Package ‘episensr’

December 3, 2018

Type Package
Title Basic Sensitivity Analysis of Epidemiological Results
Version 0.9.3
Imports triangle, trapezoid, actuar, plyr, ggplot2, grid, gridExtra,
 reshape, boot, magrittr
Date 2018-11-30
BugReports https://github.com/dhaine/episensr/issues
Description Basic sensitivity analysis of the observed relative risks adjusting
for unmeasured confounding and misclassification of the
exposure/outcome, or both. It follows the bias analysis methods and
examples from the book by Lash T.L, Fox M.P, and Fink A.K.
``Applying Quantitative Bias Analysis to Epidemiologic Data'',
('Springer', 2009).
Depends R (>= 3.5.0)
License GPL-2
Suggests testthat, knitr, rmarkdown, aplore3
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Denis Haine [aut, cre] (<https://orcid.org/0000-0002-6691-7335>)
Maintainer Denis Haine <denis.haine@gmail.com>
Repository CRAN
Date/Publication 2018-12-03 05:20:09 UTC

R topics documented:

 episensr-package .. 2
 boot.bias .. 3
 confounders ... 4
 confounders.array ... 5
episensr-package

confounders.emm ... 7
confounders.evalue ... 8
confounders.ext .. 10
confounders.limit ... 11
confounders.poly ... 12
mbias ... 13
misclassification ... 15
misclassification_cov ... 16
multidimBias ... 18
multiple.bias .. 19
plot.episensr.booted .. 20
plot.mbias ... 21
print.episensr ... 22
print.episensr.booted ... 22
print.mbias ... 23
probsens ... 23
probsens.conf .. 25
probsens.irr .. 27
probsens.irr.conf .. 29
probsens.sel ... 31
selection ... 33
%>% ... 34

Index 35

episensr-package episensr: Basic sensitivity analysis of epidemiological results

Description

'episensr' provides basic sensitivity analysis of the observed relative risks adjusting for unmeasured confounding and misclassification of the exposure/outcome, or both.

Author(s)

Maintainer: Denis Haine <denis.haine@gmail.com>

References

See Also

Useful links:

- https://github.com/dhaine/episensr
- Report bugs at https://github.com/dhaine/episensr/issues
boot.bias

Bootstrap resampling for selection and misclassification bias models.

Description

Generate R bootstrap replicates of either selection or misclassification bias functions. It then generates a confidence interval of the parameter, by first order normal approximation or the bootstrap percentile interval. Replicates giving negative cell(s) in the adjusted 2-by-2 table are silently ignored.

Usage

boot.bias(bias_model, R = 1000, conf = 0.95, ci_type = c("norm", "perc"))

Arguments

bias_model An object of class "episensr.boot", i.e. either selection bias function or misclassification bias function.
R The number of bootstrap replicates.
conf Confidence level.
ci_type A character string giving the type of interval required. Values can be either "norm" or "perc", default to "norm".

Value

A list with elements:

model Model ran.
boot_mod Bootstrap resampled object, of class boot.
nrep Number of replicates used.
bias_ciRR Bootstrap confidence interval object for relative risk.
bias_ciOR Bootstrap confidence interval object for odds ratio.
conf Confidence intervals for the bias adjusted association measures.

See Also

boot, selection, misclassification
Examples

misclass_eval <- misclassification(matrix(c(215, 1449, 668, 4296),
 dimnames = list(c("Breast cancer+", "Breast cancer-"),
 c("Smoker+", "Smoker-")),
 nrow = 2, byrow = TRUE),
 type = "exposure",
 bias_parms = c(.78, .78, .99, .99))

set.seed(123)
boot.bias(misclass_eval)

confounders

Sensitivity analysis to correct for unknown or unmeasured confounding without effect modification

Description

Simple sensitivity analysis to correct for unknown or unmeasured confounding without effect modification. Implementation for ratio measures (relative risk – RR, or odds ratio – OR) and difference measures (risk difference – RD).

Usage

confounders(case, exposed, type = c("RR", "OR", "RD"),
 bias_parms = NULL, alpha = 0.05)

Arguments

case
 Outcome variable. If a variable, this variable is tabulated against.

exposed
 Exposure variable.

type
 Choice of implementation, with no effect measure modification for ratio measures (relative risk – RR; odds ratio – OR) or difference measures (risk difference – RD).

bias_parms
 Numeric vector defining the 3 necessary bias parameters. This vector has 3 elements, in the following order:
 1. the association between the confounder and the outcome among those who were not exposed (RR, OR, or RD according to choice of implementation),
 2. the prevalence of the confounder among the exposed (between 0 and 1), and
 3. the prevalence of the confounder among the unexposed (between 0 and 1).

alpha
 Significance level.
confounders.array

Value

A list with elements:

- obs.data: The analyzed 2 x 2 table from the observed data.
- cfd.data: The same table for Confounder +.
- nocfd.data: The same table for Confounder -.
- obs.measures: A table of relative risk with confidence intervals; for Total, Confounder +, and Confounder -.
- bias parms: Input bias parameters.

