Package ‘errors’

Type Package
Title Uncertainty Propagation for R Vectors
Version 0.3.4
Description Support for measurement errors in R vectors, matrices and arrays: automatic uncertainty propagation and reporting. Documentation about 'errors' is provided in the paper by Ucar, Pebesma & Azcorra (2018, <doi:10.32614/RJ-2018-075>), included in this package as a vignette; see `citation("errors")` for details.
License MIT + file LICENSE
Encoding UTF-8
URL https://github.com/r-quantities/errors
BugReports https://github.com/r-quantities/errors/issues
LazyData true
Depends R (>= 3.0.0)
Suggests dplyr (>= 1.0.0), vctrs (>= 0.3.1), pillar, testthat, knitr, rmarkdown
RoxygenNote 7.1.0
VignetteBuilder knitr
NeedsCompilation no
Author Iñaki Ucar [aut, cph, cre] (<https://orcid.org/0000-0001-6403-5550>), Lionel Henry [ctb], RStudio [cph] (Copyright for code written by RStudio employees.)
Maintainer Iñaki Ucar <iucar@fedoraproject.org>
Repository CRAN
Date/Publication 2020-06-13 15:30:18 UTC
R topics documented:

errors-package ... 2
as.data.frame.errors .. 4
as.list.errors ... 4
as.matrix.errors .. 5
c.errors ... 5
cbind.errors ... 6
correl ... 7
datasets ... 8
diff.errors ... 9
dropErrors .. 10
errors ... 10
Extract.errors ... 12
format.errors ... 12
groupGeneric.errors .. 13
mean.errors ... 15
plot.errors .. 15
print.errors .. 16
rep.errors .. 17
t.errors .. 17

Index 19

errors-package errors: Uncertainty Propagation for R Vectors

Description
Support for measurement errors in R vectors, matrices and arrays: automatic uncertainty propagation and reporting.

Details
Every measurement has an unknown error associated. Uncertainty is the acknowledgement of that error: we are aware that our representation of reality may differ from reality itself. This package provides support for measurement errors in R vectors, matrices and arrays. Uncertainty metadata is associated to quantity values (see errors), and this uncertainty is automatically propagated when you operate with errors objects (see groupGeneric.errors), or with errors and numeric objects (then numeric values are automatically coerced to errors objects with no uncertainty).

Correlations between measurements are also supported. In particular, any operation (e.g., \(z = x + y \)) results in a correlation between output and input variables (i.e., \(z \) is correlated to \(x \) and \(y \), even if there was no correlation between \(x \) and \(y \)). And in general, the user can establish correlations between any pair of variables (see correl).

This package treats uncertainty as coming from Gaussian and linear sources (note that, even for non-Gaussian non-linear sources, this is a reasonable assumption for averages of many measurements),
and propagates them using the first-order Taylor series method for propagation of uncertainty. Although the above assumptions are valid in a wide range of applications in science and engineering, the practitioner should evaluate whether they apply for each particular case.

Author(s)

Iñaki Ucar

References

See Also

datasets for a description of the datasets used in the examples below.

Examples

```r
## Simultaneous resistance and reactance measurements
# Obtain mean values and uncertainty from measured values
V <- mean(set_errors(GUM.H.2$V))
I <- mean(set_errors(GUM.H.2$I))
phi <- mean(set_errors(GUM.H.2$phi))

# Set correlations between variables
correl(V, I) <- with(GUM.H.2, cor(V, I))
correl(V, phi) <- with(GUM.H.2, cor(V, phi))
correl(I, phi) <- with(GUM.H.2, cor(I, phi))

# Computation of resistance, reactance and impedance values
(R <- (V / I) * cos(phi))
(X <- (V / I) * sin(phi))
(Z <- (V / I))

# Correlations between derived quantities
correl(R, X)
correl(R, Z)
correl(X, Z)

## Calibration of a thermometer
# Least-squares fit for a reference temperature of 20 degC
fit <- lm(bk ~ I(tk - 20), data = GUM.H.3)

# Extract coefficients and set correlation using the covariance matrix
y1 <- set_errors(coef(fit)[1], sqrt(vcov(fit)[1, 1]))
y2 <- set_errors(coef(fit)[2], sqrt(vcov(fit)[2, 2]))
covar(y1, y2) <- vcov(fit)[1, 2]

# Predicted correction for 30 degC
```

