Package ‘esDesign’

November 23, 2018

Type Package

Title Adaptive Enrichment Designs with Sample Size Re-Estimation

Version 1.0.2

Date 2018-11-23

Author Zhao Yang, Ruitao Lin, Guosheng Yin and Ying Yuan

Maintainer Zhao Yang <yangz98@connect.hku.hk>

Description Software of 'esDesign' is developed to implement the adaptive enrichment designs with sample size re-estimation. In details, three-proposed trial designs are provided, including the AED1-SSR (or ES1-SSR), AED2-SSR (or ES2-SSR) and AED3-SSR (or ES3-SSR). In addition, this package also contains several widely used adaptive designs, such as the Marker Sequential Test (MaST) design proposed Freidlin et al. (2014) <doi:10.1177/1740774513503739>, the adaptive enrichment designs without early stopping (AED or ES), the sample size re-estimation procedure (SSR) based on the conditional power proposed by Proschan and Hunsberger (1995), and some useful functions. In details, we can calculate the futility and/or efficacy stopping boundaries, the sample size required, calibrate the value of the threshold of the difference between subgroup-specific test statistics, conduct the simulation studies in AED, SSR, AED1-SSR, AED2-SSR and AED3-SSR.

Depends R (>= 3.2.0)

Imports stats

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

Suggests knitr, rmarkdown

NeedsCompilation no

Repository CRAN

Date/Publication 2018-11-23 05:50:03 UTC
R topics documented:

AED.boundary .. 2
AED.sim .. 3
AED1_SSR.boundary ... 4
AED1_SSR.CP .. 5
AED1_SSR.N2 ... 6
AED1_SSR.sim ... 7
AED2_SSR.boundary ... 8
AED2_SSR.CP .. 9
AED2_SSR.sim ... 10
AED3_SSR.boundary ... 12
AED3_SSR.CP .. 13
AED3_SSR.sim ... 14
MaST.sim ... 15
SD.sim .. 17
SigP ... 18
sSize.norm ... 18
SSR.boundary .. 19
SSR.CP .. 20
SSR.sim .. 21

Index 23

AED.boundary Calculate the critical value used at the final analysis in APE

Description

AED.boundary() is used to calculate the critical value used at the final analysis in APE design, meanwhile preserving the overall type I error rate at α level

Usage

AED.boundary(rho, alpha, Info, epsilon)

Arguments

rho The proportion of subgroup 1
alpha The overall type I error rate
Info The information fraction
epsilon The threshold of difference between the subgroup-specific test statistics

Value

The critical value used at the final analysis
References

Examples

```r
eaed-boundary(rho = 0.5, alpha = 0.05, info = 0.5, epsilon = 0.5)
```

Description

The `AED.sim()` is used to conduct the simulation studies of the Adaptive Enrichment Design without early stopping boundary. The AED design is quite similar with the AED1_SSR design. But, in the AED design, the futility stopping boundary and the Sample Size Re-estimation Procedure are removed. On the contrary, a fixed sample size is used to replace the sample size re-estimated procedure. In addition, an \(\epsilon \)-rule is also introduced to select the subgroup with larger subgroup-specific test statistic.

Usage

```r
AED.sim(N1, N2, rho, alpha, beta, theta, theta0, K, Info, epsilon, sigma0, nsim, Seed)
```

Arguments

- **N1**: The sample size used at the first stage
- **N2**: The sample size used at the second stage
- **rho**: The proportion of the subgroup 1
- **alpha**: The overall Type I error rate
- **beta**: The \((1 - \text{Power})\)
- **theta**: The sizes of treatment effects in subgroups 1 and 2 among the experimental arm
- **theta0**: The size of treatment effect in standard arm
- **K**: The number of subgroups
- **Info**: The observed information
- **epsilon**: The threshold of difference between the subgroup-specific test statistics
- **sigma0**: The variance of the treatment effect
- **nsim**: The number of simulated studies
- **Seed**: The random Seed
Value

A list contains

- nTotal The average expected sample size
- H00 The probability of rejecting the null hypothesis of H_{00}
- H01 The probability of rejecting the null hypothesis of H_{01}
- H02 The probability of rejecting the null hypothesis of H_{02}
- H0 The probabilities of rejecting at least one of the null hypothesis
- Enrich01 The prevalence of adaptive enrichment of subgroup 1
- Enrich02 The prevalence of adaptive enrichment of subgroup 2

