Package ‘etasFLP’

September 2, 2021

Type Package
Title Mixed FLP and ML Estimation of ETAS Space-Time Point Processes for Earthquake Description
Version 2.2.0
Date 2021-09-01
Description Estimation of the components of an ETAS (Epidemic Type Aftershock Sequence) model for earthquake description. Non-parametric background seismicity can be estimated through FLP (Forward Likelihood Predictive). New version 2.0.0: covariates have been introduced to explain the effects of external factors on the induced seismicity; the parametrization has been changed; Chiodi, Adelfio (2017)<doi:10.18637/jss.v076.i03>.
Imports fields, maps
License GPL (>= 2)
Depends R (>= 3.5.0), mapdata
Author Marcello Chiodi [aut, cre], Giada Adelfio [aut]
Maintainer Marcello Chiodi <marcello.chiodi@unipa.it>
LazyData true
RoxygenNote 7.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-09-02 21:40:02 UTC

R topics documented:

etasFLP-package ... 2
b.guten ... 4
bwd.nrd .. 5
californiacatalog ... 6
catalog.withcov ... 7
compare.etasclass .. 8
daily.etasclass .. 9
Description

New version 2.2.0. Covariates have been introduced to explain the effects of external factors on the induced seismicity. Since the parametrization is changed, the etasclass object created with the previous versions are not compatible with the one obtained with the current version. Estimation of the components of an ETAS (Epidemic Type Aftershock Sequence) model for earthquake description. Non-parametric background seismicity can be estimated through FLP (Forward Likelihood Predictive), while parametric components are estimated through maximum likelihood. The two estimation steps are alternated until convergence is obtained. For each event the probability of being a background event is estimated and used as a weight for declustering steps. Many options to control the estimation process are present, together with some diagnostic tools. Some descriptive functions for earthquakes catalogs are included; also plot, print, summary, profile methods are defined for main output (objects of class etasclass); update methods are now present.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>etasFLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>2.2.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2021-09-01</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>=2)</td>
</tr>
<tr>
<td>Imports:</td>
<td>fields, maps</td>
</tr>
<tr>
<td>Depends:</td>
<td>R (>= 3.5.0), mapdata</td>
</tr>
<tr>
<td>Suggests:</td>
<td>MASS</td>
</tr>
</tbody>
</table>
etasclass is the main function of the package etasFLP: strongly renewed in version 2.0. update.etasclass and timeupdate.etasclass two new different kind of updating existing etasclass objects. Very useful for large catalogues

Note
The package is intended for the estimation of the ETAS model for seismicity description (introduced by Ogata (1988), see reference), but theoretically it can be used for other fields of application.

Author(s)
Marcello Chiodi and Giada Adelfio
Maintainer: Marcello Chiodi<marcello.chiodi@unipa.it>

References

Description

Estimates the parameter of the Gutenberg-Richter law for the magnitude distribution of earthquakes, given a threshold magnitude; it uses moment estimator on transformed data.

Usage

```
b.guten(magn, m0=min(magn))
```

Arguments

- `magn`: a vector of magnitudes coming from an earthquake catalog.
- `m0`: A threshold value. Only values of `magn` not less than `m0` will be used.

Details

Maximum likelihood estimation for the Gutenberg-Richter Law:

\[
\log_{10} N(> m) = a - b M
\]

where \(N(> m) \) is the number of events exceeding a magnitude \(m \) and \(a, b \) are two parameters: \(a \) is related to the total seismicity rate of the region while \(b \), to be estimated, should be usually near 1.

Catalog is assumed to be complete (in a certain space-time region) at least for a magnitude \(m0 \), that is, every earthquake of magnitude at least \(m0 \) in that space-time region, is certainly present in the catalog.

Value

- `b`: estimate of the parameter \(b \) of the Gutenberg-Richter Law.
- `se`: estimate of the standard error of the estimate \(b \).

Note

the plot produced by `magn.plot` can be used to have an idea, for a given catalog, of the magnitude threshold value.

