Oswego
summ(.data)
with(.data, summ(age))
with(.data, summ(age, box=TRUE))
with(.data, summ(age, dot.col="brown"))
with(.data, summ(age, by=sex))
# Changing dot colours
with(.data, summ(age, by=sex, dot.col = c("blue","orange")))
# Enlarging main title and other elements
with(.data, summ(age, by=sex, cex.main=1.5, cex.X.axis=1.5, cex.Y.axis=1.7))

# Free vector
summ(rnorm(1000))
summ((1:100)^2, by=rep(1:2, 50))
summ((1:100)^2, by=rep(c("Odd","Even"), 50), main="Quadratic distribution by odd and even numbers")

---

### tab1

**One-way tabulation**

Description

One-way tabulation with automatic bar chart and optional indicator variables generation

Usage

```r
S3 method for class 'tab1'
print(x, ...)
```
Arguments

- **x0**: a variable
- **decimal**: number of decimals for the percentages in the table
- **sort.group**: pattern for sorting categories in the table and in the chart. Default is no sorting. I can also be "decreasing" or "increasing".
- **cum.percent**: presence of cumulative percentage in the output table. Default is TRUE for a variable without any missing values.
- **graph**: whether a graph should be shown
- **missing**: include the missing values category or <NA> in the graphic display
- **bar.values**: include the value of frequency. This can also be "percent" or "none" at the end of each bar
- **horiz**: set the bar chart to horizontal orientation
- **cex**: parameter for extension of characters or relative size of the bar.values
- **cex.names**: character extension or relative scale of the name labels for the bars
- **main**: main title of the graph
- **xlab**: label of X axis
- **ylab**: label of Y axis
- **col**: colours of the bar
- **gen.ind.vars**: whether the indicator variables will be generated
- **x**: object of class 'tab1' obtained from saving 'tab1' results
- **...**: further arguments passed to or used by other methods

Details

'tab1' is an advanced one-way tabulation providing a nice frequency table as well as a bar chart. The description of the variable is also used in the main title of the graph.

The bar chart is vertical unless the number of categories is more than six and any of the labels of the levels consists of more than 8 characters or 'horiz' is set to TRUE.

For table has less than categories, the automatic colour is "grey". Otherwise, the graph will be colourful. The argument, 'col' can be overwritten by the user.

The argument 'gen.ind.vars' is effective only if x0 is factor.

Value

Output table

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'tabpct', 'label.var', 'table', 'barplot', 'model.matrix'
Examples

```r
tab1(state.division)
tab1(state.division, bar.values = "percent")
tab1(state.division, sort.group = "decreasing")
tab1(state.division, sort.group = "increasing")
tab1(state.division, col=c("chocolate","brown1","brown4"),
 main="Number of states in each zone")
For presentation, several 'cex' parameters should increase
 cex.main=1.7, cex.name=1.2, cex.axis=1.3, cex.lab=1.3)
data(Oswego)
.data <- Oswego
attach(.data)
tab1(ill) # Note the column of cumulative percentages in the table.
tab1(ill, cum.percent=FALSE)
tab1(chocolate)
Due to missing values, cumulative percentages are now automatically turned off.
tab1(chocolate, cum.percent=TRUE)
Slightly too many columns in text!
tab1(chocolate, missing=FALSE, bar.values="percent")
agegr <- cut(age, breaks=c(0,10,20,30,40,50,60,70,80))
tab1(agegr) # No need to start with 'calc' as it is outside .data
tab1(agegr, col="grey") # graphic output from older versions of 'tab1'
tab1(agegr, col=c("red","yellow","blue")) # Colours recycled
tab1(agegr, horiz=TRUE)
Keeping output table
dev.off()
tab1(agegr, graph = FALSE) -> a
print(a)
a # same results
attributes(a)
a$output.table
class(a$output.table) # "matrix"
'a$output.table' is ready for exporting to a .csv file by
write.csv(a$output.table, file="table1.csv")
"table1.csv" is now readable by a spreadsheet program
detach(.data)
rm(list=ls())
```

