Package ‘erboost’

January 19, 2024

Title Nonparametric Multiple Expectile Regression via ER-Boost
Version 1.4
Date 2024-01-17
Depends R (>= 2.12.0), lattice, splines
Description Expectile regression is a nice tool for estimating the conditional expectile of a response variable given a set of covariates. This package implements a regression tree based gradient boosting estimator for nonparametric multiple expectile regression, proposed by Yang, Y., Qian, W. and Zou, H. (2018) <doi:10.1080/00949655.2013.876024>. The code is based on the ‘gbm’ package originally developed by Greg Ridgeway.
License GPL-3
NeedsCompilation yes
Date/Publication 2024-01-19 11:00:05 UTC
Maintainer Yi Yang <yi.yang6@mcgill.ca>
Repository CRAN

R topics documented:

erboost .. 2
erboost.object .. 7
erboost.perf .. 8
plot.erboost ... 9
predict.erboost 10
relative.influence 12
summary.erboost 13

Index 15
erboost

ER-Boost Expectile Regression Modeling

Description

Fits ER-Boost Expectile Regression models.

Usage

```r
erboost(formula = formula(data),
         distribution = list(name="expectile",alpha=0.5),
         data = list(),
         weights, 
         var.monotone = NULL,
         n.trees = 3000,
         interaction.depth = 3,
         n.minobsinnode = 10,
         shrinkage = 0.001,
         bag.fraction = 0.5,
         train.fraction = 1.0,
         cv.folds=0,
         keep.data = TRUE,
         verbose = TRUE)
```

```r
erboost.fit(x,y,
            offset = NULL,
            misc = NULL,
            distribution = list(name="expectile",alpha=0.5),
            w = NULL,
            var.monotone = NULL,
            n.trees = 3000,
            interaction.depth = 3,
            n.minobsinnode = 10,
            shrinkage = 0.001,
            bag.fraction = 0.5,
            train.fraction = 1.0,
            keep.data = TRUE,
            verbose = TRUE,
            var.names = NULL,
            response.name = NULL)
```

```r
erboost.more(object,
             n.new.trees = 3000,
             data = NULL,
             weights = NULL,
             offset = NULL,
             verbose = NULL)
```
erboost

Arguments

formula a symbolic description of the model to be fit. The formula may include an offset term (e.g. y~offset(n)+x). If keep.data=FALSE in the initial call to erboost then it is the user’s responsibility to resupply the offset to erboost.more.

distribution a list with a component name specifying the distribution and any additional parameters needed. Expectile regression is available and distribution must a list of the form list(name=“expectile”,alpha=0.25) where alpha is the expectile to estimate. The current version’s expectile regression methods do not handle non-constant weights and will stop.

data an optional data frame containing the variables in the model. By default the variables are taken from environment(formula), typically the environment from which erboost is called. If keep.data=TRUE in the initial call to erboost then erboost stores a copy with the object. If keep.data=FALSE then subsequent calls to erboost.more must resupply the same dataset. It becomes the user’s responsibility to resupply the same data at this point.

weights an optional vector of weights to be used in the fitting process. Must be positive but do not need to be normalized. If keep.data=FALSE in the initial call to erboost then it is the user’s responsibility to resupply the weights to erboost.more.

var.monotone an optional vector, the same length as the number of predictors, indicating which variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) relationship with the outcome.

n.trees the total number of trees to fit. This is equivalent to the number of iterations and the number of basis functions in the additive expansion. The default number is 3000. Users should not always use the default value, but choose the appropriate value of n.trees based on their data. Please see “details” section below.

cv.folds Number of cross-validation folds to perform. If cv.folds>1 then erboost, in addition to the usual fit, will perform a cross-validation, calculate an estimate of generalization error returned in cv.error.

interaction.depth The maximum depth of variable interactions. 1 implies an additive model, 2 implies a model with up to 2-way interactions, etc. The default value is 3. Users should not always use the default value, but choose the appropriate value of interaction.depth based on their data. Please see “details” section below.