(b.30 <- y1 + y2 * set.errors(30 - 20))

as.data.frame.errors Coerce to a Data Frame

Description
S3 method for errors objects (see as.data.frame).

Usage
S3 method for class 'errors'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments
x any R object.
row.names NULL or a character vector giving the row names for the data frame. Missing
 values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to syntac-
 tic names: see make.names) is optional. Note that all of R's base package
 as.data.frame() methods use optional only for column names treatment,
 basically with the meaning of data.frame(*,check.names = !optional). See
 also the make.names argument of the matrix method.
...
 additional arguments to be passed to or from methods.

Examples
x <- set.errors(1:3, 0.1)
y <- set.errors(4:6, 0.2)
(z <- cbind(x, y))
as.data.frame(z)

as.list.errors Coerce to a List

Description
S3 method for errors objects (see as.list).

Usage
S3 method for class 'errors'
as.list(x, ...)

...
Arguments

x object to be coerced or tested.
...
objects, possibly named.

Examples

x <- set_errors(1:3, 0.1)
as.list(x)

as.matrix.errors Coerce to a Matrix

Description

S3 method for errors objects (see as.matrix).

Usage

S3 method for class 'errors'
as.matrix(x, ...)

Arguments

x an R object.
...
additional arguments to be passed to or from methods.

Examples

as.matrix(set_errors(1:3, 0.1))

c.errors Combine Values into a Vector or List

Description

S3 method for errors objects (see c).

Usage

S3 method for class 'errors'
c(..., recursive = FALSE)
cbind.errors

Combine R Objects by Rows or Columns

Description

S3 methods for errors objects (see `cbind`).

Usage

S3 method for class 'errors'
cbind(..., deparse.level = 1)

S3 method for class 'errors'
rbind(..., deparse.level = 1)

Arguments

... (generalized) vectors or matrices. These can be given as named arguments. Other R objects may be coerced as appropriate, or S4 methods may be used: see sections 'Details' and 'Value'. (For the "data.frame" method of `cbind` these can be further arguments to `data.frame` such as `stringsAsFactors`.)

deparse.level integer controlling the construction of labels in the case of non-matrix-like arguments (for the default method):
deparse.level = 0 constructs no labels; the default, deparse.level = 1 or 2 constructs labels from the argument names, see the 'Value' section below.

See Also

c.errors

Examples

c(set_errors(1, 0.2), set_errors(7:9, 0.1), 3)
Examples

\[
x <- \text{set_errors}(1, 0.1) \\
y <- \text{set_errors}(1:3, 0.2) \\
(m <- \text{cbind}(x, y)) \# \text{the '1' (= shorter vector) is recycled} \\
(m <- \text{cbind}(m, 8:10)[, c(1, 3, 2)]) \# \text{insert a column} \\
\text{cbind}(y, \text{diag}(3)) \# \text{vector is subset -> warning} \\
\text{cbind}(0, \text{rbind}(x, y))
\]

corr \hspace{1cm} \text{Handle Correlations Between errors Objects}

Description

Set or retrieve correlations or covariances between errors objects. See the details section below.