data(Oswego)
.data <- Oswego
attach(.data)
tab1(ill) # Note the column of cumulative percentages in the table.
tab1(ill, cum.percent=FALSE)
tab1(chocolate)
# Due to missing values, cumulative percentages are now automatically turned off.
tab1(chocolate, cum.percent=TRUE)
# Slightly too many columns in text!
tab1(chocolate, missing=FALSE, bar.values="percent")
agegr <- cut(age, breaks=c(0,10,20,30,40,50,60,70,80))
tab1(agegr) # No need to start with 'calc' as it is outside .data
tab1(agegr, col="grey") # graphic output from older versions of 'tab1'
tab1(agegr, col=c("red","yellow","blue")) # Colours recycled
tab1(agegr, horiz=TRUE)
# Keeping output table
dev.off()
tab1(agegr, graph = FALSE) -> a
print(a)
a # same results
attributes(a)
a$output.table
class(a$output.table) # "matrix"
# 'a$output.table' is ready for exporting to a .csv file by
# write.csv(a$output.table, file="table1.csv")
# "table1.csv" is now readable by a spreadsheet program
detach(.data)
rm(list=ls())

**tableStack**

Tabulation of variables in a stack form

**Description**

Tabulation of variables with the same possible range of distribution and stack into a new table with or without other descriptive statistics or to breakdown distribution of more than one row variables against a column variable
Usage

tableStack (vars, dataFrame, minlevel = "auto", maxlevel = "auto", count = TRUE, na.rm = FALSE, means = TRUE, medians = FALSE, sds = TRUE, decimal = 1, total = TRUE, var.labels = TRUE, var.labels.trunc = 150, reverse = FALSE, vars.to.reverse = NULL, by = NULL, vars.to.factor = NULL, iqr = "auto", prevalence = FALSE, percent = "column", frequency = TRUE, test = TRUE, name.test = TRUE, total.column = FALSE, simulate.p.value = FALSE, sample.size = TRUE, assumption.p.value = .01)

Arguments

vars a vector of variables in the data frame
dataFrame source data frame of the variables
minlevel possible minimum value of items specified by user
maxlevel possible maximum value of items specified by user
count whether number of valid records for each item will be displayed
na.rm whether missing value would be removed during calculation mean score of each person
means whether means of all selected items will be displayed
medians whether medians of all selected items will be displayed
sds whether standard deviations of all selected items will be displayed
decimal number of decimals displayed in the statistics
total display of means and standard deviations of total and average scores
var.labels presence of descriptions of variables on the last column of output
var.labels.trunc number of characters used for variable description
reverse whether item(s) negatively correlated with other majority will be reversed
vars.to.reverse variable(s) to reverse
by a variable for column breakdown. If a single character (with quotes) is given, only the 'total column' will be displayed
vars.to.factor variable(s) to be converted to factor for tabulation
iqr variable(s) to display median and inter-quartile range
prevalence for logical variable, whether prevalence of the dichotomous row variable in each column subgroup will be displayed
percent type of percentage displayed when the variable is categorical. Default is "column". It can be "row", or "none"
frequency whether to display frequency in the cells when the variable is categorical
test whether statistical test(s) will be computed
name.test display name of the test and relevant degrees of freedom
total.column whether to add 'total column' to the output or not
simulate.p.value
    simulate P value for Fisher's exact test
sample.size
    whether to display non-missing sample size of each column
assumption.p.value
    level of Bartlett's test P value to judge whether the comparison and the test
    should be parametric

Details

This function simultaneously explores several variables with a fixed integer rating scale. For non-
factor variables, the default values for tabulation are the minimum and the maximum of all variables
but can be specified by the user.

When 'by' is omitted, all variables must be of the same class, and must be 'integer', 'factor' or
'logical.'

Unlike function 'alpha', the argument 'reverse' has a default value of FALSE. This argument is
ignored if 'vars.to.reverse' is specified.

