Package ‘equaltestMI’

October 13, 2022

Type Package

Title Examine Measurement Invariance via Equivalence Testing and Projection Method

Version 0.6.1

Maintainer Ge Jiang <gejiang2@illinois.edu>

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.1.0), lavaan, stats, utils

Suggests knitr,rmarkdown,MASS,semTools,printr

BugReports https://github.com/gabriellajg/equaltestMI/issues

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Ge Jiang [aut, cre], Yujiao Mai [aut], Ke-Hai Yuan [ctb]

Repository CRAN

Date/Publication 2021-01-06 16:00:49 UTC
Description

Bootstrap procedure to test the equality of latent factor means using projection method

Usage

```r
eqMI.bootstrap(..., B = 100, seed = 111)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>The same arguments as for any lavaan model. See <code>lavaan::sem</code> for more information.</td>
</tr>
<tr>
<td>B</td>
<td>The number of bootstrap samples. Default at 100.</td>
</tr>
<tr>
<td>seed</td>
<td>The initial seed to generate bootstrap samples. Default at 111.</td>
</tr>
<tr>
<td>bootstrap</td>
<td>If bootstrap resampling is used to obtain empirical p-value of the statistics.</td>
</tr>
</tbody>
</table>

Details

Perform bootstrap procedure when testing the equality of latent means using projection method. Note that raw data must be available for bootstrap resampling to be performed. With the projection method, the cross-group intercepts are not required to be the same for further tests. If bootstrap resampling is used, the test statistics are not referred to chi-squared distributions but to bootstrapped empirical distributions for significance testing. Percentage bootstrap critical values are calculated. This process might be time-consuming if the model is complex or the number of bootstrap samples (B) is large.

Value

- bootstrap p-values of the tests of common and specific factors.
eqMI.covtest

References

Examples
data(HolzingerSwineford)
semmodel<-
L1 =~ V1 + V2 + V3
L2 =~ V4 + V5 + V6
L3 =~ V7 + V8
L4 =~ V9 + V10 + V11
'

run.bts <- eqMI.bootstrap(model = semmodel, data = HolzingerSwineford,
group = "school", meanstructure = TRUE, B = 100, seed = 111)

eqMI.covtest

Test the equality of two covariance matrices in population

Description
The first step of testing measurement invariance (MI) in multiple-group SEM analysis. The null hypothesis is tested using the method of Lagrange multipliers.

Usage
eqMI.covtest(..., lamb0 = NULL)

Arguments

... The same arguments as for any lavaan model. See lavaan::sem for more information.
lamb0 initial coefficients of Lagrange multiplier. If not pre-specified, 0.01 will be used.

Details
The eqMI.covtest function is the first step to test MI. Under null hypothesis testing (NHT), a non-significant statistic is generally an overall endorsement of MI. If the null hypothesis is rejected then one may proceed to test other aspects of MI.

Value
The likelihood ratio statistic, degrees of freedom, and p-value of the test.
References

Examples
```r
data(HolzingerSwineford)
semmodel<-'Var
L1 =~ V1 + V2 + V3
L2 =~ V4 + V5 + V6
L3 =~ V7 + V8
L4 =~ V9 + V10 + V11'

cov.test <- eqMI.covtest(model = semmodel,
data = HolzingerSwineford,
group="school")
```

eqMI.main

The main function to test measurement invariance

Description

Test measurement invariance with equivalence testing, projection methods, and adjusted RMSEA cutoffs for two groups.

Usage