n.minobsinnode minimum number of observations in the trees terminal nodes. Note that this is the actual number of observations not the total weight.

shrinkage a shrinkage parameter applied to each tree in the expansion. Also known as the learning rate or step-size reduction.

bag.fraction the fraction of the training set observations randomly selected to propose the next tree in the expansion. This introduces randomness into the model fit. If bag.fraction<1 then running the same model twice will result in similar but different fits. erboost uses the R random number generator so set.seed can ensure that the model can be reconstructed. Preferably, the user can save the returned erboost.object using save.
train.fraction: The first \(\text{train.fraction} \times \text{nrows(data)}\) observations are used to fit the erboost and the remainder are used for computing out-of-sample estimates of the loss function.

keep.data: a logical variable indicating whether to keep the data and an index of the data stored with the object. Keeping the data and index makes subsequent calls to \text{erboost.more} faster at the cost of storing an extra copy of the dataset.

object: a \text{erboost} object created from an initial call to \text{erboost}.

n.new.trees: the number of additional trees to add to object. The default number is 3000.

verbose: If TRUE, erboost will print out progress and performance indicators. If this option is left unspecified for \text{erboost.more} then it uses \text{verbose} from object.

\(x, y\): For \text{erboost.fit}: \(x\) is a data frame or data matrix containing the predictor variables and \(y\) is the vector of outcomes. The number of rows in \(x\) must be the same as the length of \(y\).

offset: a vector of values for the offset

misc: For \text{erboost.fit}: \text{misc} is an R object that is simply passed on to the \text{erboost} engine.

\(w\): For \text{erboost.fit}: \(w\) is a vector of weights of the same length as the \(y\).

\text{var.names}: For \text{erboost.fit}: A vector of strings of length equal to the number of columns of \(x\) containing the names of the predictor variables.

\text{response.name}: For \text{erboost.fit}: A character string label for the response variable.

Details

Expectile regression (Newey & Powell 1987) is a nice tool for estimating the conditional expectiles of a response variable given a set of covariates. This package implements a regression tree based gradient boosting estimator for nonparametric multiple expectile regression. The code is a modified version of \text{gbm} library (https://cran.r-project.org/package=gbm) originally written by Greg Ridgeway.

Boosting is the process of iteratively adding basis functions in a greedy fashion so that each additional basis function further reduces the selected loss function. This implementation closely follows Friedman’s Gradient Boosting Machine (Friedman, 2001).

In addition to many of the features documented in the Gradient Boosting Machine, \text{erboost} offers additional features including the out-of-bag estimator for the optimal number of iterations, the ability to store and manipulate the resulting \text{erboost} object.

Concerning tuning parameters, interaction.depth and \(n.trees\) are two of the most important tuning parameters in \text{erboost}. \textbf{Users should not always use the default values of those two parameters, instead they should choose the appropriate values of interaction.depth and n.trees according to their data.} For example, if \(n.trees\), which is the maximal number of trees to fit, is set to be too small, then it is possible that the actual optimal number of trees (which is best.iter selected by the function \text{erboost.perf} in "example" section) for a particular data exceeds this number, resulting a sub-optimal model. \textbf{Therefore, users should always fit the model with a large enough n.trees such that n.trees is greater than the potential optimal number of trees. The same principle also applies on interaction.depth.}

\text{erboost.fit} provides the link between R and the C++ \text{erboost} engine. \text{erboost} is a front-end to \text{erboost.fit} that uses the familiar R modeling formulas. However, \text{model.frame} is very slow if
there are many predictor variables. For power-users with many variables use erboost.fit. For general practice erboost is preferable.

Value

erboost, erboost.fit, and erboost.more return a erboost.object.

