Package ‘equatiomatic’

January 31, 2022

Title Transform Models into ‘LaTeX’ Equations

Version 0.3.1

Description The goal of ‘equatiomatic’ is to reduce the pain associated with writing ‘LaTeX’ formulas from fitted models. The primary function of the package, extract_eq(), takes a fitted model object as its input and returns the corresponding ‘LaTeX’ code for the model.

License CC BY 4.0

Depends R (>= 3.3.0)

URL https://github.com/datalorax/equatiomatic,
https://datalorax.github.io/equatiomatic/

BugReports https://github.com/datalorax/equatiomatic/issues

Imports broom (>= 0.7.0), broom.mixed, shiny, knitr, stats, utils

Suggests covr, shinyWidgets, forecast (>= 8.13), ggplot2 (>= 3.3.3), latex2exp (>= 0.4.0), lme4, MASS, ordinal, rmarkdown, testthat (>= 3.0.0), texPreview, gtsummary

VignetteBuilder knitr

LazyData true

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author Daniel Anderson [aut, cre] (<https://orcid.org/0000-0003-4699-4680>),
Andrew Heiss [aut] (<https://orcid.org/0000-0002-3948-3914>),
Jay Summers [aut],
Joshua Rosenberg [ctb] (<https://orcid.org/0000-0003-2170-0447>),
Jonathan Sidi [ctb] (<https://orcid.org/0000-0002-4222-1819>),
Ellis Hughes [ctb] (<https://orcid.org/0000-0003-0637-4436>),
Thomas Fung [ctb] (<https://orcid.org/0000-0003-2601-0728>),
arrests

Arrest data from Gelman & Hill

Description

Arrest data from Gelman & Hill’s book, used in Chapter 6 (and others). The data have been aggregated by precinct and race/ethnicity, with the sum of prior arrests and stops calculated. You can download the original data here: http://www.stat.columbia.edu/~gelman/arm/examples/police/

Usage

arrests

Format

A tibble with 225 rows and 4 variables:

- **precinct** An integer denoting the precinct identification number.
- **eth** A factor with the coded race/ethnicity
- **stops** The number of police stops
- **arrests** The number of prior arrests (this is used as an offset variable in the book)
extract_eq

LaTeX' code for R models

Description

[Maturing] Extract the variable names from a model to produce a 'LaTeX' equation, which is output to the screen. Supports any model supported by broom::tidy.

Usage

extract_eq(
 model, # A fitted model
 intercept = "alpha", # How should the intercept be displayed? Default is "alpha", but can also accept "beta", in which case the it will be displayed as beta zero.
 greek = "beta", # What notation should be used for coefficients? Currently only accepts "beta" (with plans for future development). Can be used in combination with raw_tex to use any notation, e.g., "\hat\beta".
 greek_colors = NULL,
 subscript_colors = NULL,
 var_colors = NULL,
 var_subscript_colors = NULL,
 raw_tex = FALSE,
 swap_var_names = NULL,
 swap_subscript_names = NULL,
 Ital_vars = FALSE,
 label = NULL,
 index_factors = FALSE,
 show_distribution = FALSE,
 wrap = FALSE,
 terms_per_line = 4,
 operator_location = "end",
 align_env = "aligned",
 use_coefs = FALSE,
 coef_digits = 2,
 fix_signs = TRUE,
 font_size = NULL,
 mean_separate,
 return_variances = FALSE,
 ...
)

Arguments

model # A fitted model
intercept # How should the intercept be displayed? Default is "alpha", but can also accept "beta", in which case the it will be displayed as beta zero.
greek # What notation should be used for coefficients? Currently only accepts "beta" (with plans for future development). Can be used in combination with raw_tex to use any notation, e.g., "\hat\beta".
The colors of the greek notation in the equation. Must be a single color (named or HTML hex code) or a vector of colors (which will be recycled if smaller than the number of terms in the model). When rendering to PDF, I suggest using HTML hex codes, as not all named colors are recognized by LaTeX, but equatiomatic will internally create the color definitions for you if HTML codes are supplied. Note that this is not yet implemented for mixed effects models (lme4).

The colors of the subscripts for the greek notation. The argument structure is equivalent to greek_colors (i.e., see above for more detail).

The color of the variable names. This takes a named vector of the form c("variable" = "color"). For example c("bill_length_mm" = "#00d4fa","island" = "#00fa85"). Colors can be names (e.g., "red") or HTML hex codes, as shown in the example.