Usage

\[
\text{correl}(x, y) \\
\text{correl}(x, y) \leftarrow \text{value} \\
\text{set_correl}(x, y, \text{value}) \\
\text{covar}(x, y) \\
\text{covar}(x, y) \leftarrow \text{value} \\
\text{set_covar}(x, y, \text{value})
\]

Arguments

\[
x \hspace{1cm} \text{an object of class errors.} \\
y \hspace{1cm} \text{an object of class errors.} \\
\text{value} \hspace{1cm} \text{a numeric vector of length 1 or the same length as } x.
\]

Details

The uncertainties associated to errors objects are supposed to be independent by default. If there is some known correlation, it can be defined using these methods, and it will be used for the propagation of the uncertainty by the mathematical and arithmetic operations.

The correl method sets or retrieves correlations, i.e., a value (or vector of values) between \(-1 \text{ and } 1\) (see base cor on how to compute correlations). A covariance is just a correlation value multiplied by the standard deviations (i.e., the standard uncertainty) of both variables. It can be defined using the covar method (see base cov on how to compute covariances). These methods are equivalent; in fact, correl calls covar internally.
Every `errors` object has a unique ID, and pairwise correlations are stored in an internal hash table. All the functions or methods that modify somehow the dimensions of `errors` objects (i.e., subsets, binds, concatenations, summaries...) generate new objects with new IDs, and correlations are not, and cannot be, propagated. Only mathematical and arithmetic operations propagate correlations, where appropriate, following the Taylor series method.

Value

corr and covar return a vector of correlations and covariances respectively (or NULL). set_correl and set_covar, which are pipe-friendly versions of the setters, return the x object.

Examples

```r
x <- set_errors(1:5, 0.1)
y <- set_errors(1:5, 0.1)

# Self-correlation is of course 1, and cannot be changed
corr(x, x)
## Not run:
corr(x, x) <- 0.5
## End(Not run)

# Cross-correlation can be set, but must be a value between -1 and 1
corr(x, y)
## Not run:
corr(x, y) <- 1.5
## End(Not run)
corr(x, y) <- runif(length(x))
corr(x, y)
covar(x, y)
```

datasets

Datasets from the Guide to the Expression of Uncertainty in Measurement (GUM)

Description

Datasets found in Annex H of the GUM (see reference below).

Usage

GUM.H.2

GUM.H.3
Format

GUM.H.2, from Section 2 of Annex H (Table H.2), provides simultaneous resistance and reactance measurements. It is a data frame with 5 rows and 3 variables:

V Voltage amplitude, in Volts.
I Current amplitude, in Amperes.
phi Phase-shift angle of the voltage relative to the current, in radians.

GUM.H.3, from Section 3 of Annex H (Table H.6), provides thermometer readings and observed corrections to obtain a linear calibration curve for some reference temperature. It is a data frame with 11 rows and 2 variables:

tk Thermometer reading, in Celsius degrees.
bk Observed correction, in Celsius degrees.

An object of class data.frame with 11 rows and 2 columns.

Source

See Also

See errors-package for examples.

diff.errors Lagged Differences

Description

S3 method for errors objects (see diff).

Usage

S3 method for class 'errors'
diff(x, lag = 1L, differences = 1L, ...)

Arguments

x a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.
differences an integer indicating the order of the difference.
... further arguments to be passed to or from methods.
Examples

diff(set_errors(1:10, 0.1), 2)
diff(set_errors(1:10, 0.1), 2, 2)
x <- cumsum(cumsum(set_errors(1:10, 0.1)))
diff(x, lag = 2)
diff(x, differences = 2)

drop_errors

Drop Uncertainty

Description

Drop Uncertainty

Usage

drop_errors(x)

S3 method for class 'data.frame'
drop_errors(x)

Arguments

x an errors object.

Value

the numeric without any errors attributes, while preserving other attributes like dimensions or other classes.

Note

Equivalent to errors(x) <-NULL or set_errors(x, NULL).

errors

Handle Uncertainty on a Numeric Vector

Description

Set or retrieve uncertainty to/from numeric vectors.
Usage

errors(x)
errors_max(x)
errors_min(x)
errors(x) <- value
set_errors(x, value = 0)
as.errors(x, value = 0)

Arguments

x a numeric object, or object of class errors.
value a numeric vector of length 1 or the same length as x.