References

Examples

The data for this example come from:
Tyndall M.W., Ronald A.R., Agoki E., Malisa W., Bwayo J.J., Ndinya-Achola J.O.
et al.
Increased risk of infection with human immunodeficiency virus type 1 among
uncircumcised men presenting with genital ulcer disease in Kenya.
confounders(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RR",
bias_parms = c(.63, .8, .05))
confounders(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "OR",
bias_parms = c(.63, .8, .05))
confounders(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RD",
bias_parms = c(-.37, .8, .05))

confounders.array
Sensitivity analysis for unmeasured confounders based on confounding imbalance among exposed and unexposed

Description

Sensitivity analysis to explore effect of residual confounding using simple algebraic transformation (array approach). It indicates the strength of an unmeasured confounder and the necessary imbalance among exposure categories to affect the observed (crude) relative risk.
Usage

```r
confounders.array(crude.risk, type = c("binary", "continuous", "RD"), 
                     bias_parms = NULL, dec = 2, print = TRUE)
```

Arguments

- **crude.risk**: Crude (apparent or observed) relative risk between the exposure and the outcome. If type ‘RD’, this is the crude (observed) risk difference.
- **type**: Choice of implementation, for binary covariates, continuous covariates, or on risk difference scale.
- **bias_parms**: Numeric vector defining the necessary bias parameters. This vector has 3 elements, in the following order:
 1. the association between the confounder and the outcome (RR, relative risk),
 2. the prevalence of the confounder among the exposed (between 0 and 1, if type ‘binary’), or mean value of the confounder among the exposed (if type ‘continuous’ or ‘RD’), and
 3. the prevalence of the confounder among the unexposed (between 0 and 1, if type ‘binary’), or mean value of the confounder among the unexposed (if type ‘continuous’ or ‘RD’).
- **dec**: Number of decimals in the printout.
- **print**: A logical scalar. Should the results be printed?

Value

A vector with elements:

- **crude.risk**: The crude relative risk or risk difference.
- **RR_CD**: The association between the confounder and the outcome.
- **P_C1**: The prevalence of the confounder among the exposed, or mean value of the confounder among the exposed.
- **P_C0**: The prevalence of the confounder among the unexposed, or mean value of the confounder among the unexposed.
- **risk_adj**: The adjusted exposure relative risk or risk difference.
- **bias_perc**: The bias as a percentage: \((\text{crude.RR} - \text{risk_adj})/\text{risk_adj} * 100\).

References

Examples

```r
# Example from Schneeweiss, S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics.

confounders.array(crude.risk = 1.5, type = "binary",
```
Description

Simple sensitivity analysis to correct for unknown or unmeasured confounding in the presence of effect modification. Implementation for ratio measures (relative risk – RR, or odds ratio – OR) and difference measures (risk difference – RD).

Usage

```r
confounders.emm(case, exposed, type = c("RR", "OR", "RD"),
                 bias_parms = NULL, alpha = 0.05)
```

Arguments

- **case**: Outcome variable. If a variable, this variable is tabulated against.
- **exposed**: Exposure variable.
- **type**: Choice of implementation, with no effect measure modification for ratio measures (relative risk – RR; odds ratio – OR) or difference measures (risk difference – RD).
- **bias_parms**: Numeric vector defining the 4 necessary bias parameters. This vector has 4 elements, in the following order:
 1. the association between the confounder and the outcome among those who were exposed,
 2. the association between the confounder and the outcome among those who were not exposed,
 3. the prevalence of the confounder among the exposed (between 0 and 1), and
 4. the prevalence of the confounder among the unexposed (between 0 and 1).
- **alpha**: Significance level.
Value

A list with elements:

- `obs.data`: The analyzed 2x2 table from the observed data.
- `cfder.data`: The same table for Confounder +.
- `nocfder.data`: The same table for Confounder -.
- `obs.measures`: A table of relative risk with confidence intervals; Total, for Confounder +, and for Confounder -.
- `bias.parms`: Input bias parameters.

References

Examples

```r
# The data for this example come from:
# Increased risk of infection with human immunodeficiency virus type 1 among # uncircumcised men presenting with genital ulcer disease in Kenya.
confounders.emm(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RR",
bias.parms = c(.4, .7, .8, .05))

confounders.emm(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "OR",
bias.parms = c(.4, .7, .8, .05))

confounders.emm(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RD",
bias.parms = c(-.6, -.3, .8, .05))
```

Description

Help to quantify the evidence strength for causality in presence of unmeasured confounding. The E-value is the minimum strength of association that an unmeasured confounder would need to have with both the exposure and the outcome, conditional on the measured covariates, to fully explain away a specific exposure-outcome association.
confounders.evaluate

Usage

confounders.evaluate(est, lower_ci = NULL, upper_ci = NULL, sd = NA, type = c("RR", "ORc", "HRc", "diff_RR", "diff_OR"), true_est = 1)

Arguments

est
Point estimate for the effect measure. For difference in continuous outcomes, it is the standardized effect size (i.e. mean of the outcome divided by its standard deviation).

lower_ci
Lower limit of the confidence interval for the association (relative risk, odds ratio, hazard ratio, incidence rate ratio, risk difference).

upper_ci
Upper limit of the confidence interval for the association (relative risk, odds ratio, hazard ratio, incidence rate ratio, risk difference).

sd
For difference in continuous outcomes, the standard error of the outcome divided by its standard deviation.

type
Choice of effect measure (relative risk, and odds ratio or hazard ratio for rare outcomes i.e. < 15 outcome – ORc; hazard ratio for common outcome i.e. > 15 difference in continuous outcomes, RR approximation – diff_RR; difference in continuous outcomes, OR approximation – diff_OR).

true_est
True estimate to assess E-value for. Default to 1 on risk scale to assess against null value. Set to a different value to assess for non-null hypotheses.

Value

A matrix with the observed point estimate and closest confidence interval to the null hypothesis, expressed as a relative risk, and their corresponding E-value.