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

References

https://cran.r-project.org/package=gbm

See Also

erboost.object, erboost.perf, plot.erboost, predict.erboost, summary.erboost,

Examples

```r
N <- 200
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- ordered(sample(letters[1:4],N,replace=TRUE),levels=letters[4:1])
X4 <- factor(sample(letters[1:6],N,replace=TRUE))
X5 <- factor(sample(letters[1:3],N,replace=TRUE))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]
SNR <- 10 # signal-to-noise ratio
Y <- X1**1.5 + 2 * (X2**.5) + mu
sigma <- sqrt(var(Y)/SNR)
Y <- Y + rnorm(N,0,sigma)
# introduce some missing values
X1[sample(1:N,size=50)] <- NA
X4[sample(1:N,size=30)] <- NA
data <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)
```
fit initial model
erboost1 <- erboost(Y~X1+X2+X3+X4+X5+X6,
 data=data,
 var.monotone=c(0,0,0,0,0,0),
 distribution=list(name="expectile",alpha=0.5),
 n.trees=3000,
 shrinkage=0.005,
 interaction.depth=3,
 bag.fraction = 0.5,
 train.fraction = 0.5,
 n.minobsinnode = 10,
 cv.folds = 5,
 keep.data=TRUE,
 verbose=TRUE)

check performance using a 50% heldout test set
best.iter <- erboost.perf(erboost1,method="test")
print(best.iter)

check performance using 5-fold cross-validation
best.iter <- erboost.perf(erboost1,method="cv")
print(best.iter)

plot the performance
plot variable influence
summary(erboost1,n.trees=1)
summary(erboost1,n.trees=best.iter)

make some new data
N <- 20
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- ordered(sample(letters[1:4],N,replace=TRUE))
X4 <- factor(sample(letters[1:6],N,replace=TRUE))
X5 <- factor(sample(letters[1:3],N,replace=TRUE))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]
Y <- X1**1.5 + 2 * (X2**.5) + mu + rnorm(N,0,sigma)
data2 <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)

predict on the new data using "best" number of trees
f.predict generally will be on the canonical scale
f.predict <- predict.erboost(erboost1,data2,best.iter)

least squares error
print(sum((data2$Y-f.predict)^2))

create marginal plots
plot variable X1 after "best" iterations
plot.erboost(erboost1,1,best.iter)
contour plot of variables 1 and 3 after "best" iterations
plot.erboost(erboost1,c(1,3),best.iter)

do another 20 iterations
erboost2 <- erboost.more(erboost1,20,
 verbose=FALSE) # stop printing detailed progress

erboost.object

ER-Boost Expectile Regression Model Object

Description

These are objects representing fitted erboosts.

Value

- **initF**: the "intercept" term, the initial predicted value to which trees make adjustments
- **fit**: a vector containing the fitted values on the scale of regression function
- **train.error**: a vector of length equal to the number of fitted trees containing the value of the loss function for each boosting iteration evaluated on the training data
- **valid.error**: a vector of length equal to the number of fitted trees containing the value of the loss function for each boosting iteration evaluated on the validation data
- **cv.error**: if cv.folds<2 this component is NULL. Otherwise, this component is a vector of length equal to the number of fitted trees containing a cross-validated estimate of the loss function for each boosting iteration
- **oobag.improve**: a vector of length equal to the number of fitted trees containing an out-of-bag estimate of the marginal reduction in the expected value of the loss function. The out-of-bag estimate uses only the training data and is useful for estimating the optimal number of boosting iterations. See erboost.perf
- **trees**: a list containing the tree structures.
- **c.splits**: a list of all the categorical splits in the collection of trees. If the trees[[i]] component of an erboost object describes a categorical split then the splitting value will refer to a component of c.splits. That component of c.splits will be a vector of length equal to the number of levels in the categorical split variable. -1 indicates left, +1 indicates right, and 0 indicates that the level was not present in the training data

Structure

The following components must be included in a legitimate erboost object.
erboost.perf

Author(s)
Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

See Also
erboost

Description
Estimates the optimal number of boosting iterations for an erboost object and optionally plots various performance measures.