Details

`errors<-` sets the uncertainty values (and converts x into an object of class errors). `set_errors` is a pipe-friendly version of `errors<-` and returns an object of class errors. `as.errors` is an alias for `set_errors`.

See `correl` on how to handle correlations between pairs of variables.

Value

desr returns a vector of uncertainty. errors_max (errors_min) returns the values plus (minus) the uncertainty.

See Also

groupGeneric.errors, mean.errors, Extract.errors, c, rep, cbind.errors, format.errors, print.errors, plot.errors, as.data.frame.errors, as.matrix.errors, t.

Examples

x = 1:3
class(x)
x
errors(x) <- 0.1
class(x)
x

(x <- set_errors(x, seq(0.1, 0.3, 0.1)))
errors_max(x)
errors_min(x)
Extract.errors
Extract or Replace Parts of an Object

Description

S3 operators to extract or replace parts of `errors` objects.

Usage

```r
## S3 method for class 'errors'
x[...]  
## S3 method for class 'errors'
x[[...]]  
## S3 replacement method for class 'errors'
x[...] <- value  
## S3 replacement method for class 'errors'
x[[...]] <- value
```

Arguments

- `x`
 object from which to extract element(s) or in which to replace element(s).
- `...`
 additional arguments to be passed to base methods (see `Extract`).
- `value`
 typically an array-like R object of a similar class as `x`.

Examples

```r
x <- set_errors(1:3, 0.1)  
y <- set_errors(4:6, 0.2)  
(z <- rbind(x, y))  
z[2, 2]  
z[2, 2] <- -1  
errors(z[[1, 2]]) <- 0.8  
z[, 2]
```

format.errors
Encode errors

Description

Format an `errors` object for pretty printing.
S3 method for class 'errors'

format(x, digits = NULL, scientific = FALSE, notation = getOption("errors.notation", "parenthesis"), ...)

Arguments

- **x**: an errors object.
- **digits**: how many significant digits are to be used for uncertainties. The default, NULL, uses getOption("errors.digits",1).
- **scientific**: logical specifying whether the elements should be encoded in scientific format.
- **notation**: error notation; "parenthesis" and "plus-minus" are supported through the "errors.notation" option.
- **...**: ignored.

Examples

```r
x <- set_errors(1:3*100, 1:3*100 * 0.05)
format(x)
format(x, digits=2)
format(x, scientific=TRUE)
format(x, notation="plus-minus")
```

S3 Group Generic Functions

Description

Math, Ops and Summary group generic methods for errors objects with support for automatic uncertainty propagation (see groupGeneric for a comprehensive list of available methods).

Usage

```r
## S3 method for class 'errors'
Math(x, ...)

## S3 method for class 'errors'
Ops(e1, e2)

## S3 method for class 'errors'
Summary(..., na.rm = FALSE)
```
Arguments

x objects.
...
na.rm logical: should missing values be removed?

details

Math: The sign method returns a numeric value without uncertainty. floor, ceiling, trunc, round and signif add the rounding error to the original uncertainty. lgamma, gamma, digamma and trigamma are not implemented. The rest of the methods propagate the uncertainty as expected from the first-order Taylor series method.

Ops: Boolean operators drop the uncertainty (showing a warning once) and operate on the numeric values. The rest of the operators propagate the uncertainty as expected from the first-order Taylor series method. Any numeric operand is automatically coerced to errors (showing a warning once) with no uncertainty.

Summary: The methods all and any are not supported for errors objects and fail with an informative message. min, max (and range) return the minimum or (and) maximum value minus/plus its uncertainty. sum and prod propagate the uncertainty as expected from the first-order Taylor series method.