Options for 'reverse', 'vars.to.reverse' and statistics of 'means', 'medians', 'sds' and 'total' are
available only if the items are not factor. To obtain statistics of factor items, users need to use
'unclassDataframe' to convert them into integer.

When the 'by' argument is given, 'reverse' and 'vars.to.reverse' do not apply. Instead, columns
of the 'by' variable will be formed. A table will be created against each selected variable. If
the variable is a factor or coerced to factor with 'vars.to.factor', cross-tabulation will result with
percents as specified, ie. "column", "row", or "none" (FALSE). For a dichotomous row variable,
if set to 'TRUE', the prevalence of row variable in the form of a fraction is displayed in each
subgroup column. For objects of class 'numeric' or 'integer', means with standard deviations will
be displayed. For variables with residuals that are not normally distributed or where the variance
of subgroups are significantly not normally distributed (using a significance level of 0.01), medians
and inter-quartile ranges will be presented if the argument 'iqr' is set to "auto" (by default). Users
may specify a subset of the selected variables (from the 'vars' argument) to be presented in such a
form. Otherwise, the argument could be set as any other character string such as "none", to insist to
present means and standard deviations.

When 'test = TRUE' (default), Pearson's chi-squared test (or a two-sided Fisher's exact test, if the
sample size is small) will be carried out for a categorical variable or a factor. Parametric or non-
parametric comparison and test will be carried out for an object of class 'numeric' or 'integer' (See
'iqr' and 'assumption.p.value' below). If the sample size of the numeric variable is too small in any
group, the test is omitted and the problem reported.

For Fisher's exact test, the default method employs 'simulate.p.value = FALSE'. See further expla-
nation in 'fisher.test' procedure. If the dataset is extraordinarily large, the option may be manually
set to TRUE.

When 'by' is specified as a single character object (such as 'by="none"'), there will be no column
breakdown and all tests will be omitted. Only the total column is displayed. Only the 'total' column
is shown.

If this 'total column' is to accompany the 'by' breakdown, the argument 'total.column=TRUE'
should be specified. The 'sample.size' is TRUE by default. The total number of records for each
group is displayed in the first row of the output. However, the variable in each row may have some
missing records, the information on which is not reported by tableStack.
By default, Epicalc sets `var.labels=TRUE` in order to give nice output. However, `var.labels=FALSE` can sometimes be more useful during data exploration. Variable numbers as well as variable names are displayed instead of variable labels. Names and numbers of abnormally distributed variables, especially factors with too many levels, can be easily identified for further releveving or recoding.

The argument `iqr` has a default value being "auto". Non-parametric comparison and test will be automatically chosen if Bartlett's test P value is below the `assumption.p.value`.

The test can be forced to parametric by setting `iqr=NULL` and to non-parametric by if `iqr` is set to the variable number of cont.var (See examples.).

### Value

- `results` an object of class 'tableStack' and 'list' when `by=NULL`
- `items.reversed` name(s) of variable(s) reversed
- `total.score` a vector from 'rowSums' of the columns of variables specified in 'vars'
- `mean.score` a vector from 'rowMeans' of the columns of variables specified in 'vars'
- `mean.of.total.scores` mean of total scores
- `sd.of.total.scores` standard deviation of total scores
- `mean.of.average.scores` mean of mean scores
- `sd.of.average.scores` standard deviation of mean scores

When `by` is specified, an object of class 'tableStack' and 'table is returned.