Usage
erboost.perf(object,
 plot.it = TRUE,
 oobag.curve = FALSE,
 overlay = TRUE,
 method)

Arguments
object a erboost.object created from an initial call to erboost.
plot.it an indicator of whether or not to plot the performance measures. Setting plot.it=TRUE creates two plots. The first plot plots object$train.error (in black) and object$valid.error (in red) versus the iteration number. The scale of the error measurement, shown on the left vertical axis, depends on the distribution argument used in the initial call to erboost.
oobag.curve indicates whether to plot the out-of-bag performance measures in a second plot.
overlay if TRUE and oobag.curve=TRUE then a right y-axis is added to the training and test error plot and the estimated cumulative improvement in the loss function is plotted versus the iteration number.
method indicate the method used to estimate the optimal number of boosting iterations. method="OOB" computes the out-of-bag estimate and method="test" uses the test (or validation) dataset to compute an out-of-sample estimate. method="cv" extracts the optimal number of iterations using cross-validation if erboost was called with cv.folds>1

Value
erboost.perf returns the estimated optimal number of iterations. The method of computation depends on the method argument.
plot.erboost

Author(s)
Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

References

https://cran.r-project.org/package=gbm

See Also
erboost, erboost.object

plot.erboost Marginal plots of fitted erboost objects

Description
Plots the marginal effect of the selected variables by "integrating" out the other variables.

Usage
S3 method for class 'erboost'
plot(x,
 i.var = 1,
 n.trees = x$n.trees,
 continuous.resolution = 100,
 return.grid = FALSE,
 ...)

Arguments

x a erboost.object fitted using a call to erboost

i.var a vector of indices or the names of the variables to plot. If using indices, the variables are indexed in the same order that they appear in the initial erboost formula. If length(i.var) is between 1 and 3 then plot.erboost produces the plots. Otherwise, plot.erboost returns only the grid of evaluation points and their average predictions

n.trees the number of trees used to generate the plot. Only the first n.trees trees will be used

continuous.resolution The number of equally space points at which to evaluate continuous predictors
return.grid if TRUE then plot.erboost produces no graphics and only returns the grid of evaluation points and their average predictions. This is useful for customizing the graphics for special variable types or for dimensions greater than 3

Details

plot.erboost produces low dimensional projections of the erboost.object by integrating out the variables not included in the i.var argument. The function selects a grid of points and uses the weighted tree traversal method described in Friedman (2001) to do the integration. Based on the variable types included in the projection, plot.erboost selects an appropriate display choosing amongst line plots, contour plots, and lattice plots. If the default graphics are not sufficient the user may set return.grid=TRUE, store the result of the function, and develop another graphic display more appropriate to the particular example.

Value

Nothing unless return.grid is true then plot.erboost produces no graphics and only returns the grid of evaluation points and their average predictions.

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

References

https://cran.r-project.org/package=gbm

See Also

erboost, erboost.object, plot

Description

Predicted values based on an ER-Boost Expectile regression model object
Usage

```r
## S3 method for class 'erboost'
predict(object,
    newdata,
    n.trees,
    single.tree=FALSE,
    ...)}
```

Arguments

- `object`: Object of class inheriting from `erboost.object`
- `newdata`: Data frame of observations for which to make predictions
- `n.trees`: Number of trees used in the prediction. `n.trees` may be a vector in which case predictions are returned for each iteration specified
- `single.tree`: If `single.tree=TRUE` then `predict.erboost` returns only the predictions from tree(s) `n.trees`
- `...`: further arguments passed to or from other methods

Details

`predict.erboost` produces predicted values for each observation in `newdata` using the first `n.trees` iterations of the boosting sequence. If `n.trees` is a vector than the result is a matrix with each column representing the predictions from `erboost` models with `n.trees[1]` iterations, `n.trees[2]` iterations, and so on.

The predictions from `erboost` do not include the offset term. The user may add the value of the offset to the predicted value if desired.