References

Examples

```r
N1 <- 310
N2 <- 310
rho <- 0.5
alpha <- 0.05
beta <- 0.20
theta <- c(0, 0)
theta0 <- 0
K <- 2
info <- 0.5
epsilon <- 0.5
sigma0 <- 1
nsim <- 1000
Seed <- 6
AED.sim(N1 = N1, N2 = N2, rho = rho, alpha = alpha, beta = beta, theta = theta, theta0 = theta0, K = K, info = info, epsilon = epsilon, sigma0 = sigma0, nsim = nsim, Seed = Seed)
```

Description

The `AED1_SSR.boundary()` is used to calculate the critical value required at the final analysis of the Adaptive Enrichment Design (Strategy 1) with sample size re-estimation procedure. In the AED1-SSR design, the adaptive enrichment strategy is guided by a pre-specified futility stopping boundary and a threshold of the difference between the subgroup-specific test statistics.
Usage

```r
AED1_SSR.boundary(rho, alpha, pstar, Info, epsilon)
```  
Arguments

- **rho**: The proportion of subgroup 1.
- **alpha**: The overall Type I error rate.
- **pstar**: The \((1 - \text{power})\) of accepting the null hypothesis at the interim analysis.
- **Info**: The observation information, which is commonly calculated through the sample size used at each stage of the trial.
- **epsilon**: The threshold of the difference between subgroup-specific test statistics.

References

Examples

```r
AED1_SSR.boundary(rho = 0.5, alpha = 0.05, pstar = 0.2, Info = 0.5, epsilon = 0.5)
```

AED1_SSR.CP

Calculate the conditional power of the Adaptive Enrichment Design with (Strategy 1) Sample Size Re-estimation Procedure

Description

The `AED1_SSR.CP()` is used to calculate the conditional power of the Adaptive Enrichment Design (Strategy 1) with sample size re-estimation procedure.

Usage

```r
AED1_SSR.CP(c, Z1, N1, N2)
```

Arguments

- **c**: The critical value used at the final analysis
- **Z1**: The test statistic obtained at the interim analysis
- **N1**: The sample size used at the first stage
- **N2**: The sample size used at the second stage

Value

A list contains

- **Critical.Value** The critical value used at the final analysis
- **Conditional.Power** The value of conditional power given the observed data
References

Examples

```r
  c <- 2.258
  z1 <- 1.975
  N1 <- 248
  N2 <- 200
  AED1_SSR.CP(c = 2.258, z1 = 1.975, N1 = 248, N2 = 200)
```

```markdown
AED1_SSR.N2  Calculate the sample size required at the second stage of the adaptive enrichment design (Strategy1) with Sample Size Re-estimation Procedure
```

Description

The `AED1_SSR.N2()` is used to calculate the sample size required at the second stage of the Adaptive Enrichment Design (Strategy 1) with Sample Size Re-estimation Procedure.

Usage

```r
AED1_SSR.N2(c, z1, N1, beta)
```

Arguments

- `c`: The critical value used at the final analysis
- `z1`: The test statistic obtained at the interim analysis
- `N1`: The sample size used at the first stage
- `beta`: The (1 - power)

Value

The Value of the re-estimated sample size

References

Examples

```r
N1 <- 248
rho <- 0.2
Beta <- c = c, z1 = z1, N1 = N1, beta = beta)
```

AED1_SSR.ssim
Conduct the simulation studies of the Adaptive Enrichment Design (Strategy 1) with Sample Size Re-estimation Procedure

Description

The AED1_SSR.sim() is used to conduct the simulation study of the Adaptive Enrichment Design (Strategy 1) with Sample Size Re-estimation procedure.

Usage

```r
AED1_SSR.ssim(N1, rho, alpha, beta, pstar, theta, theta0, Info, K = 2, epsilon, sigma0, nSim, Seed)
```

Arguments

- `N1`: The sample size used at the first stage.
- `rho`: The proportion of subgroup 1 among the overall patients.
- `alpha`: The overall Type I error rate.
- `beta`: The (1 - Power).
- `pstar`: The (1 - power) of accepting the null hypothesis at the interim analysis.
- `theta`: The sizes of the treatment effect in subgroups 1 and 2 with the experimental arm.
- `theta0`: The size of the treatment effect in standard arm.
- `Info`: The observation information.
- `K`: The number of subgroups. The default value is `K = 2`.
- `epsilon`: The threshold of the difference between the subgroup-specific test statistic.
- `sigma0`: The variance of the treatment effect.
- `nSim`: The number of simulated studies.
- `Seed`: The random seed.
Value

