Package ‘erah’

January 14, 2017

Type Package

Title Automated Spectral Deconvolution, Alignment, and Metabolite
Identification in GC/MS-Based Untargeted Metabolomics

Version 1.0.5

Date 2017-01-13

Author Xavier Domingo-Almenara, Sara Samino, Maria Vinaixa, Alexandre Perera, Oscar Yanes

Depends R (>= 2.10), Rcpp

Imports osd, ncdf4, caTools, nlns, HiClimR, igraph, signal, quantreg,
XML, methods

Suggests R.rsp, mzR

Maintainer Xavier Domingo-Almenara <xdomingo@scripps.edu>

Description Automated compound deconvolution, alignment across samples, and identification of metabolites by spectral library matching in Gas Chromatography - Mass spectrometry (GC-MS) untargeted metabolomics. Outputs a table with compound names, matching scores and the integrated area of the compound for each sample.

License GPL (>= 2)

URL http://metabolomicsplatform.com/

Repository CRAN

LazyData yes

VignetteBuilder R.rsp

NeedsCompilation no

Date/Publication 2017-01-14 01:53:04

R topics documented:

alignComp .. 2
alignList ... 3
compInfo .. 4
createdt ... 5
dataList ... 6
alignComp

Alignment of compounds

Description

Alignment of GC-MS deconvolved compounds

Usage

`alignComp(Experiment, alParameters, blocks.size=NULL)`

Arguments

- **Experiment**
 A 'MetaboSet' S4 object containing the experiment data previously created by `newExp` and deconvolved by `deconvolveComp`.

- **alParameters**
 The software alignment parameters object previously created by `setAlPar`

- **blocks.size**
 For experiment of more than 1000 samples, and depending on the computer, alignment can be conducted by block segmentation. See details.
Details

See eRah vignette for more details. To open the vignette, execute the following code in R: vignette("eRahManual", package="erah")

For experiments containing more than 100 (Windows) or 1000 (Mac or Linux) samples (numbers depending on the computer resources and sample type). In those cases alignment can be conducted by block segmentation. For an experiment of e.g. 1000 samples, the block.size can be set to 100, so the alignment will perform as multiple (ten) 100-samples experiments, to later align them into a single experiment.

This parameter is designed to solve the typical problem that appear when aligning under Windows operating system: "Error: cannot allocate vector of size XX Gb". Such a problem will not appear with Mac or Linux, but several hours of computation are expected when aligning a large number of samples. Using block segmentation provides a greatly improved run-time performance.

Value

The function returns an updated S4 'MetaboSet' class, where the GC-MS samples have been now aligned.

Author(s)

Xavier Domingo-Almenara. xavier.domingo@urv.cat

References

See Also

newExp, setDecPar, deconvolveComp

alignList

Alignment list

Description

The list of aligned metabolites and their relative quantification for each sample in a given experiment

Usage

alignList(object, by.area=TRUE)
Arguments

object A 'MetaboSet' S4 object containing the experiment data. The experiment has to be previously deconvolved, aligned and (optionally) identified.

by.area if TRUE (default), eRah outputs quantification by the area of the deconvolved chromatographic peak of each compound. If FALSE, eRah outputs the intensity of the deconvolved chromatographic peak.

Details

Returns an alignment table containing the list of aligned metabolites and their relative quantification for each sample in a given experiment.

Value

alignList returns an S3 object:

- **AlignID** The unique Tag for found metabolite by eRah. Each metabolite found by eRah for a given experiment has an unique AlignID tag number.
- **Factor** the Factor tag name. Each metabolite has an unique 'Factor' name to enhance visual interpretation.
- **tmean** The mean compound retention time.
- **FoundIn** The number of samples in which the compound has been detected (the number of samples where the compound area is non-zero).
- **Quantification** As many columns as samples and as many rows as metabolites, where each column name has the name of each sample.

See Also

`idList`, `dataList`

compInfo Information of a Compound

Description

Displays basic information of a compound in the MS library.