Author(s)

Marcello Chiodi
bwd.nrd

References

See Also

magn.plot

Examples

```r
data(italycatalog)
b.guten(italycatalog$magn1)
```

bwd.nrd
Silverman’s rule optimal for the estimation of a kernel bandwidth

Description

Computes the optimal bandwidth with the Silverman’s rule of thumb, to be used for a kernel estimator with given points and weights.

Usage

```r
bwd.nrd(x, w=replicate(length(x),1), d = 2)
```

Arguments

- **x**: numeric vector: sample points to be used for a normal kernel estimator.
- **w**: numeric vector of the same length of x: weights to give to the elements of x. Default is a vector of ones
- **d**: number of dimensions of the kernel estimator.

Details

Computes the optimal bandwidth with the Silverman rule, for a kernel estimator with points x and weights w. If a multivariate kernel is used, (i.e. d > 1), bwd.nrd must be called for each variable. It computes dispersion only with the weighted standard deviation, with no robust alternative. Called by kde2dnew.fortran.

Value

The value of the bandwidth for a sample x and weights w.
Note
It is used in connection with the declustering method of etasFLP. Points with a higher probability of being part of the background seismicity will weight more in the estimation of the background seismicity.

Note
This is a slight modification of bw.nrd.

Author(s)
Marcello Chiodi

References

Examples
#####

| californiacatalog | Sample catalog of North California earthquakes |

Description
Sample catalog of North California earthquakes of magnitude at least 3.0 from year 1968 to year 2012.

Usage
californiacatalog

Format
a data matrix with 18,545 observations and 5 variables: time, lat, long, z, magn1.

Source
Northern California Earthquake Data Center.

References
Northern California Earthquake Catalog Search: http://www.ncedc.org/ncedc/catalog-search.html.
Examples

```
data(catalog.withcov)
str(catalog.withcov)
```

catalog.withcov

Small sample catalog of Italian earthquakes with covariates

Description

A small sample catalog of Italian earthquakes of magnitude at least 2.5 from May 2012 to May 2016 with extra information.

Usage

catalog.withcov

Format

A data matrix with 2,226 observations and 11 variables: Date, id_ev, time, lat, long, z, magn1, err_h_rev, min_distance_rev, rms_rev, nstaloc_rev.

Details

A small sample catalog of Italian earthquakes of magnitude at least 2.5 from May 2012 to May 2016 with extra information. Date is the date, id_ev is an identifier of the events, time, lat, long, z, magn1 are time (days from 1900-01-01), latitude, longitude, depth, magnitude, err_h_rev is an estimate of hypocentral uncertainty, min_distance_rev is the distance from the nearest station, rms_rev is a measure of the quality of the location, nstaloc_rev is the number of stations that registered the event, distmin is the distance from the nearest fault.

Source

INGV (Istituto Nazionale di Geofisica e Vulcanologia) ISIDE Data Base.

References

INGV home page: https://www.ingv.it/.

Examples

```
data(catalog.withcov)
str(catalog.withcov)
```
compare.etasclass

Compare two etasclass objects

Description

Compare the results of two etasclass executions through the comparison of some elements of two etasclass objects.

Usage

```r
compare.etasclass(etas1, etas2)
```

Arguments

- `etas1`: an etasclass object.
- `etas2`: an etasclass object.

Details

Compare the results of two etasclass executions through the comparison of some elements of two etasclass objects estimated on the same catalog.

Value

- `diffstd.params`: Standardized comparison of the estimated parameters, included covariates.
- `AIC`: Difference of AIC values.
- `weights`: Comparison of the weights rho.weights of the two input objects.
- `rho.weights`: Standardized comparison of the weights rho.weights of the two input objects.
- `cor.weights`: Correlation between the weights rho.weights of the two input objects.
- `cor.trig`: Correlation between the triggered intensities of the two input objects.
- `cor.back`: Correlation between the background intensities of the two input objects.

Author(s)

Marcello Chiodi

See Also

etasclass
daily.etasclass

Title daily.etasclass

Description

A daily estimation on a space grid is made.

Usage

daily.etasclass(x, ngrid = 201, nclass = 20, tfixed = 0, flag.log = FALSE, ...)