References

Examples

The data for this example come from:
Victoria C.G., Smith P.G., Vaughan J.P., Nobre L.C., Lombardi C., Teixeira A.M.
et al.
Evidence for protection by breast-feeding against infant deaths from infectious
diseases in Brazil.
confounders.evaluate(est = 3.9, type = "RR")

The data for this example come from:
Oddy W.H, Smith G.J., Jacony P.
A possible strategy for developing a model to account for attrition bias in a
longitudinal cohort to investigate associations between exclusive breastfeeding and
overweight and obesity at 20 years.
confounders.evaluate(est = 1.47, lower_ci = 1.12, upper_ci = 1.93, type = "ORc")
The data for this example come from:
Reinisch J., Sanders S., Mortensen E., Rubin D.B.
In-utero exposure to phenobarbital and intelligence deficits in adult men.
Journal of the American Medical Association 1995;274:1518-1525
confounders.evaluate(est = -0.42, sd = 0.14, type = "diff_RR")

Description

Sensitivity analysis to explore effect of residual confounding using simple algebraic transformation. It provides the relative risk adjusted for unmeasured confounders based on available external information (i.e. from the literature) on the relation between confounders and outcome.

Usage

```r
confounders.ext(RR, bias_parms = NULL, dec = 2, print = TRUE)
```

Arguments

- **RR** "True" or fully adjusted exposure relative risk.
- **bias_parms** Numeric vector defining the necessary bias parameters. This vector has 4 elements, in the following order:
 1. the association between the confounder and the outcome (RR, relative risk),
 2. the association between exposure category and the confounder (OR, odds ratio),
 3. the prevalence of the confounder (between 0 and 1), and
 4. the prevalence of the exposure (between 0 and 1).
- **dec** Number of decimals in the printout.
- **print** A logical scalar. Should the results be printed?

Value

A vector with elements:

- **RR** True (adjusted) exposure relative risk.
- **RR_CD** The association between the confounder and the outcome.
- **OR_EC** The association between exposure category and the confounder.
- **P_C** The prevalence of the confounder.
- **P_E** The prevalence of the exposure.
- **crude.RR** Crude (observed) exposure relative risk.
- **bias_perc** The bias as a percentage: (crude.RR - RR)/RR * 100.
References

Examples

```r
confounders.ext(RR = 1, bias_parms = c(0.1, 0.9, 0.1, 0.4))
```

Description

Function to elicit the limits on measures of effect corrected for an unmeasured confounder when only some of the bias parameters are known.

Usage

```r
confounders.limit(p = NA, RR = NA, OR = NA, crude.RR = NULL, dec = 4, print = TRUE)
```

Arguments

- `p`: Proportion with the confounder among the unexposed group.
- `RR`: Relative risk between the confounder and the outcome.
- `OR`: Odds ratio between the confounder and the outcome.
- `crude.RR`: Crude relative risk between the exposure and the outcome.
- `dec`: Number of decimals in the printout.
- `print`: A logical scalar. Should the results be printed?

Value

A list with elements:

- `conf.limits`: Limits on confounding.
- `biasparms`: Input bias parameters p, RR, OR, and crude RR.

References

Examples

confounders.limit(OR = 1.65, crude.RR = 1.5)

confounders.poly

Sensitivity analysis to correct for unknown or unmeasured polychotomous confounding without effect modification

Description

Simple sensitivity analysis to correct for unknown or unmeasured polychotomous (3-level) confounding without effect modification. Implementation for ratio measures (relative risk – RR, or odds ratio – OR) and difference measures (risk difference – RD).

Usage

confounders.poly(case, exposed, type = c("RR", "OR", "RD"),
 bias_parms = NULL, alpha = 0.05)

Arguments

- **case**: Outcome variable. If a variable, this variable is tabulated against.
- **exposed**: Exposure variable.
- **type**: Choice of implementation, with no effect measure modification for ratio measures (relative risk – RR, odds ratio – OR) or difference measures (risk difference – RD).
- **bias_parms**: Numeric vector defining the bias parameters. This vector has 6 elements, in the following order:
 1. the association between the highest level confounder and the outcome,
 2. the association between the mid-level confounder and the outcome,
 3. the prevalence of the highest level confounder among the exposed (between 0 and 1),
 4. the prevalence of the highest level confounder among the unexposed (between 0 and 1),
 5. the prevalence of the mid-level confounder among the exposed (between 0 and 1), and
 6. the prevalence of the mid-level confounder among the unexposed (between 0 and 1).
- **alpha**: Significance level.
mbias

Value

A list with elements:

- **obs.data** The analyzed 2 x 2 table from the observed data.
- **cfder1.data** The same table for Mid-level Confounder +.
- **cfder2.data** The same table for Highest-level Confounder +.
- **nocfder.data** The same table for Confounder -.
- **obs.measures** A table of relative risk with confidence intervals; Total and by confounders.
- **adj.measures** A table of Standardized Morbidity Ratio and Mantel-Haenszel estimates.
- **bias parms** Input bias parameters.

References

Examples

The data for this example come from:
Tyndall M.W., Ronald A.R., Agoki E., Malisa W., Bwayo J.J., Ndinya-Achola J.O.
et al.
Increased risk of infection with human immunodeficiency virus type 1 among
uncircumcised men presenting with genital ulcer disease in Kenya.
confounders.poly(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RR",
bias_parms = c(.4, .8, .6, .05, .2, .2))
confounders.poly(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "OR",
bias_parms = c(.4, .8, .6, .05, .2, .2))
confounders.poly(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RD",
bias_parms = c(-.4, -.2, .6, .05, .2, .2))

mbias Sensitivity analysis to correct for selection bias caused by M bias.

Description

Simple sensitivity analysis to correct for selection bias caused by M bias using estimates of the odds ratios relating the variables.
Usage

```r
mbias(or, var)
```

Arguments

- `or` Vector defining the input bias parameters, in the following order:
 1. Odds ratio between A and the exposure E,
 2. Odds ratio between A and the collider C,
 3. Odds ratio between B and the collider C,
 4. Odds ratio between B and the outcome D,
 5. Odds ratio observed between the exposure E and the outcome D.