Usage

`compInfo(comp.id, id.database=mslib)`

Arguments

- **comp.id** The DB.Id number of the compound.
- **id.database** The mass-spectra library to be compared with the empirical spectra. By default, the MassBank - Mass Bank of North America (MoNa) database are employed (mslib object).
Details

Returns details on a given compound such as the synonyms, CAS, KEGG, retention index, among others.

See Also

findComp

Examples

```r
# finding proline
findComp("proline")

# we see that proline 2TMS has the DB.Id number 42, then:
compInfo(42)
```

Description

eRah requires a instrumental and (optionally) phenotype .csv file for starting/creating a new eRah project/experiment. This function automatically creates the Phenotype and Instrumental data .csv files.

Usage

createdt(path)

Arguments

path

the path where the experiment-folder is (where the experiment samples are stored).

Details

The experiment has to be organized as follows: all the samples related to each class have to be stored in the same folder (one folder = one class), and all the class-folders in one folder, which is the experiment folder.

Two things have to be considered at this step: .csv files are different when created by American and European computers, so errors may raise due to that fact. Also, the folder containing the samples, must contain only folders. If the folder contains files (for example, already created .csv files), eRah will prompt an error.

See eRah vignette for more details. To open the vignette, execute the following code in R: vignette("eRahManual", package="erah")
See Also

cnewExp

Examples

Store all the raw data files in one different folder per class,
and all the class-folders in one folder, which is the experiment
folder. Then execute

createdt(path)

where path is the experiment folder path.
The experiment can be now started by:

ex <- newExp(instrumental="path/DEMO_inst.csv",
phenotype="path/DEMO_pheno.csv", info="DEMO Experiment")

dataList Data list

Description

The final eRah list of aligned and identified metabolites and their relative quantification for each sample in a given experiment

Usage

dataList(Experiment, id.database=mslib, by.area=TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>A 'MetaboSet' S4 object containing the experiment data. The experiment has to be previously deconvolved, aligned and identified.</td>
</tr>
<tr>
<td>id.database</td>
<td>The mass-spectra library to be compared with the empirical spectra. By default, the MassBank - Mass Bank of North America (MoNa) database are employed (mslib object).</td>
</tr>
<tr>
<td>by.area</td>
<td>if TRUE (default), eRah outputs quantification by the area of the deconvolved chromatographic peak of each compound. If FALSE, eRah outputs the intensity of the deconvolved chromatographic peak.</td>
</tr>
</tbody>
</table>

Details

Returns an identification and alignment table containing the list of aligned and identified metabolites (names) and their relative quantification for each sample in a given experiment.
Value

alignList returns an S3 object:

- **AlignID**: The unique Tag for found metabolite by eRah. Each metabolite found by eRah for a given experiment has an unique AlignID tag number.
- **tmean**: The mean compound retention time.
- **FoundIn**: The number of samples in which the compound has been detected (the number of samples where the compound area is non-zero).
- **Name.X**: the name of the Xst/nd/rd... hit. idList return as many X (hits) as n.putative selected with identifyComp.
- **MatchFactor.X**: The match factor/score of spectral similarity (spectral correlation).
- **DB.Id.X**: The identification number of the library. Each metabolite in the reference library has a different DB.Id number.
- **CAS.X**: the CAS number of each identified metabolite.
- **Quantification**: As many columns as samples and as many rows as metabolites, where each column name has the name of each sample.

See Also

idList, alignList

deconvolveComp

Deconvolution of compounds in samples

Description

Deconvolution of GC-MS data

Usage

deconvolveComp(Experiment, decParameters, samples.to.process=NULL)

Arguments

- **Experiment**: A 'MetaboSet' S4 object containing the experiment data previously created by newExp.
- **decParameters**: The software deconvolution parameters object previously created by setDecPar
- **samples.to.process**: Vector indicating which samples are to be processed.

Details

See eRah vignette for more details. To open the vignette, execute the following code in R: vignette("eRahManual", package="erah")
Value

The function returns an updated S4 `MetaboSet` class, where the GC-MS samples have been now deconvolved.