The colors of the factor subscripts for categorical variables. The interface for this is equivalent to var_colors, and all subscripts for a given variable will be displayed in the provided color. For example, the code c("island" = "green") would result in the subscripts for "Dream" and "Torgersen" being green (assuming "Biscoe" was the reference group).

Logical. Is the greek code being passed to denote coefficients raw tex code?

A vector of the form c("old_var_name" = "new name"). For example: c("bill_length_mm" = "Bill Length (MM)").

A vector of the form c("old_subscript_name" = "new name"). For example: c("f" = "Female").

Logical, defaults to FALSE. Should the variable names not be wrapped in the \operatorname{} command?

A label for the equation, which can then be used for in-text references. See example here. Note that this only works for PDF output. The in-text references also must match the label exactly, and must be formatted as \ref{eq: label}, where label is a place holder for the specific label. Notice the space after the colon before the label. This also must be there, or the cross-reference will fail.

Logical, defaults to FALSE. Should the factors be indexed, rather than using subscripts to display all levels?

Logical. When fitting a logistic or probit regression, should the binomial distribution be displayed? Defaults to FALSE.

Logical, defaults to FALSE. Should the terms on the right-hand side of the equation be split into multiple lines? This is helpful with models with many terms.

Integer, defaults to 4. The number of right-hand side terms to include per line. Used only when wrap is TRUE.

Character, one of “end” (the default) or “start”. When terms are split across multiple lines, they are split at mathematical operators like +. If set to “end”,
each line will end with a trailing operator (+ or −). If set to “start”, each line will begin with an operator.

align_env Tex environment to wrap around equation. Must be one of aligned, aligned*, align, or align*. Defaults to aligned.

use_coefs Logical, defaults to FALSE. Should the actual model estimates be included in the equation instead of math symbols?

coeff_digits Integer, defaults to 2. The number of decimal places to round to when displaying model estimates.

fix_signs Logical, defaults to FALSE. If disabled, coefficient estimates that are negative are preceded with a “+” (e.g. 5(x) + −3(z)). If enabled, the “+ −” is replaced with a “−” (e.g. 5(x) −3(z)).

font_size The font size of the equation. Defaults to default of the output format. Takes any of the standard LaTeX arguments (see here).

mean_separate Currently only support for lmer models. Should the mean structure be inside or separated from the normal distribution? Defaults to NULL, in which case it will become TRUE if there are more than three fixed-effect parameters. If TRUE, the equation will be displayed as, for example, outcome ~ N(mu, sigma); mu = alpha + beta_1(wave). If FALSE, this same equation would be outcome ~ N(alpha + beta, sigma).

return_variances Logical. When use_coefs = TRUE with a mixed effects model (e.g., lme4::lmer()), should the variances and co-variances be returned? If FALSE (the default) standard deviations and correlations are returned instead.

... Additional arguments (for future development; not currently used).

Value

A character of class “equation”.

Examples

Simple model
mod1 <- lm(mpg ~ cyl + disp, mtcars)
extract_eq(mod1)

Include all variables
mod2 <- lm(mpg ~ ., mtcars)
extract_eq(mod2)

Works for categorical variables too, putting levels as subscripts
mod3 <- lm(body_mass_g ~ bill_length_mm + species, penguins)
extract_eq(mod3)

set.seed(8675309)
d <- data.frame(
 cat1 = rep(letters[1:3], 100),
 cat2 = rep(LETTERS[1:3], each = 100),
 cont1 = rnorm(300, 100, 1),

extract_eq
hsb

A subset of the full 1982 High School and Beyond Survey

Description

This is the dataset used throughout Raudenbush & Bryk (2002).

Usage

hsb
Format

A tibble with 7185 rows and 8 variables:

- **sch.id** An integer denoting the school identification number. There are 160 unique schools.
- **math** Individual students’ math score.
- **size** The number of students in the school.
- **sector** A dummy variable (integer) denoting whether the school is public (sector = 0) or catholic (sector = 1). There are 90 public schools and 70 catholic.
- **meanses** A group-mean centered SES variable at the school level.
- **minority** A dummy variable indicating if the student was coded as white (minority = 0) or not (minority = 1).
- **female** A dummy variable indicating if the student was coded as female (female = 1) or not (female = 0).
- **ses** A student-level composite variable indicating the students’ socio-economic status.

Description

Data originally from palmerpenguins. Includes measurements for penguin species, island in Palmer Archipelago, size (flipper length, body mass, bill dimensions), and sex.