### Author(s)

Virasakdi Chongsuvivatwong <cvirasak@gmail.com>

### See Also

- `table`, `tab1`, `summ`, `alpha`, `unclassDataframe`

### Examples

data(Oswego)
tableStack(bakedham:fruitsalad, dataFrame=Oswego)
.data <- Oswego
des(.data)
attach(.data)
tableStack(bakedham:fruitsalad, .data) # Default data frame is .data
tableStack(bakedham:fruitsalad, .data, by= ill)
tableStack(bakedham:fruitsalad, .data, by= ill, prevalence=TRUE)
tableStack(bakedham:fruitsalad, .data, by= ill, percent=FALSE)
tableStack(bakedham:fruitsalad, .data, by= ill, percent=FALSE, name.test=FALSE)
detach(.data)
```r
data(Cars93, package="MASS")
.data <- Cars93
des(.data)
tableStack(vars=4:25, .data, by=Origin)
tableStack(vars=4:25, .data, by="none")
tableStack(vars=4:25, .data, by=Origin, total.column=TRUE)

data(Attitudes)
.data <- Attitudes
attach(.data)
tableStack(qa1:qa18, .data) # May need full screen of Rconsole
tableStack(qa1:qa18, .data, var.labels.trunc=35)
 # Fits in with default R console screen
tableStack(qa1:qa18, .data, reverse=TRUE) -> a
a
Components of 'a' have appropriate items reversed
a$mean.score -> mean.score
a$total.score -> total.score
.data$mean.score <- mean.score
.data$total.score <- total.score
rm(total.score, mean.score)
detach(.data)
attach(.data)
tableStack(c(qa1,qa13:qa18,mean.score,total.score), .data, by=sex, test=FALSE)
tableStack(c(qa15, qa17, mean.score:total.score), .data, by=sex, iqr=c(qa17,total.score))
tableStack(c(qa15, qa17, mean.score:total.score), .data, by=dep, iqr=c(qa17,total.score))
'vars' can be mixture of different classes of variables
.data$highscore <- mean.score > 4
tableStack(mean.score:highscore, .data, by=sex, iqr=total.score)
detach(.data)
rm(list=ls())

data(Ectopic)
.data <- Ectopic
des(.data)
tableStack(vars=3:4, .data, by=outc)
tableStack(vars=3:4, .data, by=outc, percent="none")
tableStack(vars=3:4, .data, by=outc, prevalence = TRUE)
tableStack(vars=3:4, .data, by=outc, name.test = FALSE)

Variable in numeric or factor
data(Outbreak)
.data <- Outbreak
des(.data)
Comparison of exposure to food items between the two gender
tableStack(vars=5:8, .data, by=sex) # as continuous varaibles
tableStack(vars=5:8, .data, by=sex, vars.to.factor = 5:8) # as factors
```
Two-way tabulation with mosaic plot

**Description**

Two-way tabulation with automatic mosaic plot.

**Usage**

```r
tabpct(row, column, decimal = 1, percent = "both",
 graph = TRUE, las = 0, main = "auto", xlab = "auto",
 ylab = "auto", col = "auto", ...)
```

**Arguments**

- `row`, `column` : variables
- `decimal` : number of decimals for the percentage in the table
- `percent` : orientation of the percentage in the table
- `graph` : automatic graphing
- `las` : orientation of group labelling
- `main` : main title
- `xlab` : X axis label
- `ylab` : Y axis label
- `col` : colours of the bars
- `...` : additional arguments for 'table'
  - 0: always parallel to axis
  - 1: always horizontal,
  - 2: always perpendicular to the axis,
  - 3: always vertical.

**Details**

'tabpct' gives column and row percent cross-tabulation as well as mosaic plot. The width of the bar in the plot denotes the relative proportion of the row variable. Inside each bar, the relative proportion denotes the distribution of column variables within each row variable.

The default value for the 'percent' orientation is "both". It can also be "col" or "row".

Due to limitation of 'mosaicplot', certain graphic parameters such as 'cex.main', 'cex.lab' are not acceptable. The parameter 'main', 'xlab' and 'ylab' can be suppressed by making equal to "". An additional line starting with 'title' can be used to write new main and label titles with 'cex.main' and 'cex.lab' specified.
Value

Tables of row and column percentage

Author(s)

Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

See Also

'tab1', 'table', 'mosaicplot'

Examples

data(Oswego)
.attach(Oswego)
agegr <- cut(age, breaks=c(0,20,40,60,80))
tabpct(agegr, ill)
tabpct(agegr, ill, cex.axis=1) # enlarge value labels
# To increase the size of the various titles:
tabpct(agegr, ill, cex.axis=1, main="", xlab="", ylab="", col=c("blue","purple"))
.title(main="Diseased by Age group", cex.main=1.8,
    xlab="Age (years)",ylab="Diseased", cex.lab=1.5)
detach(.data)
rm(list=ls())

Timing exercise

Dataset on time going to bed, waking up and arrival at a workshop

Description

This dataset came from an interview survey on the workshop attendants on 2004-12-14.
Note that the date of bed time is 2004-12-13 if the respondent went to bed before midnight.