Arguments

- **x**: an etasclass object
- **ngrid**: subdivisions of x and y axis for grid computation of intensities
- **nclass**: number of class for horizontal and vertical axes of the output grid
- **tfixed**: day of computation
- **flag.log**: if log intensity must be used
- **...**: other optional parameters

Value

a grid with daily theoretical intensities

eqcat

Check earthquake catalog

Description

Preliminary check of the names of an earthquake catalog. summary and plot methods for earthquake catalogs are defined.

Usage

eqcat(x)

 ## S3 method for class 'eqcat'
 plot(x, extended=TRUE, ...)

 ## S3 method for class 'eqcat'
 summary(object, extended=TRUE, ...)

Arguments

- **x**: an earthquake catalog.
- **object**: an eqcat object.
- **extended**: if TRUE some extra summary functions are computed.
- **...**: other arguments.
Details

Minimal check of an earthquake catalog; checks only if it is suitable for the use as argument of the functions of etasFLP (mainly etasclass); checks only the presence of variables with the names time, lat, long, z, magn1. summary and plot methods are defined for earthquake catalogs. and the input object can be the cat output of eqcat

Value

If the catalog passes the check, then the catalog is returned in the object cat with the new class name eqcat; otherwise an error message is printed.

cat the input catalog is returned. If the check is ok, this is an eqcat class object.
ok A flag: TRUE if the check is ok; FALSE elsewhere.

Note

In this first version if you have a catalog without the depth (z), please insert however a constant column. The depth can be used only in some plot and not in the estimation routines of the package etasFLP; etasclass uses only time, lat, long, magn1. From version 2.0 you could use z as a covariate for the triggered component

Author(s)

Marcello Chiodi

See Also

etasclass

Examples

Not run:
data(italycatalog)
f=eqcat(italycatalog)
print(f$ok)
summary(f$cat)
plot(f$cat)

End(Not run)
etas.starting

Description

etas.starting is a simple function to give starting values of the 7 ETAS parameters for the function etasclass.

It gives only rough approximations, based on some assumptions, intended to give only the order of magnitude of each parameter (but should be better than nothing). Returns a list with starting values. In the present version user can give manually the output of this function in the input of etasclass. Otherwise, the function is called by etasclass at first steps, to supply initial values to start estimation.

Usage

etas.starting(cat.orig,
magn.threshold=2.5,
p.start=1,
gamma.start=0.5,
q.start=2,
betacov.start=.7,
longlat.to.km=TRUE,
sectoday=FALSE,
onlytime=FALSE)

Arguments

cat.orig An earthquake catalog, possibly an object of class eqcat, or however a data.frame with variables of names time, lat, long, z, magn1. No missing values are allowed.
magn.threshold Threshold magnitude (only events with a magnitude at least magn.threshold will be used). Default value = 2.5.
p.start Parameter 4 of the ETAS model; the exponent of the Omori law for temporal decay rate of aftershocks; see details. Default value = 1.0.
gamma.start Parameter 5 (γ) of the ETAS model; together with a is related to the efficiency of an event of given magnitude in generating aftershocks; see details. Default value = 0.5.
q.start Parameter 7 of the ETAS model; parameter related to the spatial influence of the mainshock; see details. Default value = 2.
betacov.start coefficient of the covariate (as default the magnitude). Default value = 0.7.
sectoday if TRUE, then time variable of cat.orig is converted from seconds to days. Default value = TRUE.
longlat.to.km if TRUE, then long and lat variables of cat.orig are treated as geographical coordinates and converted to kilometers. Default value = TRUE.
onlytime if TRUE then a time process is fitted to data, regardless to space location (in this case is.backconstant is set to TRUE and declustering, flp are set to FALSE). Default value = FALSE.
Details

It is a beta-version of a very crude method to give starting values for the seven parameters of an ETAS (Epidemic type aftershock sequences) model for the description of the seismicity of a space-time region. These starting values can be used as input for the function etasclass sectoday and longlat.to.km flags must the same that will be used in etasclass.

In this first attempt to give starting values for the ETAS model, many approximations are used. It gives only rough approximation, based on some assumptions, intended to give only the order of magnitude of each parameter (but it should be better than nothing). It returns a list with 7 starting values. With this beta-version user must give manually the output of this function in the input of etasclass.