A list contains

- nTotal The average expected sample size
- H00 The probability of rejecting the null hypothesis of H_{00}
- H01 The probability of rejecting the null hypothesis of H_{01}
- H02 The probability of rejecting the null hypothesis of H_{02}
- H0 The probabilities of rejecting at least one of the null hypothesis
- ESF The probability of early stopping for futility
- ESE The probability of early stopping for efficacy
- Enrich01 The prevalence of adaptive enrichment of subgroup 1
- Enrich02 The prevalence of adaptive enrichment of subgroup 2

References

Examples

```r
res <- AED1_SSR.sim(
  N1 = 310, rho = 0.5,
  alpha = 0.05, beta = 0.2, pstar = 0.2,
  theta = c(0,0), theta0 = 0, Info = 0.5,
  epsilon = 0.5, sigma0 = 1, nSim = 1000, Seed = 6)
```

AED2_SSR.boundary

Calculate the futility and efficacy stopping boundaries of the Adaptive Enrichment Design (Strategy 2) with Sample Size Re-estimation Procedure

Description

The `AED2_SSR.boundary()` function is used to calculate the futility and efficacy stopping boundaries of the Adaptive Enrichment Design (strategy 2) with Sample Size Re-estimation Procedure. In the AED2-SSR design, an ϵ-rule is introduced to select the subgroup with larger test statistic. In practice, the value of ϵ should be calibrated to fit the requirement of the trial.

Usage

```r
AED2_SSR.boundary(rho, alpha, pstar, epsilon)
```
Arguments

- **rho**: The proportion of subgroup 1
- **alpha**: The overall Type I error rate
- **pstar**: The \((1 - \text{power})\) of accepting the null hypothesis at the interim analysis.
- **epsilon**: The threshold of difference between the subgroup-specific test statistics

Value

A list contains

- **upper.boundary**: The upper and efficacy stopping boundary
- **lower.boundary**: The lower and futility stopping boundary

Examples

```r
rho <- 0.5
aplha <- 0.05
pstar <- 0.15
epsilon <- 0.5
AED2_SSR.boundary(rho = rho, alpha = alpha, pstar = pstar, epsilon = epsilon)
```

AED2_SSR.CP
Calculate the \(N^2\) and the critical value \(C\) in the Adaptive Enrichment Design (Strategy 2) with Sample Size Re-estimation Procedure

Description

The AED2_SSR.CP() is used to calculate the sample size required at the second stage and the critical value used at the final analysis in the Adaptive Enrichment Design with Sample Size Re-estimation Procedure. In addition, this function can also be used to conduct the conditional power analysis in terms of \(N^2\)

Usage

```r
AED2_SSR.CP(Z1 = NULL, delta = NULL, N1 = NULL, pstar, rho, epsilon, alpha, beta, N2 = NULL)
```

Arguments

- **Z1**: The test statistic obtained at the interim analysis
- **delta**: The standardized size of treatment effect, which can be estimated by using \((\mu_X - \mu_Y)/\sqrt{\sigma^2}\).
- **N1**: The sample size used at the first stage
- **pstar**: The \((1 - \text{power})\) of accepting the null hypothesis at the interim analysis.
- **rho**: The proportion of subgroup 1
epsilon The threshold of the difference between subgroup-specific test statistics.
alpha The overall Type I error rate
beta The (1 - Power)
N2 The pre-specified sample size used at the second stage, which is used to conduct the conditional power analysis

Value
A list contains
- upper.boundary The efficacy stopping boundary
- lower.boundary The futility stopping boundary
- N2 The pre-specified sample size used at the second stage, which is used to implement the conditional power analysis
- Conditional.Power The value of conditional power given the value of N2 in the conditional power analysis
- P.Value The corresponding P-Value used at the final analysis in the conditional power analysis
- N2.CP The re-estimated sample size of N2 to ensure an adequate conditional power
- c.CP The estimated the critical value used at the final analysis based the conditional power