Usage

data(Timing)

Format

A data frame with 18 observations on the following 11 variables.

id  a numeric vector
gender  a factor with levels male female
age  a numeric vector
marital  a factor with levels single married others
child  a numeric vector indicating number of children
bedhr  a numeric vector indicating the hour of going to bed
bedmin  a numeric vector indicating the minute of going to bed
wokhr  a numeric vector indicating the hour of waking up
wokmin  a numeric vector indicating the minute of waking up
arrhr  a numeric vector indicating the hour of arrival at the workshop
arrmin  a numeric vector indicating the minute of arrival at the workshop

Examples

data(Timing)
des(Timing)

---

**titleString**  Replace commonly used words in Epicalc graph title

Description

Setting vocabularies for Epicalc graph title

Usage

titleString (distribution.of = .distribution.of, by = .by,
frequency = .frequency, locale = .locale(),
return.look.up.table=FALSE)

Arguments

distribution.of  A string denoting "Distribution of"
by  That for "by"
frequency  That for "Frequency"
locale  Logical value to overwrite .locale(). The initial value is FALSE
return.look.up.table  Should the look-up table be returned?

Details

The two internationalization commands of Epicalc, 'setTitle' and 'titleString', work together to set the language and wording of titles of automatic graphs obtained from certain Epicalc functions.

In general, 'setTitle' is simple and works well if the locale required fits in with the version of the operating system. The three commonly used words in the graph titles: "Distribution of", "by" and "Frequency", which are in English, are initially stored in three respective hidden objects `.distribution.of`, `.by` and `.frequency` as well as in the look-up table within the 'titleString' function. When the locale is changed to a language other than English, the look-up table is used and wordings are changed accordingly.
The function `titleString` is useful when the user wants to change the strings stored in the look-up table. It changes the initial values of `.distribution.of`, `.by` and `.frequency`, respectively. The argument, `.locale`, must be manually set to FALSE by the user to disable the use of the look-up table and to enable the use of the three objects assigned by the command instead.

The two functions suppress each other. Use of `setTitle` disables the effects of `titleString`, switching `.locale()` to TRUE and forcing Epicalc to read from the look-up table in `titleString`. However, `setTitle` does not overwrite the values assigned by the arguments of `titleString`.

The key and decisive switch object is `.locale()`. Once `.locale()` is set to FALSE, either manually or inside the `titleString` command, the values of the three hidden objects will be used. Setting `.locale()` to TRUE, either manually or automatically by the `setTitle` function, points the graph title to use the look-up table inside `titleString`.

Typing `titleString()` without an argument displays the current contents of these three objects. The look-up table is also displayed if the `return.look.up.table` argument is set to TRUE.

International users who want to add their specific locales and corresponding terminology to the look-up table or to suggest more appropriate terminology can contact the author.

**Author(s)**
Virasakdi Chongsuvivatwong < cvirasak@gmail.com>

**See Also**
`setTitle`

**Examples**

```r
.data <- iris
attach(.data)
dotplot(Sepal.Length, by=Species)

Using `setTitle` to change the title
setTitle("English")
dotplot(Sepal.Length, by=Species)
titleString()

Using `titleString` to change the title
.titleString()
```

Tooth decay

Dataset on tooth decay and mutan streptococci

Description

Relationship between bacteria and presence of any decayed tooth.