If `object` was fit using `erboost.fit` there will be no `Terms` component. Therefore, the user has greater responsibility to make sure that `newdata` is of the same format (order and number of variables) as the one originally used to fit the model.

Value

Returns a vector of predictions. By default the predictions are on the scale of \(f(x) \).

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

See Also

- `erboost`, `erboost.object`
relative.influence Methods for estimating relative influence

Description

Helper functions for computing the relative influence of each variable in the erboost object.

Usage

relative.influence(object, n.trees)
permutation.test.erboost(object, n.trees)
erboost.loss(y,f,w,offset,dist,baseline)

Arguments

object a erboost object created from an initial call to erboost.
n.trees the number of trees to use for computations.
y,f,w,offset,dist,baseline
 For erboost.loss: These components are the outcome, predicted value, observation weight, offset, distribution, and comparison loss function, respectively.

Details

This is not intended for end-user use. These functions offer the different methods for computing the relative influence in summary.erboost. erboost.loss is a helper function for permutation.test.erboost.

Value

Returns an unprocessed vector of estimated relative influences.

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

References

https://cran.r-project.org/package=gbm

See Also

summary.erboost
summary.erboost

Summary of a erboost object

Description

Computes the relative influence of each variable in the erboost object.

Usage

```r
# S3 method for class 'erboost'
summary(object,
    cBars = length(object$var.names),
    n.trees = object$n.trees,
    plotit = TRUE,
    order = TRUE,
    method = relative.influence,
    normalize = TRUE,
    ...)
```

Arguments

- `object`: a erboost object created from an initial call to `erboost`.
- `cBars`: the number of bars to plot. If `order = TRUE` the only the variables with the `cBars` largest relative influence will appear in the barplot. If `order = FALSE` then the first `cBars` variables will appear in the plot. In either case, the function will return the relative influence of all of the variables.
- `n.trees`: the number of trees used to generate the plot. Only the first `n.trees` trees will be used.
- `plotit`: an indicator as to whether the plot is generated.
- `order`: an indicator as to whether the plotted and/or returned relative influences are sorted.
- `method`: The function used to compute the relative influence. `relative.influence` is the default and is the same as that described in Friedman (2001). The other current (and experimental) choice is `permutation.test.erboost`. This method randomly permutes each predictor variable at a time and computes the associated reduction in predictive performance. This is similar to the variable importance measures Breiman uses for random forests, but erboost currently computes using the entire training dataset (not the out-of-bag observations).
- `normalize`: if `FALSE` then `summary.erboost` returns the unnormalized influence.
- `...`: other arguments passed to the plot function.

Details

This returns the reduction attributeable to each variable in sum of squared error in predicting the gradient on each iteration. It describes the relative influence of each variable in reducing the loss function. See the references below for exact details on the computation.
Value

Returns a data frame where the first component is the variable name and the second is the computed relative influence, normalized to sum to 100.

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

References

https://cran.r-project.org/package=gbm

See Also

erboost
Index

* **hplot**
 - plot.erboost, 9
 - relative.influence, 12
 - summary.erboost, 13

* **methods**
 - erboost.object, 7

* **models**
 - erboost, 2
 - predict.erboost, 10

* **nonlinear**
 - erboost, 2
 - erboost.perf, 8

* **nonparametric**
 - erboost, 2
 - erboost.perf, 8

* **regression**
 - predict.erboost, 10

* **survival**
 - erboost, 2
 - erboost.perf, 8

* **tree**
 - erboost, 2
 - erboost.perf, 8

 erboost, 2, 4, 8–14
 erboost.fit, 11
 erboost.loss(relative.influence), 12
 erboost.more, 3, 4
 erboost.object, 3, 5, 7, 8–11
 erboost.perf, 5, 7, 8

 lattice, 10

 model.frame, 4

 permutation.test.erboost, 13
 permutation.test.erboost(relative.influence), 12

 plot, 10
 plot.erboost, 5, 9

predict.erboost, 5, 10
relative.influence, 12, 13
save, 3
summary.erboost, 5, 12, 13