Package ‘epifitter’

October 13, 2022

Type Package
Title Analysis and Simulation of Plant Disease Progress Curves
Version 0.3.0
Description Analysis and visualization of plant disease progress curve data. Functions for fitting two-parameter population dynamics models (exponential, monomolecular, logistic and Gompertz) to proportion data for single or multiple epidemics using either linear or no-linear regression. Statistical and visual outputs are provided to aid in model selection. Synthetic curves can be simulated for any of the models given the parameters. See Laurence V. Madden, Gareth Hughes, and Frank van den Bosch (2007) <doi:10.1094/9780890545058> for further information on the methods.

Maintainer Kaique dos S. Alves <kaiquedsalves@gmail.com>
Depends R (>= 3.2)
Imports deSolve, dplyr, stats, ggplot2, knitr, tidyr, DescTools, minpack.lm, magrittr, tibble
Suggests rmarkdown, ggridges, cowplot
License MIT + file LICENSE
Encoding UTF-8
LazyData true
VignetteBuilder knitr
Date 2021-06-13 22:30:00 UTC
URL https://github.com/AlvesKS/epifitter
BugReports https://github.com/AlvesKS/epifitter/issues
X-schema.org-applicationCategory Tools

Author Kaique dos S. Alves [aut, cre]
 (https://orcid.org/0000-0001-9187-0252),
Emerson M. Del Ponte [aut] (https://orcid.org/0000-0003-4398-409X)

Repository CRAN
Date/Publication 2021-06-14 14:50:02 UTC
R topics documented:

AUDPC .. 2
AUDPS .. 3
expo_fun ... 4
fit_lin .. 4
fit_multi ... 5
fit_nlin ... 6
fit_nlin2 ... 7
gompi_fun ... 8
logi_fun ... 9
mono_fun ... 9
plot_fit ... 10
PowderyMildew .. 11
print.fit_lin ... 11
print.fit_nlin ... 12
sim_exponential 12
sim_gompertz ... 13
sim_logistic .. 14
sim_monomolecular 15

Index 16

AUDPC .. 2

Description
Calculates the area under disease progress curves.

Usage
AUDPC(time, y, y_proportion = TRUE, type = "absolute")

Arguments

time A vector object of time.
y A vector object of disease intensity.
y_proportion Logical. If disease intensity is proportion (TRUE) or percentage(FALSE).
type Set if is absolute or relative AUDPC. type = "absolute" is default.

Author(s)
Kaique dos S. Alves
AUDPS

References

Examples

```r
epi = sim_logistic(N = 30, y0 = 0.01, dt = 5, r = 0.3, alpha = 0.5, n = 1)
AUDPS(time = epi$time, y = epi$y, y_proportion = TRUE)
```

AUDPS

Area under disease progress stairs

Description

Calculates the area under disease progress stairs.

Usage

```r
AUDPS(time, y, y_proportion = TRUE, type = "absolute")
```

Arguments

- `time`: A vector object of time.
- `y`: A vector object of disease intensity.
- `y_proportion`: Logical. If disease intensity is proportion (TRUE) or percentage (FALSE).
- `type`: Set if is absolute or relative AUDPC. type = "absolute" is default.

Author(s)

Kaique dos S. Alves

References

Examples

```r
epi = sim_logistic(N = 30, y0 = 0.01, dt = 5, r = 0.3, alpha = 0.5, n = 1)
AUDPS(time = epi$time, y = epi$y, y_proportion = TRUE)
```
expo_fun
Function for Exponential model

Description
Base function for the Exponential model. This function is used in the Exponential model simulation function `sim_exponential()`

Usage

```r
expo_fun(t, y, par)
```

Arguments
- `t`: Vector of time
- `y`: Vector of disease intensity
- `par`: List of parameters

fit_lin
Fits epidemic models using data linearization

Description
Fits epidemic models (Exponential, Monomolecular, Logistic and Gompertz) to data using data linearization

Usage

```r
fit_lin(time, y)
```

Arguments
- `time`: Numeric vector which refers to the time steps in the epidemics
- `y`: Numeric vector which refers to the disease intensity