Usage

data(Decay)

Format

A data frame with 436 observations on the following 2 variables.

decay  a numeric vector indicating presence of tooth decay
strep  a numeric vector indicating number of colony-forming-units (CFUs) of Streptococcus mutan
       in the saliva

Source


Examples

data(Decay)
des(Decay)
Voluntary counselling and testing

Dataset on attitudes toward VCT

Description

This dataset contains information on the records of 200 women working at a tourist destination community.

Usage

```r
data(VCT)
```

Format

A subset of a data frame containing 200 observations and 12 variables with variable descriptions.

Details of the codes can be seen from the results of the function `codebook()` below.

Examples

```r
data(VCT)
codebook(VCT)
```

Xerophthalmia and respiratory infection

Dataset from an Indonesian study on vitamin A deficiency and risk of respiratory infection

Description

This dataset was adopted from Diggle et al: Analysis of Longitudinal Data. REFERENCE – Zeger and Karim, JASA (1991)

Note that there are some duplications of id and time combination.

Usage

```r
data(Xerop)
```
**Format**

A data frame containing 1200 observations and 10 variables.

- id a numeric vector for personal identification number
- respinfect whether the child had respiratory infection in that visit
- age.month current age in month
- xerop whether the child currently had vitamin A deficiency
- sex gender of the child no detail on the code
- ht.for.age height for age
- stunted whether the child has stunted growth
- time time of scheduled visit
- baseline.age baseline age
- season season

**Examples**

data(Xerop)
Index

* aplot
  dotplot, 25
  Follow-up Plot, 29
  pyramid, 62
  statStack, 75
  tab1, 78
  tableStack, 80
  tabpct, 85
* array
  cc, 16
  kap, 35
  matchTab, 41
  mhor, 42
  ROC, 67
* database
  aggregate numeric, 4
  aggregate plot, 6
  alpha, 9
  CI, 18
  Codebook, 21
  des, 23
  List non-function objects, 37
  lookup, 38
  print alpha, 48
  print cci, 48
  print des, 49
  print kap.ByCategory, 50
  print kap.table, 50
  print lrtest, 51
  print matchTab, 52
  print n.for.2means, 52
  print n.for.2p, 53
  print n.for.cluster.2means, 54
  print n.for.cluster.2p, 54
  print n.for.equivalent.2p, 55
  print n.for.laqas, 56
  print n.for.noninferior.2p, 56
  print n.for.survey, 57
  print power.for.2means, 58
  print power.for.2p, 58
  print statStack, 59
  print summ.data.frame, 60
  print summ.default, 60
  print tableStack, 61
  Risk.display, 63
  setTitle, 73
  summ, 77
* datasets
  Age at marriage, 3
  Air Pollution, 9
  ANC Table, 12
  Antenatal care data, 12
  Attitudes dataset, 13
  Bangladesh Fertility Survey, 14
  Blood pressure, 14
  Cancer survival, 15
  Data for cleaning, 22
  DHF99, 24
  Ectopic pregnancy, 27
  Familydata, 28
  Hakimi's data, 31
  Hookworm 1993, 32
  Hookworm and blood loss, 32
  IUD trial admission data, 33
  IUD trial discontinuation data, 34
  IUD trial follow-up data, 34
  Matched case-control study, 40
  Montana, 43
  Oswego, 44
  Outbreak investigation, 44
  Sleepiness, 75
  Timing exercise, 86
  Tooth decay, 89
  Voluntary counselling and testing, 90
  Xerophthalmia and respiratory infection, 90
* htest
INDEX

lrtest, 39
poisgof, 46
shapiro.qqnorm, 74
* math
  Power, 47
  sampsize, 69
* misc
titleString, 87

Age at marriage, 3
aggregate numeric, 4
aggregate plot, 6
aggregate.numeric (aggregate numeric), 4
aggregate.plot (aggregate plot), 6
Air Pollution, 9
alpha, 9
alphaBest (alpha), 9
ANC Table, 12
ANCdata (Antenatal care data), 12
ANCtable (ANC Table), 12
Antenatal care data, 12
Attitudes (Attitudes dataset), 13
Attitudes dataset, 13