Examples
Z1 <- 1.974
delta <- 0.355
N1 <- 248
pstar <- 0.15
alpha <- 0.05
rho <- 0.5
epsilon <- 0.5
beta <- 0.20
N2 <- 104
res <- AED2_SSR.CP(Z1 = Z1, delta = delta, N1 = N1, pstar = pstar,
alpha = alpha, rho = rho, epsilon = epsilon,
beta = beta, N2 = N2)

AED2_SSR.sim Conduct the simulation studies of the Adaptive Enrichment Design (Strategy 2) with Sample Size Re-estimation Procedure

Description
The AED2_SSR.sim() is used to conduct the simulation studies of the Adaptive Enrichment Design (Strategy) with sample size re-estimation procedure. The AED2-SSR is different from the AED3-SSR, in which an ε-rule is introduced to select the subgroup with larger subgroup-specific test statistic.
Usage

AED2_SSR.sim(N1, rho, alpha, beta, pstar, theta, theta0, sigma0, epsilon, nSim, Seed)

Arguments

- **N1** The sample size used in the first stage
- **rho** The proportion of subgroup 1
- **alpha** The overall Type I error rate
- **beta** The (1 - power)
- **pstar** The (1 - power) of accepting the null hypothesis at the interim analysis.
- **theta** The sizes of treatment effect in subgroups 1 and 2 with the experimental treatment
- **theta0** The size of treatment effect with the standard treatment
- **sigma0** The variance of the treatment effect
- **epsilon** The threshold of the difference between subgroup-specific test statistics
- **nSim** The number of simulated studies
- **Seed** The random seed

Value

A list contains

- **nTotal** The average expected sample size
- **H00** The probability of rejecting the null hypothesis of \(H_0 \)
- **H01** The probability of rejecting the null hypothesis of \(H_{01} \)
- **H02** The probability of rejecting the null hypothesis of \(H_{02} \)
- **H0** The probabilities of rejecting at least one of the null hypothesis
- **ESF** The probability of early stopping for futility
- **ESE** The probability of early stopping for efficacy
- **Enrich01** The prevalence of adaptive enrichment of subgroup 1
- **Enrich02** The prevalence of adaptive enrichment of subgroup 2
- **Trigger03** The prevalence of no enrichment

Examples

```r
N <- 310
rho <- 0.5
alpha <- 0.05
beta <- 0.2
theta <- c(0, 0)
theta0 <- 0
sigma0 <- 1
epsilon <- 0.5
```
pstar <- 0.20
nSim <- 1000
Seed <- 6
res <- AED2_SSR.sim(N1 = N, rho = rho, alpha = alpha,
 beta = beta, theta = theta, theta0 = theta0,
 sigma0 = sigma0, pstar = pstar, epsilon = epsilon,
 nSim = nSim, Seed = Seed)

AED3_SSR.boundary

Calculate the futility and efficacy stopping boundaries in Adaptive enrichment design (Strategy 3) with Sample Size Re-estimation Procedure for the continuous endpoint

Description

The AED3_SSR.boundary() is used to calculate the futility and efficacy stopping boundaries in the Adaptive Enrichment Design with Sample Size Re-estimation Procedure.

Usage

AED3_SSR.boundary(rho, alpha, pstar)

Arguments

rho The proportion of subgroup 1
alpha The overall Type I error rate
pstar The (1 - power) of accepting the null hypothesis at the interim analysis.

Value

A list contains

- upper.boundary The upper or the efficacy stopping boundary
- lower.boundary The lower or the futility stopping boundary

Examples

rho <- 0.5
alpha <- 0.05
pstar <- 0.15
res <- AED3_SSR.boundary(rho = rho, alpha = alpha, pstar = pstar)
Calculate the N^2 and the critical value C in the Adaptive Enrichment Design (Strategy 3) with Sample Size Re-estimation Procedure

Description

The `aed3_ssr.CP()` function is used to calculate the sample size required at the second stage and the critical value used at the final analysis in the Adaptive Enrichment Design with Sample Size Re-estimation Procedure. In addition, this function can also be used to conduct the conditional power analysis in terms of N^2.