Author(s)
Kaique dos S. Alves
Examples

```r
set.seed(1)
epi1 <- sim_logistic(N = 30,
y0 = 0.01,
dt = 5,
r = 0.3,
alpha = 0.2,
n = 4)
data = data.frame(time = epi1[,2], y = epi1[,4])
fit_lin( time = data$time, y = data$y)
```

fit_multi

Estimate model parameters for multiple disease progress curves

Description

Estimate model parameters for multiple disease progress curves

Usage

```r
fit_multi(time_col,
          intensity_col,
data,
          strata_cols,
          starting_par = list(y0 = 0.01, r = 0.03, K = 0.8),
          maxiter=500,
nlin = FALSE,
estimate_K = FALSE)
```

Arguments

- `time_col` Character name specifying the column for the time. eg: `time_col = "days"`
- `intensity_col` Character name specifying the column for the disease intensity.
- `data` data.frame object containing the variables for model fitting.
- `strata_cols` Character name or vector specifying the columns for stratification.
- `starting_par` Starting value for initial inoculun (y0) and apparent infection rate (r). Please informe in that especific order
- `maxiter` Maximum number of iterations. Only used if is `nlin = TRUE`
- `nlin` Logical. If FALSE estimates parameters using data linearization. If nlin=TRUE, estimates nonlinear approach. `fit_nlin`.
- `estimate_K` Logical. If nlin=TRUE, estimates maximum disease intensity. (default: nlin=FALSE) `fit_nlin2`.
Value

Returns a data.frame containing estimated parameters for individual strata levels.

See Also

fit_lin, fit_nlin, fit_nlin2

Examples

```r
set.seed(1)
# create stratified dataset
data_A1 = sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.3, alpha = 0.5, n = 4)
data_A1 = dplyr::mutate(data_A1,
                        fun = "A",
                        cultivar = "BR1")
set.seed(1)
data_B1 = sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.2, alpha = 0.5, n = 4)
data_B1 = dplyr::mutate(data_B1,
                        fun = "B",
                        cultivar = "BR1")
set.seed(1)
data_A2 = sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.1, alpha = 0.5, n = 4)
data_A2 = dplyr::mutate(data_A2,
                        fun = "A",
                        cultivar = "BR2")
set.seed(1)
data_B2 = sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.1, alpha = 0.5, n = 4)
data_B2 = dplyr::mutate(data_B2,
                        fun = "B",
                        cultivar = "BR2")
data = dplyr::bind_rows(data_A1, data_B1, data_A2, data_B2)

fit_multi(time_col = "time",
          intensity_col = "random_y",
data = data,
          strata_col = c("fun", "cultivar"),
          starting_par = list(y0 = 0.01, r = 0.03),
          maxiter = 1024,
nlin = FALSE,
estimate_K = FALSE)
```

fit_nlin

Fits epidemic models using nonlinear approach

Description

Fits epidemic models (Exponential, Monomolecular, Logistic and Gompertz) using nonlinear approach for estimate parameters.
Usage

fit_nlin(time,
 y,
 starting_par = list(y0 = 0.01, r = 0.03),
 maxiter = 50)

Arguments

time Numeric vector which refers to the time steps in the epidemics

y Numeric vector which refers to the disease intensity

starting_par Starting value for initial inoculum (y0) and apparent infection rate (r). Please informe in that especific order

maxiter Maximum number of iterations

Author(s)
Kaique dos S. Alves

Examples

set.seed(1)
epi1 <- sim_logistic(N = 30,
y0 = 0.01,
dt = 5,
r = 0.3,
alpha = 0.5,
n = 4)
data = data.frame(time = epi1[,2], y = epi1[,4])
fit_nlin(time = data$time, y = data$y, starting_par = list(y0 = 0.001, r = 0.03), maxiter = 1024)

fit_nlin2

Fits epidemic models using nonlinear approach. This function also estimates the maximum disease intensity parameter K.

Description

Fits epidemic models (Exponential, Monomolecular, Logistic and Gompertz) using nonlinear approach for estimate parameters. This function also estimates the maximum disease intensity parameter K.

Usage

fit_nlin2(time,
 y,
 starting_par = list(y0 = 0.01, r = 0.03, K = 0.8),
 maxiter = 50)
Arguments

time Numeric vector which refers to the time steps in the epidemics.
y Numeric vector which refers to the disease intensity.
starting_par starting value for initial inoculum (y0) and apparent infection rate (r), and maximum disease intensity (K). Please informe in that especific order
maxiter Maximum number of iterations.