- `var` Vector defining variable names, in the following order:
 1. Outcome,
 2. Exposure,
 3. A,
 4. B,
 5. Collider.

Value

A list with elements:

- `mbias.parms` Maximum bias parameters.
- `adj.measures` Selection bias corrected measures.
- `bias.parms` Input bias parameters.

References

Examples

```r
mbias(or = c(2, 5.4, 2.5, 1.5, 1),
var = c("HIV", "Circumcision", "Muslim", "Low CD4", "Participation"))
```
misclassification

Sensitivity analysis for disease or exposure misclassification.

Description

Simple sensitivity analysis for disease or exposure misclassification. Confidence interval for odds ratio is computed as in Chu et al. (2006), for exposure misclassification.

Usage

```r
misclassification(case, exposed, type = c("exposure", "outcome"),
                  biasParms = NULL, alpha = 0.05)
```

Arguments

- `case`
 Outcome variable. If a variable, this variable is tabulated against.
- `exposed`
 Exposure variable.
- `type`
 Choice of misclassification:
 1. exposure: bias analysis for exposure misclassification; corrections using sensitivity and specificity: nondifferential and independent errors,
 2. outcome: bias analysis for outcome misclassification.
- `biasParms`
 Vector defining the bias parameters. This vector has 4 elements between 0 and 1, in the following order:
 1. Sensitivity of exposure (when type = "exposure") or outcome (when type = "outcome") classification among those with the outcome (when type = "exposure") or exposure (when type = "outcome"),
 2. Sensitivity of exposure (or outcome) classification among those without the outcome (or exposure),
 3. Specificity of exposure (or outcome) classification among those with the outcome (or exposure), and
 4. Specificity of exposure (or outcome) classification among those without the outcome (or exposure).
- `alpha`
 Significance level.

Value

A list with elements:

- `obs.data`
 The analyzed 2 x 2 table from the observed data.
- `corr.data`
 The expected observed data given the true data assuming misclassification.
- `obs.measures`
 A table of observed relative risk and odds ratio with confidence intervals.
- `adj.measures`
 A table of adjusted relative risk and odds ratio with confidence interval for odds ratio.
- `biasParms`
 Input bias parameters.
misclassification_cov
Sensitivity analysis for covariate misclassification.

Description
Simple sensitivity analysis to correct for a misclassified covariate (a potential confounder or effect measure modifier).

Usage
misclassification_cov(case, exposed, covariate, bias_parms = NULL, alpha = 0.05)
Arguments

- **case**: Outcome variable. If a variable, this variable is tabulated against.
- **exposed**: Exposure variable.
- **covariate**: Covariate to stratify on.
- **bias_parms**: Vector defining the bias parameters. This vector has 4 elements between 0 and 1, in the following order:
 1. Sensitivity of confounder classification among those with the outcome,
 2. Sensitivity of confounder classification among those without the outcome,
 3. Specificity of confounder classification among those with the outcome,
 4. Specificity of confounder classification among those without the outcome.
- **alpha**: Significance level.

Value

A list with elements:

- **obs.data**: The analyzed stratified 2 x 2 tables from the observed data.
- **corr.data**: The expected stratified observed data given the true data assuming misclassification.
- **obs.measures**: A table of observed relative risk and odds ratio with confidence intervals.
- **adj.measures**: A table of adjusted relative risk and odds ratio.
- **bias_parms**: Input bias parameters.

References

Examples

```r
misclassification_cov

# The data for this example come from:
# Berry, R.J., Kihlberg, R., and Devine, O. Impact of misclassification of in vitro
# fertilisation in studies of folic acid and twinning: modelling using population
# based Swedish vital records.
# BMJ, doi:10.1136/bmj.38369.437789.82 (published 17 March 2004)
misclassification_cov(array(c(1319, 38054, 5641, 405546,
565, 3583, 781, 21958,
754, 34471, 4860, 383588),
dimnames = list(c("Twins+", "Twins-"),
c("Folic acid+", "Folic acid-"), c("Total", "IVF+", "IVF-")),
dim = c(2, 2, 3)),
bias_parms = c(.6, .6, .95, .95)
```
multidimBias

Multidimensional sensitivity analysis for different sources of bias

Description
Multidimensional sensitivity analysis for different sources of bias

Usage
multidimBias(case, exposed, type = c("exposure", "outcome", "confounder", "selection"), se = NULL, sp = NULL, biasParms = NULL, OR.sel = NULL, alpha = 0.05, dec = 4, print = TRUE)

Arguments
- case: Outcome variable. If a variable, this variable is tabulated against.
- exposed: Exposure variable.
- type: Implement analysis for exposure misclassification, outcome misclassification, unmeasured confounder, or selection bias.
- se: Numeric vector of sensitivities.
- sp: Numeric vector of specificities.
- biasParms: List of bias parameters. The list is made of 3 vectors of the same length:
 1. Prevalence of Confounder in Exposure+ population.
 2. Prevalence of Confounder in Exposure- population, and
 3. Relative risk between Confounder and Outcome.
- OR.sel: Selection odds ratios, for selection bias implementation.
- alpha: Significance level.
- dec: Number of decimals in the printout.
- print: A logical scalar. Should the results be printed?

Value
A list with elements:
- obs.data: The analyzed 2 x 2 table from the observed data.
- obs.measures: A table of odds ratios and relative risk with confidence intervals.
- adj.measures: Multidimensional corrected relative risk and/or odds ratio data.
- biasParms: Bias parameters.