Usage

```
aed3_ssr.CP(z1 = NULL, delta = NULL, n1 = NULL, pstar, rho, alpha, beta, n2 = NULL)
```

Arguments

- `z1`: The test statistic obtained at the interim analysis.
- `delta`: The standardized size of treatment effect, which can be estimated by using $(\mu_X - \mu_Y)/\sqrt{\sigma^2}$.
- `n1`: The sample size used at the first stage.
- `pstar`: The $(1 - \text{power})$ of accepting the null hypothesis at the interim analysis.
- `rho`: The proportion of subgroup 1.
- `alpha`: The overall Type I error rate.
- `beta`: The $(1 - \text{Power})$.
- `n2`: The pre-specified sample size used at the second stage, which is used to conduct the conditional power analysis.

Value

A list contains:

- `N2`: The pre-specified sample size used at the second stage, which is used to implement the conditional power analysis.
- `Conditional.Power`: The value of conditional power given the value of `N2` in the conditional power analysis.
- `P.Value`: The corresponding P-Value used at the final analysis in the conditional power analysis.
- `N2.CP`: The re-estimated sample size of `N2` to ensure an adequate conditional power.
- `c.CP`: The estimated critical value used at the final analysis based on the conditional power analysis.
Examples

```r
Z1 <- 1.974
delta <- 0.355
N1 <- 248
pstar <- 0.15
alpha <- 0.05
rho <- 0.5
beta <- 0.20
N2 <- 108
AED3_SSR.CP(Z1 = Z1, delta = delta, N1 = N1, pstar = pstar,
             alpha = alpha, rho = rho, beta = beta, N2 = N2)
```

AED3_SSR.sim

Conduct the simulation studies of the Adaptive Enrichment Design (Strategy 3) with Sample Size Re-estimation Procedure based on Futility and Efficacy Stopping Boundaries for the continuous endpoint

Description

The AED3_SSR.sim() is used to conduct the adaptive enrichment design with Sample Size Re-estimation, in which futility and efficacy stopping boundaries are used to guide the adaptive enrichment process. For the adaptively enriched subgroup, we re-estimate the sample size to maintain an adequate conditional power meanwhile protect the overall Type I error rate.

Usage

```r
AED3_SSR.sim(N1, rho, alpha, beta, theta, theta0, sigma0, pstar, nSim, Seed)
```

Arguments

- **N1** The sample size used at the first stage
- **rho** The proportion of subgroup 1 among the overall patients
- **alpha** The overall Type I error rate
- **beta** The \(1 - \text{Power}\)
- **theta** The sizes of treatment effect in subgroups 1 and 2 with experimental treatment
- **theta0** The size of treatment effect in standard treatment
- **sigma0** The known variance of the treatment effect
- **pstar** The \(1 - \text{power}\) of accepting the null hypothesis at the interim analysis.
- **nSim** The number of simulated studies.
- **Seed** The random seed
Value

A list contains

- `nTotal` The average expected sample size
- `H00` The probability of rejecting the null hypothesis of H_{00}
- `H01` The probability of rejecting the null hypothesis of H_{01}
- `H02` The probability of rejecting the null hypothesis of H_{02}
- `H0` The probabilities of rejecting at least one of the null hypothesis
- `Enrich01` The prevalence of adaptive enrichment of subgroup 1
- `Enrich02` The prevalence of adaptive enrichment of subgroup 2
- `Trigger03` The prevalence of early stopping for the situation, in which the treatment effect in subgroup 1 is superiority, while the treatment effect in subgroup 2 is inconclusive
- `Trigger04` The prevalence of early stopping for the situation, in which the treatment effect in subgroup 2 is superiority, while the treatment effect in subgroup 2 is inconclusive
- `ESF` The probability of early stopping for futility
- `ESE` The probability of early stopping for efficacy

Examples

```r
N <- 310
rho <- 0.5
alpha <- 0.05
beta <- 0.2
theta <- c(0,0)
theta0 <- 0
sigma0 <- 1
pstar <- 0.20
nSim <- 100
Seed <- 6
res <- AED3_SSR.sim(N1 = N, rho = rho, alpha = alpha,
                     beta = beta, theta = theta, theta0 = theta0,
                     sigma0 = sigma0, pstar = pstar, nSim = nSim,
                     Seed = Seed)
```

MaST.sim

Conduct the simulation studies of the Marker Sequential Test design

Description

The MaST.sim() is used to conduct the simulation studies of the marker sequential test design (MaST).