```r
eqMI.main(
  ..., output = "both",
equivalence.test = TRUE,
adjRMSEA = TRUE,
projection = FALSE,
bootstrap = FALSE,
quiet = TRUE,
B = 100,
seed = 111
)
```

Arguments

... The same arguments as for any lavaan model. See lavaan::sem for more information.
eqMI.main

Users must explicitly specify the name of the input elements for this function to catch. For example, specify 'data = HolzingerSwineford' instead just 'HolzingerSwineford'.

output
If the function prints out results of covariance structure, mean structure, or both. The value of output must be mean, covariance, or both. When the tests involve mean structure (output = 'mean' or 'both'), both the strong and the strict tests of measurement invariance will be conducted.

equivalence.test
If equivalence.test=TRUE, equivalence testing is used for examining all statistics. RMSEA together with conventional or adjusted cutoff values will be used to gauge the goodness of fit.

adjRMSEA
If adjRMSEA=TRUE, adjusted RMSEA cutoff values are used for equivalence testing. See details in Yuan & Chan (2016).

projection
If projection=TRUE, projection method is used to test the equality of latent factor means. The advantage of the projection method over conventional multiple-group SEM approach is that the test of latent factor means can be conducted even when the equality of intercepts do not hold.

bootstrap
If bootstrap=TRUE, bootstrap is used to obtain empirical p-values for testing the equality of cross-group latent factor means.

quiet
If quiet=FALSE, a summary is printed out containing an overview of the different models that are fitted, together with some model comparison tests and fit measures. The results of equivalence testing will also be printed if equivalence testing is used. If quiet=TRUE (default), no summary is printed but results will be stored in 'AnnotatedOutput'.

B
The number of bootstrap samples used in bootstrap approach.

seed
The initial seed to generate bootstrap samples. Default at 111.

Details
An all-in-one function with several added options to conduct a sequence of tests needed to evaluate MI. The chi-square statistics, except the one for testing the equality of covariance structure, are obtained based on lavaan::sem function. The test statistic of the covariance structure equality is obtained via the method of Lagrangian multiplier. Equivalence testing is enabled by setting equivalence.test=TRUE and this function will calculate T-size, RMSEA, and adjusted RMSEA cutoff values, and provide the goodness-of-fit.

Value
A list is returned with:

AnnotatedOutput Annotated output that will be printed to the console if quiet==FALSE.
eqMI.stat Test statistics, degrees of freedom, p-values, ncp, T-sizes, RMSEAs, their cutoff values, and the goodness-of-fit under equivalence testing. A formatted version of eqMI.stat will be printed if quiet=FALSE.

convention.sem Results of conventional multiple-group SEM using Lavaan. Returned object of eqMI.semtest.

projection.res Results of projection methods on tests of latent means. Returned object of eqMI.projection and eqMI.bootstrap.
eqMI.ncp

Obtain noncentrality parameter of a chisquare distribution

Description

Calculate the noncentrality parameter as well as the model misspecification epsilon_t given its lower-tail critical value.

References

Examples

data(HolzingerSwineford)
semmodel<-
L1 <- V1 + V2 + V3
L2 <- V4 + V5 + V6
L3 <- V7 + V8
L4 <- V9 + V10 + V11

If raw data are available;

test <- eqMI.main(model = semmodel, data = HolzingerSwineford,
group = "school", meanstructure = TRUE,
output = 'both', quiet = FALSE,
equivalence.test = TRUE, adjRMSEA = TRUE,
projection = TRUE, bootstrap = FALSE)

when only sample statistics are available;
sample.cov need to be provided for tests of covariance structure;
sample.mean need to be provided for tests of mean structure;

school1 <- subset(HolzingerSwineford, school==1)[,-12]
school2 <- subset(HolzingerSwineford, school==2)[,-12]
test <- eqMI.main(model = semmodel,
sample.nobs = c(nrow(school1), nrow(school2)),
sample.cov = list(cov(school1), cov(school2)),
sample.mean = list(colMeans(school1), colMeans(school2)),
meanstructure = TRUE, output = 'both', quiet = FALSE,
equivalence.test = TRUE, adjRMSEA = TRUE,
projection = TRUE, bootstrap = FALSE)
eqMI.ncp

Usage

eqMI.ncp(T, df, N, m, alpha = 0.05)

Arguments

T A chi-square statistic
df Degrees of freedom
N Total sample size of all groups
m Number of groups
alpha Significance level. Default at 0.05.

Details

This function is to compute the noncentrality parameter ncp, the model misspecification \(\epsilon_t \), and its corresponding \(\text{RMSEA}_t \). With equivalence testing, the model misspecification is also the minimum tolerable size that a researcher needs to tolerate if one wishes to proceed with further restricted tests. The formula from Venables (1975) is used for obtaining the noncentrality parameter of a non-central chi-square distribution given its lower-tail critical value.

Value

The noncentrality parameter ncp, the minimum tolerable size \(\epsilon_t \), and \(\text{RMSEA}_t \) under equivalence testing.

References

Examples

alpha <- .05
n_1 <- 200
n_2 <- 200
N <- n_1 + n_2
m <- 2
A made-up likelihood-ratio statistic
T_ml <- 8.824
df <- 6
ncp <- eqMI.ncp(T = T_ml, df = df, N = N, m = m, alpha = alpha)
eqMI.projection

Description

Perform projection method for testing the equality of latent means without requiring the equality of cross-group intercepts to hold.

Usage