References
Examples

```r
multidimbias(matrix(c(45, 94, 257, 945),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "exposure",
se = c(1, 1, .9, .9, .9, .8, .8, .8),
sp = c(1, .9, .8, 1, .9, .8, 1, .9, .8))
multidimbias(matrix(c(45, 94, 257, 945),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "outcome",
se = c(1, 1, .9, .9, .9, .8, .8),
sp = c(1, .9, .8, 1, .9, .8, 1, .9, .8))
multidimbias(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "confounder",
bias_parms = list(seq(.72, .92, by = .02),
seq(.01, .11, by = .01), seq(.13, 1.13, by = .1))
multidimbias(matrix(c(136, 107, 297, 165),
dimnames = list(c("Uveal Melanoma+", "Uveal Melanoma-"),
c("Mobile Use+", "Mobile Use-")),
nrow = 2, byrow = TRUE),
type = "selection",
OR.sel = seq(1.5, 6.5, by = .5))
```

multiple.bias

Extract adjusted 2-by-2 table from episensr object

Description

Extract the adjusted 2-by-2 table from an episensr function, so that it can be re-used into an other episensr function when performing multiple (combined) bias analysis. Allowed functions are: 'selection', 'misclassification', 'confounders', 'probsens', 'probsens.sel', and 'probsens.conf'.

Usage

```r
multiple.bias(x, bias_function = c("selection", "misclassification",
  "confounders", "probsens.sel", "probsens.conf", "probsens"), ...)
```

Arguments

- `x`
 An object of class 'episensr' or 'episens.probsens'.
- `bias_function`
 Bias function to be called. Choices between 'selection', 'misclassification', 'confounders', 'probsens', 'probsens.sel', 'probsens.conf'.
- `...`
 Additional arguments passed on to methods.
Value

A list with the elements corresponding to the bias function called.

See Also

`selection, misclassification, confounders, probsens, probsens.sel, probsens.conf`

Examples

dat <- matrix(c(118, 832, 103, 884),
 dimnames = list(c("BC+", "BC-"), c("AD+", "AD-")), nrow = 2, byrow = TRUE)
dat `>%` misclassification(.[, type = "exposure", bias_parms = c(.56, .58, .99, .97)) `>%`
multiple.bias(.[, bias_function = "selection", bias_parms = c(.73, .61, .82, .76))
plot.mbias

Examples

misclass_eval <- misclassification(matrix(c(215, 1449, 668, 4296),
 dimnames = list(c("Breast cancer+", "Breast cancer-"),
 c("Smoker+", "Smoker-")),
 nrow = 2, byrow = TRUE),
 type = "exposure",
 bias_parms = c(.78, .78, .99, .99))

set.seed(123)
misclass_boot <- boot.bias(misclass_eval)
plot(misclass_boot, association = "rr")

plot.mbias Plot DAGs before and after conditioning on collider (M bias)

Description

Create two DAGs, before and after conditioning on the collider C, for selection bias caused by M bias, using ggplot2.

Usage

S3 method for class 'mbias'
plot(x, title1 = "DAG before conditioning on C",
 title2 = "DAG after conditioning on C", title.size = 6, size = 6,
 dec = 2, layout = c("landscape", "portrait"), ...)

Arguments

x 'mbias' object to plot.
title1 Title of DAG graph before conditioning on C.
title2 Title of DAG graph after conditioning on C.
title.size Title size.
size Text size.
dec Number of digits displayed.
layout Side-by-side graphs in landscape or portrait layout.
... Other unused arguments.

Value

Two DAGs for selection bias caused by M bias.

See Also

mbias
Examples

```r
plot(mbias(or = c(2, 5.4, 2.5, 1.5, 1),
    var = c("HIV", "Circumcision", "Muslim", "Low CD4", "Participation")))
```

print.episensr

Print associations for episensr objects.

Usage

```r
## S3 method for class 'episensr'
print(x, digits = getOption("digits"), ...)
```

Arguments

- `x`: An object of class 'episensr'.
- `digits`: Minimal number of _significant_ digits, see 'print.default'.
- `...`: Other unused arguments.

Value

Print the observed and adjusted measures of association.

print.episensr.booted

Print bootstrapped confidence intervals.

Usage

```r
## S3 method for class 'episensr.booted'
print(x, digits = getOption("digits"), ...)
```

Arguments

- `x`: An object of class 'episensr.booted'.
- `digits`: Minimal number of _significant_ digits, see 'print.default'.
- `...`: Other unused arguments.

Value

Print the confidence interval of the adjusted measures of association.
print.mbias

Print association corrected for M bias

Description

Print association corrected for M bias.

Usage

```r
## S3 method for class 'mbias'
print(x, ...)
```

Arguments

- `x`: An object of class 'mbias'.
- `...`: Other unused arguments.

Value

Print the observed and adjusted measures of association.

probsens

Probabilistic sensitivity analysis.

Description

Probabilistic sensitivity analysis to correct for exposure misclassification or outcome misclassification and random error. Non-differential misclassification is assumed when only the two bias parameters seca.params and spca.params are provided. Adding the 2 parameters seexp.params and spexp.params (i.e. providing the 4 bias parameters) evaluates a differential misclassification.