Usage

`MaST.sim(N, rho, alpha, beta, theta, theta0, sigma0, nSim, Seed)`
Arguments

- **N**
The total sample size used at the trial
- **rho**
The proportion of subgroup 1 among the overall patients
- **alpha**
The overall Type I error rate
- **beta**
The (1 - Power)
- **theta**
The sizes of treatment effect in subgroups 1 and 2 with the experimental arm
- **theta0**
The size of treatment effect in the standard arm
- **sigma0**
The variance of the treatment effect
- **nsim**
The number of simulated studies
- **Seed**
The random seed

Value

A list contains

- **nTotal**
The average expected sample size
- **H00**
The probability of rejecting the null hypothesis of H_{00}
- **H01**
The probability of rejecting the null hypothesis of H_{01}
- **H02**
The probability of rejecting the null hypothesis of H_{02}
- **H0**
The probabilities of rejecting at least one of the null hypothesis

References

Examples

```r
N <- 310  
rho <- 0.5  
alpha <- 0.05  
beta <- 0.20  
theta <- c(0,0)  
theta0 <- 0  
sigma0 <- 1  
nsim <- 1000  
Seed <- 6  
MaST.sim(N = N, rho = rho, alpha = alpha, beta = beta,  
theta = theta, theta0 = theta0, sigma0 = sigma0,  
nsim = nsim, Seed = Seed)
```
Description

The SD.sim() is used to implement the simulation studies of the standard design.

Usage

SD.sim(N, rho, alpha, beta, theta, theta0, sigma0, nSim, Seed)

Arguments

- **N**: The total sample size required
- **rho**: The proportion of subgroup 1
- **alpha**: The overall Type I error rate
- **beta**: The (1 -Power)
- **theta**: The sizes of treatment effects for subgroups 1 and 2 in experimental arm
- **theta0**: The size of treatment effect for the control arm
- **sigma0**: The variance of the treatment effect
- **nSim**: The number of simulated studies
- **Seed**: The random seed

Value

A list contains,

- nTotal the total sample used
- The power of the specified trial. Here, the power is defined as the probability of rejecting the null hypothesis.

Examples

```r
N <- 620
rho <- 0.5
alpha <- 0.05
beta <- 0.2
theta <- c(0.2, 0.0)
theta0 <- 0
sigma0 <- 1
nSim <- 1000
Seed <- 6
SD.sim(N = N, rho = rho,
       alpha = alpha, beta = beta, theta = theta, theta0 = theta0,
       sigma0 = sigma0, nSim = nSim, Seed = Seed)
```
SigP
Commonly used α-spending functions

Description

The `SigP()` is used to calculate the reduced significant level based on several widely used α-spending functions, such as the "Pocock", "Lan-DeMets", "O'Brein-Fleming" and "Power" functions.

Usage

`SigP(alpha, Info, esfunction = "Pocock", gamma = 1)`

Arguments

- **alpha**: The overall Type I error rate
- **Info**: The fraction of the observed information
- **esfunction**: The specific α-spending function. For example, `esfunction = "Pocock"` for the Pocock method, `esfunction = "LD"` for the Lan-Demets method, `esfunction = "OF"` for the O'Brein-Fleming method, and `esfunction = "Power"` for the Power method.
- **gamma**: The parameter used in the Power method. The default value is `gamma = 1`.

Value

The reduced significant level

Examples

```r
alpha <- 0.05
Info <- 0.5
esFunction = "OF"
SigP(alpha = alpha, Info = Info, esFunction = esFunction)
```

sSize.norm
Sample size calculation for the standard design with continuous endpoint

Description

The `sSize.norm()` is used to calculate the sample size used in the standard design with continuous endpoint.

Usage

`sSize.norm(alpha, beta, theta, side, r, sigma)`
Arguments

alpha The Type I error rate or the significant level
beta beta The (1 - Power)
theta The size of treatment effect
side One-sided or two-sided Test
r The ratio of sample size between the experimental and control arms
sigma2 The variance of the treatment effect

Value

A list contains the total sample size, and the sample sizes required for the experimental and control arms.

Examples

alpha <- 0.05
beta <- 0.2
theta <- 0.2
side <- 1
r <- 1
sigma2 <- 0.8
ssizeNnorm(alpha = alpha, beta = beta, theta = theta,
side = side, r = r, sigma2 = sigma2)

SSR.boundary

Calculate the futility and efficacy stopping boundaries for Sample Size Re-estimation Procedure based on the conditional error function

Description

The SSR.boundary() is used to calculate the futility and efficacy stopping boundaries, meanwhile protect the overall Type I error rate at the pre-specified level.