Author(s)

Xavier Domingo-Almenara. xavier.domingo@urv.cat

References

See Also

`newExp, setAlPar`

Examples

```r
# Deconvolve data from a created experiment by \code{\link{newExp}}.
# ex <- newExp(instrumental="path")

# The following will set eRah for analyzing the chromatograms
# from minutes 5 to 15, without taking into account the masses
# 35:69, 73:75, 147:149, with a minimum peak width of 0.7 seconds.

ex.dec.par <- setDecPar(min.peak.width=0.7, min.peak.height=5000, noise.threshold=500, avoid.processing.mz=c(35:69, 73:75, 147:149), analysis.time=c(5,15))

# An now deconvolve the compounds in the samples:
# ex <- deconvolveComp(ex, decParameters=ex.dec.par)
```

eRah_DB-class

Class "eRah_DB"

Description

The eRah_DB class contains the slots for storing and accessing a MS library.
expClasses

Slots

- name: The name of the stored library
- version: The version of the stored library (and which is the database identifier, should be unique and used to check if is the database used in other experiments)
- info: Character vector containing complementary information about the library.
- database: A list of S3 objects, which each object contains the information on a different compound.

Author(s)

Xavier Domingo-Almenara.

expClasses Experiment classes

Description

The classes of a given experiment.

Usage

expClasses(object)

Arguments

- object A 'MetaboSet' S4 object containing the experiment.

Details

Returns the classes details of the experiment.

See Also

metadata, phenoData
export2CEF

Export spectra to CEF

Description

Export spectra to CEF format for comparison with the NIST library through MassHunter interface.

Usage

export2CEF(Experiment, export.id=NULL, id.database = mslib, store.path=getwd())

Arguments

- Experiment: A 'MetaboSet' S4 object containing the experiment.
- export.id: If NULL, all the spectra in the experiment will be exported. Otherwise, only the AlignID in export.id will be exported.
- id.database: The mass-spectra library used in the experiment.
- store.path: The path where the converted files are to be exported.

export2MSP

Export spectra to MSP

Description

Export spectra to MSP format for comparison with the NIST library.

Usage

export2MSP(Experiment, export.id=NULL, id.database = mslib, store.path=getwd())

Arguments

- Experiment: A 'MetaboSet' S4 object containing the experiment.
- export.id: If NULL, all the spectra in the experiment will be exported. Otherwise, only the AlignID in export.id will be exported.
- id.database: The mass-spectra library used in the experiment.
- store.path: The path where the converted files are to be exported.
findComp

Find a Compound

Description
Find compounds in the MS library by Name, CAS or chemical formula.

Usage
```
findComp(name = NULL, id.database = mslib, CAS = NULL,
         chem.form = NULL)
```

Arguments
- `name`: The name of the compound to be found.
- `id.database`: The mass-spectra library to be compared with the empirical spectra. By default, the MassBank - Mass Bank of North America (MoNa) database are employed (mslib object).
- `CAS`: The CAS number of the compound to be found.
- `chem.form`: The chemical formula of the compound to be found.

Value
findComp returns an S3 object:

- `DB.Id`: The identification number of the library. Each metabolite in the reference library has a different DB.Id number.
- `Compound Name`: Compound Name.
- `CAS`: CAS number.
- `Formula`: Chemical Formula.

See Also
- `compInfo`

Examples
```
# finding proline
findComp("proline")

# be careful, exact matches are not supported,
# as well as different names like these cases:
findComp("L-proline (2TMS)")
```
identifyComp

or
findComp("proline 2")

<table>
<thead>
<tr>
<th>identifyComp</th>
<th>Identification of compounds</th>
</tr>
</thead>
</table>

Description

Identification of compounds. Each empirical spectrum is compared against a ms library.

Usage

```r
identifyComp(experiment, id.database=mslib, 
mz.range=NULL, n.putative=3)
```

Arguments

- **Experiment**: A 'MetaboSet' S4 object containing the experiment data previously created by newExp, deconvolved by deconvolveComp and optionally aligned by alignComp.
- **id.database**: The mass-spectra library to be compared with the empirical spectra. By default, the MassBank-[2] - Mass Bank of North America (MoNa) database are employed.
- **mz.range**: The same as in alignComp. If specified already in alignComp, then there is no need to specify it again. If not, it has to be specified.
- **n.putative**: The number of hits (compound candidate names) to be returned for each spectrum found.

