Package ‘epitopR’

October 13, 2022

Type Package

Title Predict Peptide-MHC Binding

Version 0.1.2

Description A suite of tools to predict peptide MHC (major histocompatibility complex) presentation in the context of both human and mouse. Polymorphic peptides between self and foreign proteins are identified. The ability of peptides to bind self MHC is assessed and scored. Based on half maximal inhibitory concentration as queried through the immune epitope database API <http://tools.iedb.org/mhcii/> using user defined methods, the foreign peptides most likely to be presented are output along with their predicted binding strength, amino acid position, the protein from which each peptide was derived, and the presenting allele. "References:" Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. <doi:10.1093/nar/gky1006>.

Depends R (>= 4.1.0)

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.1

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Imports dplyr, fs, here, htrtr, janitor, purrr, stringr, tibble, tidyverse, utils, readr, Biostrings, seqinr

Config/testthat/edition 3

NeedsCompilation no

Author Joan Zhang [aut, cre], Aileen Johnson [aut], Christian P Larsen [cph, aut]

Maintainer Joan Zhang <joan.zhang@emory.edu>

Repository CRAN

Date/Publication 2022-09-17 19:56:25 UTC
R topics documented:

- core_mut
- mhcII_hu
- prep_ref_hu
- utils

core_mut

Determine presence of mutation in core binding sequence

Description

The `core_mut()` function appends a new column to the peptide dataframe, identifying those that have a mutation in the core binding sequence. Since MHCII has an open binding pocket, it presents peptides that may be several amino acids longer than the core sequence pattern required to bind a particular MHC. In some cases, the user may want to filter their results, in order to keep only peptides with a mutation in the core binding sequence (when compared to the equivalent self peptide). In order to achieve this, the stimulating and self antigens are aligned using a multiple sequence alignment tool, from the bioconductor package msa. The sequence positions of the core in the stimulating peptide are determined, and sequences are kept only if there is a sequence difference between stimulating and self peptides at that position.

Usage

```r
core_mut(dat_in, ag_stim, ag_self)
```

Arguments

- `dat_in` : dataframe, output of `mhcII_hu()`. The stimulating peptide, core pattern, start, and end positions will be pulled from this dataframe.
- `ag_stim` : string, amino acid sequence of the stimulating antigen, aligned with self
- `ag_self` : string, amino acid sequence of the self antigen, aligned with stimulating

Value

- data frame, peptide with flag of whether or not a mutation is in the core binding sequence
mhcII_hu

Prediction of Nonself Peptide Presentation on Human MHC Class II

Description

It determines which non-self peptides can be presented by a given HLA class II allele. This function takes a sequence for a stimulating antigen and the corresponding self antigen, and given a defined sequence length, queries the IEDB API with the user’s choice of peptide binding prediction method. The set of peptides present in the results for the stimulating antigen but not the self antigen are then carried forward as non-self peptides. If desired, the user can adjust the default thresholds (by IC50 binding affinity or percentile rank) used to define "strong" and "weak" binders. The output is a dataframe of non-self peptides that are predicted to bind to the presenting allele.

Usage

mhcII_hu(
 ag_present,
 ag_stim,
 ag_self,
 seq_len = "15",
 fd_out = as.character(paste0(tempdir(), "/", "outputs", "/")),
 method = "netmhciipan",
 cutoff_score = list(cutoff_netpan = c(50, 500), cutoff_comblib = c(50, 500),
 cutoff_nn_align = c(50, 500), cutoff_sturniolo = c(2), cutoff_el = c(2, 10)),
 cutoff_rank = c(2, 10),
 url_iedb = "http://tools-cluster-interface.iedb.org/tools_api/mhcii/"
)

Arguments

ag_present character vector, presenting allele, formatted with either ",", ":", or ":" separating loci, antigen, and allele. For example, "DRB1_08_01".

ag_stim character vector, stimulating antigen, can either be an HLA class II allele entered in the same format as ag_present, or a character vector of the amino acid sequence of the protein

ag_self character, self antigen, can either be an HLA class II allele entered in the same format as ag_present, or a character vector of the amino acid sequence of the protein

seq_len string, length of peptides to consider

fd_out string, output folder name; default output is current working directory

method string, IEDB prediction method to be used. Options are "netmhciipan", "netmhciipan_el" or "recommended." Default is netmhciipan.

cutoff_score list of vectors. Defines the thresholds required to be included in results, and to be labeled, "strong" or "weak" binder. Multiple prediction methods are used, each of which provide different raw outputs (i.e. IC50, "strength", "score"). Our
justification for the default thresholds is listed in the mhcII_hu vignette, however
the user may choose to specify alternate cutoffs if desired.

cutoff_rank vector, IEDB adjusts all outputs in comparison to a set of random natural pep-
tides in order to determine an normalized adjusted percentile rank. With normal-
ized ranks, the same thresholds can be used across different methods. Default
thresholds are <2% for strong binders and <10% for weak binders.

url_iedb string, iedb api url

Value
data frame, MHC II binding prediction result table

Examples

mhcII_hu(ag_present=c("DRB1_08_01"),ag_stim=c("DQA1_01_01","DQA1_04_01"),ag_self=c("DQA1_02_01"))

default thresholds are <2% for strong binders and <10% for weak binders.

Value
data frame, MHC II sequence of officially named alleles

Examples

out <- prep_ref_hu()
utils

Basic functions of the package

Description

preproc_huII() format and validate allele names

Usage

preproc_huII(allele_in)

pull_seq_huII(alleles_in, tbl_ref_in)

prep_lbl_huII(alleles_in)

comb_pred_tbl(nm_method, nm_sht, nm_fd, thold_score, thold_rank)

find_nonself_huII(dat_in)

pull_ag_self(dat_in)

find_core_mut(dat_in)

Arguments

- **allele_in**: a vector contains allele name(s)
- **alleles_in**: vector, allele names
- **tbl_ref_in**: dataframe, reference table, default is human_all.csv from github
- **nm_method**: string, prediction method used for IEDB prediction
- **nm_sht**: string, short name of alleles
- **nm_fd**: string, folder name which contains predict tables from IEDB
- **thold_score**: list of vectors, binder thresholds by score
- **thold_rank**: vector, binder thresholds by rank
- **dat_in**: dataframe with pep_stim, core, pep_self selected from pull_ag_self
Index

comb_pred_tbl (utils), 5
core_mut, 2

find_core_mut (utils), 5
find_nonself_huII (utils), 5

mhcII_hu, 3

prep_lbl_huII (utils), 5
prep_ref_hu, 4
preproc_huII (utils), 5
pull_ag_self (utils), 5
pull_seq_huII (utils), 5

utils, 5