Bang (Bangladesh Fertility Survey), 14
Bangladesh Fertility Survey, 14
Blood pressure, 14
BP (Blood pressure), 14

Cancer survival, 15
c (cc), 16
c ci (cc), 16
CI, 18
ci (CI), 18
clogistic.display (Risk.display), 63
Codebook, 21
codebook (Codebook), 21
Compaq (Cancer survival), 15
cox.display (Risk.display), 63
cs (cc), 16
csi (cc), 16

Data for cleaning, 22
Decay (Tooth decay), 89
des, 23
DHF99, 24
dotplot, 25

Ectopic (Ectopic pregnancy), 27

Ectopic pregnancy, 27
Familydata, 28
Follow-up Plot, 29
followup.plot (Follow-up Plot), 29

graph.casecontrol (cc), 16
graph.prospective (cc), 16

Hakimi (Hakimi’s data), 31
Hakimi’s data, 31
Hookworm 1993, 32
Hookworm and blood loss, 32
HW93 (Hookworm 1993), 32

idr.display (Risk.display), 63
IUD trial admission data, 33
IUD trial discontinuation data, 34
IUD trial follow-up data, 34
IudAdmit (IUD trial admission data), 33
IudDiscontinue (IUD trial discontinuation data), 34
IudFollowup (IUD trial follow-up data), 34

kap, 35

labelTable (cc), 16
List non-function objects, 37
logistic.display (Risk.display), 63
lookup, 38
lroc (ROC), 67
lrtest, 39
lsNoFunction (List non-function objects), 37

make2x2 (cc), 16
Marryage (Age at marriage), 3
Matched case-control study, 40
matchTab, 41
mhor, 42
mlogit.display (Risk.display), 63
Montana, 43

n.for.2means (sampsize), 69
n.for.2p (sampsize), 69
n.for.cluster.2means (sampsize), 69
n.for.cluster.2p (sampsize), 69
n.for.equ.2p (sampsize), 69
n.for.lqas (sampsize), 69
n.for.noninferior.2p (sampsize), 69
n.for.survey (sampsize), 69

ordinal.or.display (Risk.display), 63
Oswego, 44
Outbreak (Outbreak investigation), 44
Outbreak investigation, 44
Planning (Data for cleaning), 22
poisgof, 46
Power, 47
power.for.2means (Power), 47
power.for.2p (Power), 47
print alpha, 48
print cci, 48
print des, 49
print kap.ByCategory, 50
print kap.table, 50
print lrtest, 51
print matchTab, 52
print n.for.2means, 52
print n.for.2p, 53
print n.for.cluster.2means, 54
print n.for.cluster.2p, 54
print n.for.equi.2p, 55
print n.for.lqas, 56
print n.for.noninferior.2p, 56
print n.for.survey, 57
print power.for.2means, 58
print power.for.2p, 58
print.statStack (print statStack), 59
print summ.data.frame (print summ.data.frame), 60
print summ.default (print summ.default), 60
print.tab1 (tab1), 78
print.tableStack (print tableStack), 61
pyramid, 62
regress.display (Risk.display), 63
Risk.display, 63
ROC, 67
roc.from.table (ROC), 67
sampsize, 69
setTitle, 73
shapiro.qqnorm, 74
Sleep3 (Sleepiness), 75
Sleepiness, 75
SO2 (Air Pollution), 9
statStack, 75
summ, 77
Suwit (Hookworm and blood loss), 32
tab1, 78
tableGlm (Risk.display), 63
tableStack, 80
tabpct, 85
Timing (Timing exercise), 86
Timing exercise, 86
titleString, 87
Tooth decay, 89
VC1to1 (Matched case-control study), 40
VC1to6 (Matched case-control study), 40
VCT (Voluntary counselling and testing), 90
INDEX

Voluntary counselling and testing, 90

Xerop (Xerophthalmia and respiratory infection), 90

Xerophthalmia and respiratory infection, 90