Examples

```r
set.seed(1)
epi1 <- sim_logistic(N = 30,
y0 = 0.01,
dt = 5,
r = 0.3,
alpha = 0.5,
n = 4)
data = data.frame(time = epi1[,2], y = epi1[,4])
fit_nlin2(time = data$time,
y = data$y,
starting_par = list(y0 = 0.01, r = 0.03, K = 1),
maxiter = 1024)
```

gompi_fun
Function for Gompertz model

Description

Base function for the Gompertz model. This function is used in the Gompertz model simulation function sim_gompertz()

Usage

```r
gompi_fun(t, y, par)
```

Arguments

- **t**
 Vector of time

- **y**
 Vector of disease intensity

- **par**
 List of parameters
logi_fun
Function for logistic model

Description

Base function for the Logistic model. This function is used in the Logistic model simulation function `sim_logistic()`.

Usage

```r
logi_fun(t, y, par)
```

Arguments

- `t`: Vector of time
- `y`: Vector of disease intensity
- `par`: List of parameters

mono_fun
Function for Monomolecular model

Description

Base function for the Monomolecular model. This function is used in the Monomolecular model simulation function `sim_monomolecular()`.

Usage

```r
mono_fun(t, y, par)
```

Arguments

- `t`: Vector of time
- `y`: Vector of disease intensity
- `par`: List of parameters
plot_fit

Creates a plot panel for the fitted models

Description

Create a ggplot2-style plot with the fitted models curves and the epidemic data.

Usage

plot_fit(object,
 point_size =1.2,
 line_size = 1,
 models = c("Exponential","Monomolecular", "Logistic", "Gompertz"))

Arguments

object A fit_lin or a fit_nlin object
point_size Point size
line_size Line size
models Select the models to be displayed in the panel

Details

It is possible to add more ggplot components by using the + syntax. See examples below.

Examples

epi1 <- sim_logistic(N = 30,
y0 = 0.01,
dt = 5,
r = 0.3,
alpha = 0.5,
n = 4)
data = data.frame(time = epi1[,2], y = epi1[,4])
fitted = fit_lin(time = data$time, y = data$y)
plot_fit(fitted)

adding ggplot components
library(ggplot2)
plot_fit(fitted)+
 theme_minimal()+
 ylim(0,1)+
 labs(y = "Disease intensity", x = "Time")
Description

Dataset containing experimental data of disease progress curves of powdery mildew under different irrigation systems and soil moisture levels in organic tomato.

Usage

```r
data("PowderyMildew")
```

Format

A data frame with 240 observations on the following 2 variables.

- `irrigation_type`: Irrigation Systems: MS = Micro Sprinkler
- `moisture`: Levels of soil moisture
- `block`: Experimental blocks
- `time`: A numeric vector containing the time points
- `sev`: A numeric vector containing disease severity data in proportional scales

References

Examples

```r
data(PowderyMildew)
## maybe str(PowderyMildew) ; plot(PowderyMildew) ...
```

print.fit_lin

Print fit_lin() or fit_nlin() outputs

Description

The print method for density objects.

Usage

```r
## S3 method for class 'fit_lin'
print(x, ...)
```
Arguments

\texttt{x} output from \texttt{fit_lin()} or \texttt{fit_nlin()}

\texttt{...} ...

\texttt{print.fit_nlin2} \textit{Print fit_nlin2() outputs}

Description

The print method for density objects.

Usage

S3 method for class 'fit_nlin2'
\texttt{print(x, ...)}

Arguments

\texttt{x} output from \texttt{fit_nlin2()}

\texttt{...} ...

\texttt{sim_exponential} \textit{Simulate an epidemic using the Exponential model}

Description

Simulate a stochastic epidemic curve using the Exponential model.

Usage

\texttt{sim_exponential(N = 10, dt = 1, y0 = 0.01, r, n, alpha = 0.2)}

Arguments

\texttt{N} Total time course of the epidemic
\texttt{dt} Time step
\texttt{y0} Initial inoculum or initial disease intensity
\texttt{r} Infection rate
\texttt{n} Number or replicates or sample size for each time step
\texttt{alpha} Variation parameter. stands for the variation for the replicates for each time step. The standard deviation is calculated as \texttt{sd = alpha * y * (1 - y)}, being \texttt{y} the disease intensity for each time step.
Value

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep</td>
<td>Replicates</td>
</tr>
<tr>
<td>time</td>
<td>Time after epidemic start</td>
</tr>
<tr>
<td>y</td>
<td>Disease intensity</td>
</tr>
<tr>
<td>random_y</td>
<td>Disease intensity after applying the random alpha error</td>
</tr>
</tbody>
</table>

Examples

```r
sim_exponential(N = 30, y0 = 0.01, dt = 5, r = 0.1, alpha = 0.5, n = 4)
```

Description

Simulate a stochastic epidemic curve using the Gompertz model.