Value

The function returns an updated S4 'MetaboSet' class, where the GC-MS samples have been now aligned.

Author(s)

Xavier Domingo-Almenara. xavier.domingo@urv.cat

References

The list of identified metabolites in a given experiment

Usage

idList(object, idNdatabase=mslib)

Arguments

object A 'MetaboSet' S4 object containing the experiment data. The experiment has to be previously deconvolved, aligned and identified.
idNdatabase The mass-spectra library to be compared with the empirical spectra. By default, the MassBank - Mass Bank of North America (MoNa) database are employed (mslib object).

Details

Returns an identification table containing the names, match scores, and other variables for a given experiment.

Value

idList returns an S3 object:

AlignID The unique Tag for found metabolite by eRah. Each metabolite found by eRah for a given experiment has an unique AlignID tag number.
tmean The mean compound retention time.
Name.X the name of the Xst/nd/rd... hit. idList return as many X (hits) as n.putative selected with identifyComp.
FoundIn The number of samples in which the compound has been detected (the number of samples where the compound area is non-zero).
MatchFactor.X The match factor/score of spectral similarity (spectral correlation).
DB.Id.X The identification number of the library. Each metabolite in the reference library has a different DB.Id number.
CAS.X the CAS number of each identified metabolite.
importGMD

Import MSP files from GMD to R

Description
Import the Golm Metabolome Database.

Usage
importGMD(filename, DB.name, DB.version, DB.info,
type=c("VAR5.ALK","VAR5.FAME","MDN35.ALK","MDN35.FAME"))

Arguments
filename The filepath containing the GMD database file.
DB.name The name of the database (each user may chose its own name)
DB.version The version of the database (each user may chose its own version)
DB.info Some info about the database for further reference
type The type of RI to be imported from the database

Details
For more details, please see the eRah manual

importMSP

Import MSP files to R

Description
Import MS libraries in MSP format to eRah DB format.

Usage
importMSP(filename, DB.name, DB.version, DB.info)

Arguments
filename The filepath containing the MSP library file.
DB.name The name of the database (each user may chose its own name)
DB.version The version of the database (each user may chose its own version)
DB.info Some info about the database for further reference
Details

The MSP input file should look like:

```
Name: Metabolite_name Formula: H2O MW: 666 ExactMass: 666.266106 CAS#: 11-22-3 DB#: 1
Comments: Metabolite_name reference standard Num Peaks: 53 1; 54 2; 55 5; 56 2; 57 2; 58 14; 59 18; 60 1000; 61 2; 67 1;
```

```
Name: Metabolite_name_2 Formula: H2O2 MW: 999 ExactMass: 999.266106 CAS#: 22-33-4 DB#: 2
Comments: Metabolite_name_"" reference standard Num Peaks: 66 10; 67 1000; 155 560; 156 800; 157 2; 158 14; 159 1; 160 100; 161 2; 167 1;
```

For more details, please see the eRah manual.

MetaboSet-class

Class "MetaboSet"

Description

The MetaboSet class is a single generic class valid for all sorts of metabolomic studies regardless of the experimental platform, the statistical processing and the annotation stage. It is the core operation class of eRah.

Slots

- **Info**: Slot Info stores the general information of the experiment and the experimental platform used in the analysis of the biological samples.
- **Data**: Slot Data contains either the raw data or the path of the files. It also contains the list of the selected features (deconvolved compounds). In the subslot Parameters it is saved the information regarding the feature selector algorithm (type, parameters, version...) and the experimental platform used.
- **MetaData**: Slot MetaData has two slots. In the Instrumental slot it is saved a data frame with some mandatory fields (filename, date, time, sampleID) and optional fields related to the experimental platform (Column ID, Column Type, Ioniser,...). Slot Phenotypic contains a data frame with the sample and experimental information (phenotypes, longitudinal data,...).