Usage

SSR.boundary(alpha, pstar)

Arguments

alpha The overall Type I error rate
pstar The (1 - power) of accepting the null hypothesis at the interim analysis.
Value

A list containing:
- upper.boundary: The efficacy stopping boundary at the interim analysis.
- lower.boundary: The futility stopping boundary at the interim analysis.

References

Examples

```r
alpha <- 0.05
pstar <- 0.2
res <- SSR.boundary(alpha = alpha, pstar = pstar)
```

SSR.CP

Calculate the N_2 and the critical value C in Sample Size Re-estimation Procedure

Description

The SSR.CP() is used to calculate the sample size required at the second stage and the critical value used at the final analysis. In addition, this function can also be used to conduct the conditional power analysis in terms of N_2.

Usage

```r
SSR.CP(Z1 = NULL, delta = NULL, N1 = NULL, pstar, alpha, beta, N2 = NULL)
```

Arguments

- `Z1`: The test statistic obtained at the interim analysis.
- `delta`: The standardized size of treatment effect, which can be estimated by using $(\mu_X - \mu_Y)/\sqrt{\sigma^2}$.
- `N1`: The sample size used at the first stage.
- `pstar`: The $(1 - \text{power})$ of accepting the null hypothesis at the interim analysis.
- `alpha`: The overall Type I error rate.
- `beta`: The $(1 - \text{Power})$.
- `N2`: The pre-specified sample size used at the second stage, which is used to conduct the conditional power analysis.
Value

A list contains

- N2 The pre-specified sample size used at the second stage, which is used to implement the conditional power analysis
- Conditional.Power The value of conditional power given the value of N2 in the conditional power analysis
- P.Value The corresponding P-Value used at the final analysis in the conditional power analysis
- N2.CP The re-estimated sample size of N2 to ensure an adequate conditional power
- c.CP The estimated critical value used at the final analysis based on the conditional power

References

Examples

```r
Z1 <- 1.527
delta <- 0.137
N1 <- 248
pstar <- 0.15
alpha <- 0.05
beta <- 0.2
res <- SSR.CP(Z1 = Z1, delta = delta, N1 = N1, pstar = pstar, alpha = alpha, beta = beta)
```

Description

The SSR.sim() is used to implement the simulation studies based on the Sample Size Re-estimation Procedure.

Usage

```r
SSR.sim(N, rho, alpha, beta, theta, theta0, sigma0, pstar, nSim, Seed)
```

Arguments

- **N**
 The sample size used at the first stage. Note that this N is not the initial total sample size calculated using the standard design
- **rho**
 The proportion of subgroup 1
- **alpha**
 The overall Type I error rate

Conduct the simulation studies using SSR
beta The (1 - Power)

theta The sizes of treatment effects for subgroups 1 and 2 in the experimental arm

theta0 The size of treatment effect in the control arm

sigma0 The variance of the treatment effect

pstar The (1 - power) of accepting the null hypothesis at the interim analysis.

nsim The number of simulated studies

Seed The random seed

Value

A list contains

- nTotal The average total sample size used in SSR
- H0 The power of SSR under the specific trial design. Here, the power is defined as the probability of rejecting the null hypothesis
- ESF The percentage of early stopping for futility
- ESE The percentage of early stopping for efficacy

References

Examples

```r
N <- 310
rho <- 0.5
alpha <- 0.05
beta <- 0.2
pstar <- 0.2
theta <- c(0.2,0)
theta0 <- 0
sigma0 <- 1.0
nsim <- 1000
Seed <- 6
res <- SSR.sim(N = N, rho = rho, alpha = alpha, beta = beta, theta = theta,
               theta0 = theta0, sigma0 = sigma0, pstar = pstar,
               nSim = nsim, Seed = Seed)
```
Index

AED_boundary, 2
AED_sim, 3
AED1_SSR_boundary, 4
AED1_SSR_CP, 5
AED1_SSR_N2, 6
AED1_SSR_sim, 7
AED2_SSR_boundary, 8
AED2_SSR_CP, 9
AED2_SSR_sim, 10
AED3_SSR_boundary, 12
AED3_SSR_CP, 13
AED3_SSR_sim, 14

MaST_sim, 15

SD_sim, 17
SigP, 18
sSize_norm, 18
SSR_boundary, 19
SSR_CP, 20
SSR_sim, 21