Usage

```r
probsens(case, exposed, type = c("exposure", "outcome"), reps = 1000, 
seca.params = list(dist = c("constant", "uniform", "triangular", 
"trapezoidal", "logit-logistic", "logit-normal"), parms = NULL), 
seexp.params = NULL, spca.params = list(dist = c("constant", "uniform", 
"triangular", "trapezoidal", "logit-logistic", "logit-normal"), parms = 
NULL), spexp.params = NULL, corr.se = NULL, corr.sp = NULL, 
discard = TRUE, alpha = 0.05)
```
Arguments

- **case**: Outcome variable. If a variable, this variable is tabulated against.
- **exposed**: Exposure variable.
- **type**: Choice of correction for exposure or outcome misclassification.
- **reps**: Number of replications to run.
- **seca.parms**: List defining:
 1. The sensitivity of exposure classification among those with the outcome (when type = "exposure"), or
 2. The sensitivity of outcome classification among those with the exposure (when type = "outcome").

The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, logit-logistic, or logit-normal) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired.

 1. Constant: constant value,
 2. Uniform: min, max,
 3. Triangular: lower limit, upper limit, mode,
 4. Trapezoidal: min, lower mode, upper mode, max,
 5. Logit-logistic: location, scale, lower bound shift, upper bound shift,

- **seexp.parms**: List defining:
 1. The sensitivity of exposure classification among those without the outcome (when type = "exposure"), or
 2. The sensitivity of outcome classification among those without the exposure (when type = "outcome").

- **spca.parms**: List as above for seca.parms but for specificity.
- **spexp.parms**: List as above for seexp.parms but for specificity.
- **corr.se**: Correlation between case and non-case sensitivities.
- **corr.sp**: Correlation between case and non-case specificities.
- **discard**: A logical scalar. In case of negative adjusted count, should the draws be discarded? If set to FALSE, negative counts are set to zero.
- **alpha**: Significance level.

Value

A list with elements:

- **obs.data**: The analyzed 2 x 2 table from the observed data.
- **obs.measures**: A table of observed relative risk and odds ratio with confidence intervals.
- **adj.measures**: A table of corrected relative risks and odds ratios.
- **sim.df**: Data frame of random parameters and computed values.
- **reps**: Number of replications.
References

Examples

```r
# The data for this example come from:
# Greenland S., Salvan A., Wegman D.H., Hallock M.F., Smith T.J.
# A case-control study of cancer mortality at a transformer-assembly facility.
set.seed(123)
# Exposure misclassification, non-differential
probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 20000,
seca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
spca.parms = list("trapezoidal", c(.75, .85, .95, 1)))
# Exposure misclassification, differential
probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 20000,
seca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
seexp.parms = list("trapezoidal", c(.7, .8, .9, .95)),
spca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
spexp.parms = list("trapezoidal", c(.7, .8, .9, .95)),
corr.se = .8,
corr.sp = .8)
# Disease misclassification
probsens(matrix(c(173, 602, 134, 663),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "outcome",
reps = 20000,
seca.parms = list("uniform", c(.8, 1)),
spca.parms = list("uniform", c(.8, 1)))
```

probsens.conf
Probabilistic sensitivity analysis for unmeasured confounding.

Description

Probabilistic sensitivity analysis to correct for unknown or unmeasured confounding and random error simultaneously.

Usage

```r
probsens.conf(case, exposed, reps = 1000, prev.exp = list(dist =
c("constant", "uniform", "triangular", "trapezoidal", "logit-logistic"),
```
Arguments

- **case**: Outcome variable. If a variable, this variable is tabulated against.
- **exposed**: Exposure variable.
- **reps**: Number of replications to run.
- **prev.exp**: List defining the prevalence of exposure among the exposed. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, logit-logistic, or logit-normal) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired.
 1. Constant: constant value,
 2. Uniform: min, max,
 3. Triangular: lower limit, upper limit, mode,
 4. Trapezoidal: min, lower mode, upper mode, max.
 5. Logit-logistic: location, scale, lower bound shift, upper bound shift,
- **prev.nexp**: List defining the prevalence of exposure among the unexposed.
- **risk**: List defining the confounder-disease relative risk or the confounder-exposure odds ratio. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, log-logistic, or log-normal) and the second its parameters as a vector:
 1. Constant: constant value,
 2. Uniform: min, max,
 3. Triangular: lower limit, upper limit, mode,
 4. Trapezoidal: min, lower mode, upper mode, max.
 5. Log-logistic: shape, rate. Must be strictly positive,
 6. Log-normal: meanlog, sdlog. This is the mean and standard deviation on the log scale.
- **corr.p**: Correlation between the exposure-specific confounder prevalences.
- **discard**: A logical scalar. In case of negative adjusted count, should the draws be discarded? If set to FALSE, negative counts are set to zero.
- **alpha**: Significance level.

Value

A list with elements:

- **obs.data**: The analyzed 2 x 2 table from the observed data.
obs.measures A table of observed relative risk and odds ratio with confidence intervals.
adj.measures A table of corrected relative risks and odds ratios.
sim.df Data frame of random parameters and computed values.
reps Number of replications.

References

Examples
The data for this example come from:
Increased risk of infection with human immunodeficiency virus type 1 among
uncircumcised men presenting with genital ulcer disease in Kenya.
set.seed(123)
probsens.conf(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")), nrow = 2, byrow = TRUE),
reps = 20000,
prev.exp = list("triangular", c(.7, .9, .8)),
prev.nexp = list("trapezoidal", c(.03, .04, .05, .06)),
risk = list("triangular", c(.6, .7, .63)),
corr.p = .8)

Description
Probabilistic sensitivity analysis for exposure misclassification of
person-time data and random error.