Results: In the Results slot it is saved the information related to the statistical and identification results. The slot Parameters contains all the values of the parameters used in the identification and statistical functions. Slot Identification has the results of the identification process as well as the identification or/and annotation steps. The results of the statistical functions are saved in the Statistics slot.

Author(s)

Xavier Domingo-Almenara, Arnald Alonso and Francesc Fernandez-Albert.
metaData

Metadata

Description

Displays the Experiment metadata.

Usage

```r
metaData(object)
```

Arguments

- `object` A `MetaboSet` S4 object containing the experiment.

See Also

`phenodata`

mslib

MassBank Spectral Library

Description

The default mass spectral library of eRah, which is the MassBank repository.

Usage

```r
data(mslib)
```

Details

This is the eRah default MS library, and automatically loaded with the eRah package. It contains almost 500 MS spectra. For details, see reference below.

Author(s)

The TOF-MS spectra were contributed by Kazusa DNA Research Institute, the Engineering Department of Osaka University and Plant Science Center of RIKEN.

MassBank (http://www.massbank.jp/)
newExp

References

See Also

compInfo

newExp

Description

Sets a new experiment for eRah

Usage

newExp(instrumental, phenotype=NULL, info=character(0))

Arguments

instrumental The path where the instrumental .csv file is located.
phenotype (optional) The path where the phenotypic .csv file is located.
info Experiment description

Details

See eRah vignette for more details. To open the vignette, execute the following code in R: vignette("eRahManual", package="erah")

Value

newExp returns an S4 object of the class `MetaboSet`.

Author(s)

Xavier Domingo-Almenara. xavier.domingo@urv.cat

References

See Also

`createdt`, `setDecPar`, `setAlPar`

Examples

```r
# Store all the raw data files in one different folder per class,
# and all the class-folders in one folder, which is the experiment
# folder. Then execute

# createdt(path)

# where path is the experiment folder path.
# The experiment can be now started by:

# ex <- newExp(instrumental="path/DEMO_inst.csv",
# phenotype="path/DEMO_pheno.csv", info="DEMO Experiment")
```

Description

Displays the Experiment phenotypic data (if included).

Usage

```r
phenoData(object)
```

Arguments

- `object` A `MetaboSet` S4 object containing the experiment.

See Also

`metaData`
plotAlign

Plotting chromatophic profile with and without alignment

Description

Plots the chromatophic profiles of the compounds found by eRah. Similarly to plotProfile, but with two sub-windows, showing the chromatophic profiles before and after alignment.

Usage

plotAlign(Experiment, AlignId, per.class=T, xlim=NULL)

Arguments

- **Experiment**: A 'MetaboSet' S4 object containing the experiment after being deconolved, aligned and (optionally) identified.
- **AlignId**: the Id identificator for the compound to be shown.
- **per.class**: logical. if TRUE the profiles are shown one color per class, if FALSE one color per sample.
- **xlim**: x axis (retention time) limits (see plot.default).

Author(s)

Xavier Domingo-Almenara. xavier.domingo@urv.cat

See Also

plotSpectra, plotProfile

plotChr

Plotting sample chromatogram

Description

Plot the sample chromatogram.

Usage

plotChr(Experiment, N.sample=1, type=c("BIC","TIC","EIC"), xlim=NULL, mz=NULL)
plotProfile

Plotting chromatophic profile

Description

Plots the chromatophic profiles of the compounds found by eRah.

Usage

plotProfile(Experiment, AlignId, per.class=T, xlim=NULL)
Plotting spectra

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>experiment</td>
<td>A 'MetaboSet' S4 object containing the experiment after being deconvolved, aligned and (optionally) identified.</td>
</tr>
<tr>
<td>AlignId</td>
<td>the Id identifier for the compound to be shown.</td>
</tr>
<tr>
<td>per.class</td>
<td>logical. if TRUE the profiles are shown one color per class, if FALSE one color per sample.</td>
</tr>
<tr>
<td>xlim</td>
<td>x axis (retention time) limits (see <code>plot.default</code>).</td>
</tr>
</tbody>
</table>

Author(s)

Xavier Domingo-Almenara. xavier.domingo@urv.cat

See Also

`plotSpectra`, `plotAlign`

Description

Plots the empirical spectra found by eRah, and allows comparing it with the reference spectra.