Usage

penguins

Format

A tibble with 344 rows and 8 variables:

- **species** a factor denoting penguin species (Adélie, Chinstrap and Gentoo)
- **island** a factor denoting island in Palmer Archipelago, Antarctica (Biscoe, Dream or Torgersen)
- **bill_length_mm** a number denoting bill length (millimeters)
- **bill_depth_mm** a number denoting bill depth (millimeters)
- **flipper_length_mm** an integer denoting flipper length (millimeters)
- **body_mass_g** an integer denoting body mass (grams)
- **sex** a factor denoting penguin sex (female, male)
- **year** an integer denoting the study year (2007, 2008, or 2009)
Source

polls

The polls data from Gelman and Hill ()

Description

This is the dataset used in Gelman & Hill’s book, Data Analysis Using Regression and Multilevel/Hierarchical Models. They are polling data on the presidential election from 1988, collected one week before the election. You can download all the data from the book here: http://www.stat.columbia.edu/~gelman/arm/data/. Note that this is only a few of the variables from the original data supplied with the book.

Usage

polls

Format

A tibble with 13,544 rows and 7 variables:

- **state**: An integer denoting the state identification number.
- **edu**: An ordered factor stating the education level of the respondent.
- **age**: An unordered factor stating the age of range of the respondent.
- **female**: A dummy variable (integer) denoting whether the respondent was coded as male (female = 0) or female (female = 1).
- **black**: A dummy variable (integer) denoting whether the respondent was coded as Black (black = 1) or not Black (black = 0).
- **weight**: A sampling weight.
- **bush**: Whether the respondent stated they were in favor of voting for George Bush Sr.
print.equation

Print 'LaTeX' equations

Description

lifecycle::badge("stable")

Usage

```r
## S3 method for class 'equation'
print(x, ...)
```

Arguments

- `x`
 'LaTeX' equation built with `extract_eq`
- `...`
 not used

Details

Print 'LaTeX' equations built with `extract_eq`.

renderEq

Display equations in shiny apps

Description

[StringExperimental]

Usage

```r
renderEq(expr, env = parent.frame(), quoted = FALSE, outputArgs = list())
eqOutput(outputId)
```

Arguments

- `expr`
 An R expression, specifically a call to `extract_eq()`
- `env`
 The environment
- `quoted`
 Is the expression quoted?
- `outputArgs`
 list of output arguments
- `outputId`
 The identifier of the output from the server. Should be passed as a string.
Details

These are a set of functions designed to help render equations in shiny applications. For a complete example see

Functions

- `renderEq`: Rendering function
- `eqOutput`: Output function

simple_ts
Simple simulated time series data

Description

Output from `set.seed(42); simple_ts <- ts(rnorm(1000), freq = 4)`. This is included primarily for unit testing.

Usage

`simple_ts`

Format

A tibble with 1000 rows and 8 variables:

- **Qtr1**: First quarter simulated values.
- **Qtr2**: Second quarter simulated values.
- **Qtr3**: Third quarter simulated values.
- **Qtr4**: Fourth quarter simulated values.

sim_longitudinal
Simulated longitudinal data

Description

Data are simulated to be similar to longitudinal data collected within schools/districts.

Usage

`sim_longitudinal`
ts_reg_list

Format

A tibble with 1000 rows and 8 variables:

sid An integer denoting the individual student. There are 100 students.
school An integer denoting the school. There are 15 schools.
district An integer denoting the school district. There are 5 districts.
group A character variable denoting the instructional level of the student, low, medium, or high.
treatment A factor indicating whether the student received the intervention treatment (0 = no treatment received; 1 = treatment received).
prop_low The proportion of student in the school in the low instructional group.
wave The assessment wave. Each student has nine waves of data collection
score The individual students’ score at the given wave.

ts_reg_list Simulated data for time-series regression

Description

Output from `set.seed(42); ts_reg_list <- list(x1 = rnorm(1000), x2 = rnorm(1000), ts_rnorm = rnorm(1000))`.

Usage

`ts_reg_list`

Format

A tibble with 1000 rows and 8 variables:

x1 Random normal simulated data.
x2 Random normal simulated data.
(ts_rnorm Random normal simulated data.
Index

* datasets
 arrests, 2
 hsb, 6
 penguins, 7
 polls, 8
 sim_longitudinal, 10
 simple_ts, 10
 ts_reg_list, 11

arrests, 2
broom::tidy, 3

eqOutput (renderEq), 9
extract_eq, 3, 9
extract_eq(), 9

hsb, 6
lmer, 5

penguins, 7
polls, 8
print.equation, 9

renderEq, 9

shiny, 10
sim_longitudinal, 10
simple_ts, 10

ts_reg_list, 11