```
eqMI.projection(...)  
```

Arguments

...

The same arguments as for any lavaan model. See `lavaan::sem` for more information. All models fitted by Lavaan are estimated by fixing the variances of latent factors to 1. Users must explicitly specify the name of the input elements for this function to catch. For example, specify `data = HolzingerSwineford` instead just `HolzingerSwineford`.

Details

Perform projection method for testing the equality of two latent means without requiring the cross-group intercepts to be the same. A validity index is provided as the proportion of the differences in manifest variables intercepts explained by latent mean differences as a gauge of the quality of measurements.

Value

A list is returned with:

- `fit.metric` test of metric invariance (factor loadings). This is a prerequisite for testing equality of latent means.
- `mvdif.test` t tests of the cross-group sample means for each variable.
- `chi.stat` Three chi-square tests for intercepts, common factors, and specific factors. `chi.stat` will be needed for equivalence testing.
- `common.test` t tests of common factors for each variable.
- `specific.test` t tests of specific factors for each variable.
- `latent.test` t tests of latent means
- `V.index` validity index
- `P.mat` projection matrix of intercepts into the space of common factors
- `Q.mat` projection matrix of intercepts into the space of specific factors
References

Examples

```r
data(HolzingerSwineford)
semmodel<-'
L1 =~ V1 + V2 + V3
L2 =~ V4 + V5 + V6
L3 =~ V7 + V8
L4 =~ V9 + V10 + V11
'
run.proj <- eqMI.projection(model = semmodel, data = HolzingerSwineford,
    group = "school", meanstructure = TRUE)
```

eqMI.RMSEA

Obtain the RMSEA cutoff values for equivalence testing

Description

Generate adjusted cutoff values of RMSEA for equivalence testing corresponding to conventional cutoff values .01, .05, .08, and .10.

Usage