Usage

```r
plotSpectra(Experiment, AlignId, n.putative=1, compare=T, id.database=mslib, comp.db=NULL, return.spectra=F, draw.color="purple", xlim=NULL)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>experiment</td>
<td>A 'MetaboSet' S4 object containing the experiment after being deconvolved, aligned and (optionally) identified.</td>
</tr>
<tr>
<td>AlignId</td>
<td>the Id identifier for the compound to be shown.</td>
</tr>
<tr>
<td>n.putative</td>
<td>The hit number (position) to be returned when comparing the empirical spectrum with the reference. See details</td>
</tr>
<tr>
<td>compare</td>
<td>logical. If TRUE, then the reference spectrum from the library is shown for comparison.</td>
</tr>
<tr>
<td>id.database</td>
<td>The mass-spectra library to be compared with the empirical spectra. By default, the MassBank-[2] - Mass Bank of North America (MoNa) database are employed.</td>
</tr>
<tr>
<td>comp.db</td>
<td>If you want to compare the empirical spectrum with another spectrum from the database, select the comp.db number from the database.</td>
</tr>
<tr>
<td>return.spectra</td>
<td>logical. If TRUE, the function returns the empirical spectrum for the selected compound</td>
</tr>
<tr>
<td>draw.color</td>
<td>Selects the color for the reference spectrum (see <code>colors</code>).</td>
</tr>
<tr>
<td>xlim</td>
<td>x axis (mass - m/z) limits (see <code>plot.default</code>).</td>
</tr>
</tbody>
</table>
Details

When identification is applied (see `identifyComp`), the number of hits to be returned (n.putative) has to be selected. Therefore, here you can compare the empirical spectrum (found by eRah) with each n.putative hit returned (1, 2, ...) by (see `identifyComp`).

Value

`plotSpectra` returns an vector when `return.spectra=TRUE`.

- `x` : vector. Containts the empirical spectrum.

Author(s)

Xavier Domingo-Almenara. xavier.domingo@urv.cat

References

See Also

- `plotProfile`, `plotAlign`

RawDataParameters-class

Class “RawDataParameters”

Description

The `RawDataParameters` class contains the slots for storing and accessing into a MS sample, and the essential parameters for performing its processing (deconvolution).

Slots

- `data`: The data matrix of the sample to be processed
- `min.mz`: The minimum adquired mz number
- `max.mz`: The maximum adquired mz number
- `start.time`: Starting time of acquisition
Description

Missing compounds recovery: fits a general model (all the compounds above a certain minimum number of samples) to all the samples.

Usage

```r
recMissComp(Experiment, min.samples, free.model=F)
```

Arguments

- **Experiment**: A 'MetaboSet' S4 object containing the experiment data previously created by `newExp`, deconvolved by `deconvolveComp` and aligned by `alignComp`.
- **min.samples**: The minimum number of samples in which a compound has to appear to be considered for searching into the rest of the samples where this compound missing.
- **free.model**: If TRUE, the spectra found in the samples where the compound is missing is used to get the final average spectra. (See details)

Details

WARNING: If compounds were previously identified, they have to be identified again after applying the "recMissComp" function. This means that "identifyComp" function has to be executed always after "recMissComp" for identification of compounds, even if "identifyComp" has been previously applied before.

The `free.model` parameter is recommended to be always FALSE (except for carbon tracking applications). This is because the spectra of the samples where the compound is missing is usually affected by noise, and this could decrease the matching score for a certain compound.
The function returns an updated S4 'MetaboSet' class, where the GC-MS samples have been now aligned.

Author(s)

Xavier Domingo-Almenara. xavier.domingo@urv.cat

References

See Also

newExp, alignComp, setAlPar, setDecPar

sampleInfo

Information of the samples

Description

Returns basic information on the samples.

Usage

`sampleInfo(experiment, N.sample=1)`

Arguments

- `Experiment`: A 'MetaboSet' S4 object containing the experiment.
- `N.sample`: Integer. The number of the sample to query.

Details

Returns details on a given sample of the experiment, such as name, start time, end time, minimum and maximum acquired m/z and scans per second.

See Also

plotChr
setAlPar

Set Alignment Parameters

Description

Setting alignment parameters for eRah.

Usage