Usage
probsens.irr(counts, pt = NULL, reps = 1000, seca parms = list(dist =
c("constant", "uniform", "triangular", "trapezoidal", "logit-logistic",
"logit-normal"), parms = NULL), seexp.parms = NULL,
spca.parms = list(dist = c("constant", "uniform", "triangular",
"trapezoidal", "logit-logistic", "logit-normal"), parms = NULL),
spexp.parms = NULL, corr.se = NULL, corr.sp = NULL,
discard = TRUE, alpha = 0.05)
Arguments

counts A table or matrix where first row contains disease counts and second row contains person-time at risk, and first and second columns are exposed and unexposed observations, as:

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Unexposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Person-time</td>
<td>N1</td>
<td>N0</td>
</tr>
</tbody>
</table>

pt A numeric vector of person-time at risk. If provided, counts must be a numeric vector of disease counts.

reps Number of replications to run.

seca.parms List defining the sensitivity of exposure classification among those with the outcome. The first argument provides the probability distribution function (uniform, triangular, trapezoidal, logit-logistic, or logit-normal) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired.

1. Constant: constant value,
2. Uniform: min, max,
3. Triangular: lower limit, upper limit, mode,
4. Trapezoidal: min, lower mode, upper mode, max,
5. Logit-logistic: location, scale, lower bound shift, upper bound shift,

seexp.parms List defining the sensitivity of exposure classification among those without the outcome.

spca.parms List defining the specificity of exposure classification among those with the outcome.

spexp.parms List defining the specificity of exposure classification among those without the outcome.

corr.se Correlation between case and non-case sensitivities.

corr.sp Correlation between case and non-case specificities.

discard A logical scalar. In case of negative adjusted count, should the draws be discarded? If set to FALSE, negative counts are set to zero.

alpha Significance level.

Value

A list with elements:

obs.data The analyzed 2 x 2 table from the observed data.

obs.measures A table of observed incidence rate ratio with exact confidence interval.

adj.measures A table of corrected incidence rate ratios.

sim.df Data frame of random parameters and computed values.
References

Examples

```r
set.seed(123)
# Exposure misclassification, non-differential
probsens.irr.conf(matrix(c(2, 67232, 58, 10539000),
dimnames = list(c("GBS+", "Person-time"), c("HPV+", "HPV-")), ncol = 2),
reps = 20000,
secaparms = list("trapezoidal", c(.4, .45, .55, .6)),
spcaparms = list("constant", 1))
```

probsens.irr.conf
Probabilistic sensitivity analysis for unmeasured confounding of person-time data and random error.

Description

Probabilistic sensitivity analysis to correct for unmeasured confounding when person-time data has been collected.

Usage

```r
probsens.irr.conf(counts, pt = NULL, reps = 1000,
prev.exp = list(dist = c("constant", "uniform", "triangular",
"trapezoidal", "logit-logistic", "logit-normal"), parms = NULL),
prev.nexp = list(dist = c("constant", "uniform", "triangular",
"trapezoidal", "logit-logistic", "logit-normal"), parms = NULL),
risk = list(dist = c("constant", "uniform", "triangular",
"trapezoidal", "log-logistic", "log-normal"), parms = NULL),
corr.p = NULL, alpha = 0.05)
```

Arguments

- **counts**: A table or matrix where first row contains disease counts and second row contains person-time at risk, and first and second columns are exposed and unexposed observations, as:

<table>
<thead>
<tr>
<th>Exposed</th>
<th>Unexposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>a b</td>
</tr>
<tr>
<td>Person-time</td>
<td>N1 N0</td>
</tr>
</tbody>
</table>

- **pt**: A numeric vector of person-time at risk. If provided, counts must be a numeric vector of disease counts.

- **reps**: Number of replications to run.
prev.exp List defining the prevalence of exposure among the exposed. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, logit-logistic, or logit-normal) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired.

1. Constant; value,
2. Uniform: min, max,
3. Triangular: lower limit, upper limit, mode,
4. Trapezoidal: min, lower mode, upper mode, max.
5. Logit-logistic: location, scale, lower bound shift, upper bound shift,

prev.nexp List defining the prevalence of exposure among the unexposed.

risk List defining the confounder-disease relative risk or the confounder-exposure odds ratio. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, log-logistic, or log-normal) and the second its parameters as a vector:

1. Constant: value,
2. Uniform: min, max,
3. Triangular: lower limit, upper limit, mode,
4. Trapezoidal: min, lower mode, upper mode, max.
5. Log-logistic: shape, rate. Must be strictly positive,
6. Log-normal: meanlog, sdlog. This is the mean and standard deviation on the log scale.

corr.p Correlation between the exposure-specific confounder prevalences.

alpha Significance level.

Value A list with elements:

obs.data The analyzed 2 x 2 table from the observed data.
obs.measures A table of observed incidence rate ratio with exact confidence interval.
adj.measures A table of corrected incidence rate ratios.
sim.df Data frame of random parameters and computed values.

References

Examples

```r
set.seed(123)
# Unmeasured confounding
probsens.irr.conf(matrix(c(77, 10000, 87, 10000),
dimnames = list(c("D+", "Person-time"), c("E+", "E-")), ncol = 2),
reps = 20000,
prev.exp = list("trapezoidal", c(.01, .2, .3, .51)),
prev.nexp = list("trapezoidal", c(.09, .27, .35, .59)),
risk = list("trapezoidal", c(2, 2.5, 3.5, 4.5)),
corr.p = .8)
```

Description

Probabilistic sensitivity analysis to correct for selection bias.