Usage

```r
sim_gompertz(N = 10, dt = 1, y0 = 0.01, r, K = 1, n, alpha = 0.2)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Total time course of the epidemic</td>
</tr>
<tr>
<td>dt</td>
<td>Time step</td>
</tr>
<tr>
<td>y0</td>
<td>Initial inoculum or initial disease intensity</td>
</tr>
<tr>
<td>r</td>
<td>Infection rate</td>
</tr>
<tr>
<td>K</td>
<td>Maximum asymptote</td>
</tr>
<tr>
<td>n</td>
<td>Number or replicates or sample size for each time step</td>
</tr>
<tr>
<td>alpha</td>
<td>Variation parameter. stands for the variation for the replicates for each time step. The standard deviation is calculated as sd = alpha * y * (1 - y), being y the disease intensity for each time step.</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep</td>
<td>Replicates</td>
</tr>
<tr>
<td>time</td>
<td>Time after epidemic start</td>
</tr>
<tr>
<td>y</td>
<td>Disease intensity</td>
</tr>
<tr>
<td>random_y</td>
<td>Disease intensity after applying the random alpha error</td>
</tr>
</tbody>
</table>

Examples

```r
sim_gompertz(N = 30, y0 = 0.01, dt = 5, r = 0.3, K = 1, alpha = 0.5, n = 4)
```
Simulate an epidemic using the logistic model

Description

Simulate a stochastic epidemic curve using the logistic model.

Usage

```r
sim_logistic(N = 10, dt = 1, y0 = 0.01, r, K = 1, n, alpha = 0.2)
```

Arguments

- **N**: Total time course of the epidemic
- **dt**: Time step
- **y0**: Initial inoculum or initial disease intensity
- **r**: Infection rate
- **K**: Maximum asymptote
- **n**: Number or replicates or sample size for each time step
- **alpha**: Variation parameter. stands for the variation for the replicates for each time step. The standard deviation is calculated as \(sd = alpha \times y \times (1 - y) \), being \(y \) the disease intensity for each time step.

Value

- **rep**: Replicates
- **time**: Time after epidemic start
- **y**: Disease intensity
- **random_y**: Disease intensity after applying the random alpha error

Examples

```r
sim_logistic(N = 30, y0 = 0.01, dt = 5, r = 0.3, K = 1, alpha = 0.5, n = 4)
```
sim_monomolecular
Simulate an epidemic using the Monomolecular model

Description
Simulate a stochastic epidemic curve using the Monomolecular model.

Usage
```
sim_monomolecular(N = 10, dt = 1, y0 = 0.01, r, K = 1, n, alpha = 0.2)
```

Arguments
- **N** Total time course of the epidemic
- **dt** Time step
- **y0** Initial inoculum or initial disease intensity
- **r** Infection rate
- **K** Maximum asymptote
- **n** Number or replicates or sample size for each time step
- **alpha** Variation parameter. stands for the variation for the replicates for each time step. The standard deviation is calculated as sd = alpha * y * (1 - y), being y the disease intensity for each time step.

Value
- **rep** Replicates
- **time** Time after epidemic start
- **y** Disease intensity
- **random_y** Disease intensity after applying the random alpha error

Examples
```
sim_monomolecular(N = 30, y0 = 0.01, dt = 5, r = 0.3, K = 1, alpha = 0.5, n = 4)
```
Index

* datasets
 PowderyMildew, 11

AUDPC, 2
AUDPS, 3

expo_fun, 4

fit_lin, 4, 6
fit_multi, 5
fit_nlin, 5, 6, 6
fit_nlin2, 5, 6, 7

gompi_fun, 8

logi_fun, 9

mono_fun, 9

plot_fit, 10
PowderyMildew, 11
print.fit_lin, 11
print.fit_nlin2, 12

sim_exponential, 12
sim_gompertz, 13
sim_logistic, 14
sim_monomolecular, 15