```
setAlPar(min.spectra.cor, max.time.dist, mz.range=c(70:600))
```

Arguments

- `min.spectra.cor`: Minimum spectral correlation value. From 0 (non similar) to 1 (very similar). This value sets how similar two or more compounds have to be considered for alignment between them.
- `max.time.dist`: Maximum retention time distance. This value (in seconds) sets how far two or more compounds can be to be considered for alignment between them.
- `mz.range`: The range of masses that is considered when comparing spectra.

Author(s)

Xavier Domingo-Almenara. xavier.domingo@urv.cat

References

See Also

`newExp`, `setDecPar`, `alignComp`

Examples

```
# The following will set eRah for aligning compounds which are
# at least 90 (per cent) similar, and which peaks are at a
# maximum distance of 2 seconds. All the masses are considered when
# computing the spectral similarity.

# ex.al.par <- setAlPar(min.spectra.cor=0.90, max.time.dist=2,
# mz.range=1:600)
```
setDecPar

Set Software Parameters

Description

Sets Software Parameters for eRah.

Usage

setDecPar(min.peak.width, min.peak.height=2500,
noise.threshold=500,
avoid.processing.mz=c(73:75,147:149),
compression.coef=2, analysis.time=0)

Arguments

- **min.peak.width**: Minimum compound peak width (in seconds). This is a critical parameter that conditions the efficiency of eRah. Typically, this should be the half of the mean compound width.
- **min.peak.height**: Minimum compound peak height
- **noise.threshold**: Data above this threshold will be considered as noise
- **avoid.processing.mz**: The masses that do not want to be considered for processing. Typically, in GC-MS those masses are 73,74,75,147,148 and 149, since they are ubiquitous mass fragments typically generated from compounds carrying a trimethylsilyl moiety.
- **compression.coef**: Data will be compressed when using OSD algorithm according to this value
- **analysis.time**: The chromatographic retention time window to process. If 0, all the chromatogram is processed.

Details

See eRah vignette for more details. To open the vignette, execute the following code in R: vignette("eRahManual", package="erah")

Author(s)

Xavier Domingo-Almenara. xavier.domingo@urv.cat

References

show.MetaboSet

See Also

newExp, deconvolveComp, alignComp, setAlPar

Examples

The following will set eRah for analyzing the chromatograms
from minutes 5 to 15, and without taking into account the masses
35:69,73:75,147:149, with a minimum peak width of 0.7 seconds.

ex.dec.par <- setDecPar(min.peak.width=0.7, min.peak.height=5000,
noise.threshold=500, avoid.processing.mz=c(35:69,73:75,147:149),
analysis.time=c(5,15))

show.MetaboSet Show MetaboSet object

Description

Show MetaboSet object
Index

alignComp, 2, 13, 24, 25, 27
alignList, 3, 7, 14

colors, 21
compInfo, 4, 11, 17
created, 5, 18

dataList, 4, 6, 14
deconvolveComp, 3, 7, 27
eRah_DB-class, 8
expClasses, 9
export2CEF, 10
export2MSP, 10
findComp, 5, 11
identifyComp, 7, 12, 13, 22
idList, 4, 7, 13
importGMD, 14
importMSP, 14

MetaboSet-class, 15
metaData, 9, 16, 18
mslib, 16

newExp, 3, 6, 8, 13, 17, 24, 25, 27

phenoData, 9, 16, 18
plot.default, 19, 21
plotAlign, 19, 21, 22
plotChr, 19, 24
plotProfile, 19, 20, 22
plotSpectra, 19, 21, 21

RawDataParameters-class, 22
recMissComp, 23

sampleInfo, 20, 24
setAlPar, 8, 13, 18, 24, 25, 27
setDecPar, 3, 13, 18, 24, 25, 26
show.MetaboSet, 27