Examples

x <- set_errors(1:3, 0.1)
exp(x)
log(x)
cumsum(x)
cumprod(x)

y <- set_errors(4:6, 0.2)
x / sqrt(y) + y * sin(x)

numeric values are automatically coerced to errors
x^2

boolean operators drop uncertainty
y > x

c(min(x), max(x))
range(x)
sum(y)
prod(y)
mean.errors

Description

S3 methods for errors objects.

Usage

S3 method for class 'errors'
mean(x, ...)

S3 method for class 'errors'
weighted.mean(x, ...)

S3 method for class 'errors'
median(x, ...)

Arguments

x

an errors object.

... further arguments passed to of from other methods.

Details

The mean and weighted.mean methods set the uncertainty as the maximum of the standard deviation of the mean and the (weighted) mean of the uncertainty.

The median method sets the uncertainty as $1.253 \times \text{errors}(\text{mean}(x))$, which is derived from the asymptotic variance formula of the median. Note that this value is valid only if the sample is big enough.

Value

An errors object.

plot.errors

Scatterplot with Error Bars

Description

S3 method for errors objects which automatically prints the error bars.

Usage

S3 method for class 'errors'
plot(x, y, ...)

plot(x, y, ...)
print.errors

Arguments

x the coordinates of points in the plot. Alternatively, a single plotting structure, function or any R object with a plot method can be provided.

y the y coordinates of points in the plot, optional if x is an appropriate structure.

... additional arguments (see plot).

Examples

cars <- as.matrix(cars)
cars <- as.data.frame(set_errors(cars, cars * 0.05))
plot(cars)

print.errors

Description

S3 method for errors objects.

Usage

S3 method for class 'errors'
print(x, ...)
Replicate Elements of Vectors and Lists

Description
S3 method for errors objects (see rep).

Usage
S3 method for class 'errors'
rep(x, ...)

Arguments
x a vector (of any mode including a list) or a factor or (for rep only) a POSIXct or POSIXlt or Date object; or an S4 object containing such an object.
...

Examples
rep(set_errors(1, 0.1), 4)

Matrix Transpose

Description
S3 method for errors objects (see t).

Usage
S3 method for class 'errors'
t(x)
Arguments

x a matrix or data frame, typically.

Examples

```r
a <- matrix(1:30, 5, 6)
errors(a) <- 1:30
t(a)
```
Index

+Topic datasets
datasets, 8
[.errors (Extract.errors), 12
[<- .errors (Extract.errors), 12
[[.errors (Extract.errors), 12
[[<- .errors (Extract.errors), 12

as.data.frame, 4
as.data.frame.errors, 4, 11
as.errors (errors), 10
as.list, 4
as.list.errors, 4
as.matrix, 5
as.matrix.errors, 5, 11

c, 5, 11
c.errors, 5, 6
cbind, 6
cbind.errors, 6, 11
cor, 7
correl, 2, 7, 11
correl<- (correl), 7
cov, 7
covar (correl), 7
covar<- (correl), 7
data.frame, 4, 6
datasets, 3, 8
diff, 9
diff.errors, 9
drop.errors, 10
errors, 2, 10
errors-package, 2
errors<- (errors), 10
errors_max (errors), 10
errors_min (errors), 10
Extract, 12
Extract.errors, 11, 12
format.errors, 11, 12

groupGeneric, 13
groupGeneric.errors, 2, 11, 13
GUM.H.2 (datasets), 8
GUM.H.3 (datasets), 8

list, 17

make.names, 4
Math.errors (groupGeneric.errors), 13
mean.errors, 11, 15
median.errors (mean.errors), 15

Ops.errors (groupGeneric.errors), 13

plot, 16
plot.errors, 11, 15
print.errors, 11, 16

rbind.errors (cbind.errors), 6
rep, 11, 17
rep.errors, 17

set.correl (correl), 7
set_covar (correl), 7
set.errors (errors), 10
Summary.errors (groupGeneric.errors), 13

t, 11, 17
t.errors, 17

weighted.mean.errors (mean.errors), 15