Usage

```r
probsens.sel(case, exposed, reps = 1000, or.params = list(dist =
c("constant", "uniform", "triangular", "trapezoidal", "log-logistic",
"log-normal"), parms = NULL), case.exp = list(dist = c("constant",
"uniform", "triangular", "trapezoidal", "logit-logistic",
"logit-normal"), parms = NULL), case.nexp = list(dist = c("constant",
"uniform", "triangular", "trapezoidal", "logit-logistic",
"logit-normal"), parms = NULL), ncase.exp = list(dist = c("constant",
"uniform", "triangular", "trapezoidal", "logit-logistic",
"logit-normal"), parms = NULL), ncase.nexp = list(dist = c("constant",
"uniform", "triangular", "trapezoidal", "logit-logistic",
"logit-normal"), parms = NULL), alpha = 0.05)
```

Arguments

- **case**: Outcome variable. If a variable, this variable is tabulated against.
- **exposed**: Exposure variable.
- **reps**: Number of replications to run.
- **or.params**: List defining the selection bias odds. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, log-logistic or log-normal) and the second its parameters as a vector:
 1. Constant: constant value,
 2. Uniform: min, max,
 3. Triangular: lower limit, upper limit, mode,
 4. Trapezoidal: min, lower mode, upper mode, max.
 5. Log-logistic: shape, rate. Must be strictly positive,
6. Log-normal: meanlog, sdlog. This is the mean and standard deviation on the log scale.

case.exp
If or.parms not provided, defines the selection probability among case exposed. The first argument provides the probability distribution function and the second its parameters as a vector:

1. Constant: constant value,
2. Uniform: min, max,
3. Triangular: lower limit, upper limit, mode,
4. Trapezoidal: min, lower mode, upper mode, max.
5. Logit-logistic: location, scale, lower bound shift, upper bound shift,

case.nexp
Same among cases non-exposed.
ncase.exp
Same among non-cases exposed.
ncase.nexp
Same among non-cases non-exposed.
alpha
Significance level.

Value
A list with elements:

obs.data
The analyzed 2 x 2 table from the observed data.
obs.measures
A table of observed odds ratio with confidence intervals.
adj.measures
A table of corrected odds ratios.
sim.df
Data frame of random parameters and computed values.
reps
Number of replications.

References

Examples
The data for this example come from:
Population-based incidence estimates of uveal melanoma in Germany.
Supplementing cancer registry data by case-control data.
set.seed(123)
probsens.sel(matrix(c(136, 107, 297, 165),
dimnames = list(c("Melanoma+", "Melanoma-"), c("Mobile+", "Mobile-")), nrow = 2, byrow = TRUE),
reps = 20000,
or.parms = list("triangular", c(.35, 1.1, .43)))
Sensitivity analysis to correct for selection bias.

Description

Simple sensitivity analysis to correct for selection bias using estimates of the selection proportions.

Usage

```r
selection(case, exposed, bias_parms = NULL, alpha = 0.05)
```

Arguments

- **case**: Outcome variable. If a variable, this variable is tabulated against.
- **exposed**: Exposure variable.
- **bias_parms**: Selection probabilities. Either a vector of 4 elements between 0 and 1 defining the following probabilities in this order can be provided:
 1. Selection probability among cases exposed (1),
 2. Selection probability among cases unexposed (2),
 3. Selection probability among noncases exposed (3), and
 4. Selection probability among noncases unexposed (4).
 or a single positive selection-bias factor which is the ratio of the exposed versus unexposed selection probabilities comparing cases and noncases $[(1*4)/(2*3)]$ from above.
- **alpha**: Significance level.

Value

A list with elements:

- **obs.data**: The analyzed 2 x 2 table from the observed data.
- **corr.data**: The same table corrected for selection proportions.
- **obs.measures**: A table of odds ratios and relative risk with confidence intervals.
- **adj.measures**: Selection bias corrected measures of outcome-exposure relationship.
- **bias.parms**: Input bias parameters: selection probabilities.
- **selbias.or**: Selection bias odds ratio based on the bias parameters chosen.

Examples

```r
# The data for this example come from:
# Stang A., Schmidt-Pokrzywniak A., Lehnert M., Parkin D.M., Ferlay J., Bornfeld N.
# et al.
# Population-based incidence estimates of uveal melanoma in Germany. Supplementing
cancer registry data by case-control data.
```
Pipe bias functions

Description

episensr also uses the pipe function, `%>%` to turn function composition into a series of imperative statements.

Arguments

lhs, rhs Data or bias function and a function to apply to it

Examples

```r
# Instead of
misclassification(matrix(c(118, 832, 103, 884),
dimnames = list(c("BC+", "BC-"), c("AD+", "AD-")), nrow = 2, byrow = TRUE),
type = "exposure", bias_parms = c(.56, .58, .99, .97))
# you can write
dat <- matrix(c(118, 832, 103, 884),
dimnames = list(c("BC+", "BC-"), c("AD+", "AD-")), nrow = 2, byrow = TRUE)
dat %>% misclassification(.x, type = "exposure", bias_parms = c(.56, .58, .99, .97))
# also for multiple bias:
dat %>%
misclassification(.x, type = "exposure", bias_parms = c(.56, .58, .99, .97)) %>%
multiple.bias(.x, bias_function = "selection", bias_parms = c(.73, .61, .82, .76))
```
Index

%>%, 34
boot, 3, 20
boot.bias, 3, 20

confounders, 4, 20
confounders.array, 5
confounders.emm, 7
confounders.value, 8
confounders.ext, 10
confounders.limit, 11
confounders.poly, 12

episensr (episensr-package), 2
episensr-package, 2

mbias, 13, 21
misclassification, 3, 15, 20
misclassification_cov, 16
multidimBias, 18
multiple.bias, 19

plot.episensr.booted, 20
plot.mbias, 21
print.episensr, 22
print.episensr.booted, 22
print.mbias, 23
probsens, 20, 23
probsens.conf, 20, 25
probsens.irr, 27
probsens.irr.conf, 29
probsens.sel, 20, 31

selection, 3, 20, 33