```r
eqMI.RMSEA(N, m, df)
```

Arguments

- `N` Total sample size of all groups
- `m` Number of groups
- `df` Degree of freedom

Details

The adjusted cutoff values of RMSEA for equivalence testing can be obtained with `N`, `m`, `df` and transformed variables. Formulas are estimated using simulation studies and the coefficients are given in Table 11 of the reference.

Value

The adjusted cutoff values corresponding to conventional cutoff values .01, .05, .08, and .10.
eqMI.semtest

References

Steiger, J. H. (1980). Statistically based tests for the number of common factors. In the annual meeting of the Psychometric Society. Iowa City, IA.

Examples

alpha <- .05;
N <- 200;
m <- 1;
T_ml <- 28.446; #the statistic T_ml for group 1;
df <- 24;
eqMI.RMSEA(N = N, m = m, df = df);

Description

Conventional multiple-group SEM to test measurement invariance. A sequence of chi-squared and chi-squared difference tests will be conducted.

Usage

eqMI.semtest(..., output = "both", quiet = FALSE)

Arguments

... The same arguments as for any lavaan model. See lavaan::cfa and lavaan::lavOptions for more information about the arguments. Users must explicitly specify the name of the input elements for this function to catch. For example, specify 'eqMI.semtest(model = semmodel, data = HolzingerSwineford)' instead just 'eqMI.semtest(semmodel, HolzingerSwineford)'.

output If the function prints out results of covariance structure, mean structure, or both. The value of output must be mean, covariance, or both. When the tests involve mean structure (output = 'mean' or 'both'), both the strong and the strict tests of measurement invariance will be conducted.

quiet If quiet=FALSE (default), a summary is printed out containing an overview of the different models that are fitted, together with some model comparison tests. If quiet=TRUE, no summary is printed but results will be stored in the object.
Details

This is a wrapper around the (now deprecated) measurementInvariance in package semTools, with the following default options: std.lv = FALSE, fit.measures = "default", and method = "satorra.bentler.2001". See semTools for more information. This function is now updated to semTools::measEq.syntax.

Value

A list is returned with:

LavaanOut A sublist in convention.sem. Contains lavaan style output and results for each chi-squared and chi-squared difference.
Mean.part A sublist in convention.sem. Contains test statistics and fit measures on invariance tests of mean structure.
Cov.part A sublist in convention.sem. Contains test statistics and fit measures on invariance tests of covariacne structure.

Author(s)

The maintainer, Ge Jiang, adapted the original source code of measurementInvariance() in the lavaan and semTools packages written by Yves Rosseel, Sunthud Pornprasertmanit, and Terrence D. Jorgensen (permission obtained).

References

See Also

sem, measurementInvariance

Examples

data(HolzingerSwineford)
semmodel<-'
 L1 =~ V1 + V2 + V3
 L2 =~ V4 + V5 + V6
 L3 =~ V7 + V8
 L4 =~ V9 + V10 + V11
'

run.sem <- eqMI.semtest(model = semmodel, data = HolzingerSwineford,
group = "school", meanstructure = TRUE)
HolzingerSwineford data set contains cognitive tests data from two elementary schools. It contains 301 children, and includes 11 numeric variables and a group indicator. The variables are visual perception, cubes, paper form board, paragraph comprehension, word classification, word meaning, counting dots, straight-curved capitals, deduction, problem reasoning, and series completion.

This data set is available in other R packages such as lavaan and OpenMX. For more details, see the references below.

References

See Also

HolzingerSwineford1939, HS.ability.data

Examples

data(HolzingerSwineford)
LeeAlOtaiba

Description
This data set contains means and covariance matrices of early literacy skills measured in four different sociodemographic groups. The results are reported in Table 1 of Lee and Al Otaiba (2015).

Usage
data(LeeAlOtaiba)

Format
A list of four data frames. Every data frame is of dimension 7 by 6. The first row contains sample means of the six variables. The next six rows contain sample covariance matrix. The column names of the data frame are the names of the six variables. The row names of the data frame contain a label 'mean' and the names of the six variables.

Details
Six variables used in Lee and Al Otaiba (2015) to measure literacy constructs, including (1) letter-name fluency, (2) letter-sound fluency, (3) blending, (4) elision, (5) real words spelling, and (6) pseudo-words spelling.
Following from Snow’s (2006) definition of componential skills and the work of Schatschneider, Fletcher, Francis, Carlson, and Foorman (2004) on National Early Literacy Panel (NELP), the six variables aim to measure three aspects of literacy constructs: (1) alphabet knowledge, (2) phonological awareness, and (3) spelling.
The four sociodemographic groups are: (1) boys who are ineligible for FRL (n=78); (2) boys who are eligible for FRL (n=65); (3) girls who are ineligible for FRL (n=175); and (4) girls who are eligible for FRL (n=165).

References

Examples
data(LeeAlOtaiba)
If one wants to extract the two groups used in the paper:
Group1 <- LeeAlOtaiba[[1]]
Group2 <- LeeAlOtaiba[[2]]
Index

* HS
 HolzingerSwineford, 12
* LeeAlOtaiba
 LeeAlOtaiba, 13
 eqMI.bootstrap, 2, 5
 eqMI.covtest, 3
 eqMI.main, 4
 eqMI.ncp, 6
 eqMI.projection, 5, 8
 eqMI.RMSEA, 9
 eqMI.semtest, 5, 10

HolzingerSwineford, 12
HolzingerSwineford1939, 12
HS.ability.data, 12

LeeAlOtaiba, 13
measurementInvariance, 11

sem, 11