The values of p.start, gamma.start and q.start must be however given by the user (we did not find anything reasonable). Default choices for p and q (p.start=1, q.start=2) are strongly recommended.

c and d are estimated from the empirical distributions of time differences and space distances, respectively. mu and k0 are then estimated given the other starting values, solving the two ML equations, that is derivatives of the whole likelihood with respect to mu and k0 equated to zero. In the computation of the likelihood an approximation for the integral of the intensity function is used (quoted also in Schoenberg (2013)).

Value

returns a list:

- mu.start: guess value for mu
- k0.start: guess value for k0
- c.start: guess value for c
- p.start: guess value for p (the same as input value)
- gamma.start: guess value for gamma (the same as input value)
- d.start: guess value for d
- q.start: guess value for q (the same as input value)
- longlat.to.km: longlat.to.km (the same as input value)
- sectoday: sectoday (the same as input value)

Note

The optimization algorithm used in etasclass depends on the choice of initial values. Some default guess choice is performed in the present beta-version of the function etas.starting. If convergence problem are experienced, a useful strategy can be to start with an high magnitude threshold value \(m_0 \) (that is, with a smaller catalog with bigger earthquakes), and then using this first output as starting guess for a running with a lower magnitude threshold value \(m_0 \). In this trial executions avoid declustering (declustering=FALSE) or at least use a small value of ndeclust; small values of iterlim and ntheta can speed first executions.

Quicker executions are obtained using smaller values of iterlim and ntheta in the input.

Also a first execution with is.backconstant = TRUE, to fit a first approximation model with constant background, can be useful.
Some other useful information can be obtained estimating a pure time process, that can give a good
guess at least for some parameters, like μ, κ, c, p.

Input times are expected in days, and so final intensities are expected number of events per day. If
input values are in seconds, then set sectoday=TRUE

Author(s)

Marcello Chiodi, Giada Adelfio

References

See Also

etasclass

etasclass

Mixed estimation of an ETAS model (renewed in version 2.0)

Description

etasclass is the main function of the package etasFLP.

etassclass objects of previous versions are not compatible with the current version

Performs the estimation of the components of the ETAS (Epidemic Type Aftershock Sequence)
model for the description of the seismicity in a space-time region. Background seismicity is esti-
mated non-parametrically, while triggered seismicity is estimated by MLE. In particular also the
bandwidth for a kernel smoothing can be estimated through the Forward Likelihood Predictive
(FLP) approach. For each event the probability of being a background event or a triggered one is
estimated.

New in version 2.0.0: Covariates have been introduced to explain the effects of external factors on
the induced seismicity. Since the parametrization is changed, the etasclass object created with the
previous versions are not compatible with the one obtained with the current version.

New in version 2.2.0: New algorithm for starting values. A new argument (n.iterweight) and an
update method and a timeupdate option

An ETAS with up to $7+n_{cov}$ parameters can be estimated, with several options and different meth-
ods.

Returns an etasclass object, for which plot, summary, print and profile methods are defined.
Usage

etasclass(cat.orig,
 time.update=FALSE,
 magn.threshold =2.5,
 magn.threshold.back=magn.threshold+2,
 tmax =max(cat.orig$time),
 long.range=range(cat.orig$long),
 lat.range=range(cat.orig$lat),
 ###### starting values for parameters
 mu =1,
 k0 =1,
 c =0.5,
 p =1.01,
 gamma =.5,
 d =1.1,
 q =1.5,
 betacov =0.7,
 ### indicators: if params.ind[i] i-th parameter will be estimated
 params.ind=replicate(7,TRUE),
 # params.lim=c(0,0,0,1.0,0,0,0),
 ### formula for covariates (magnitude should always be included):
 formula1 ="time~magnitude-1",
 offset =0,
 hdef=c(1,1),
 w =replicate(nrow(cat.orig),1),
 hvary =replicate(nrow(cat.orig),1),
 hvary =replicate(nrow(cat.orig),1),
 ### flags for the kind of declustering and smoothing:
 declustering =TRUE,
 thinning =FALSE,
 flp =TRUE,
 m1 =NULL,
 ndeclust =5,
 n.iterweight =1,
 onlytime =FALSE,
 is.backconstant =FALSE,
 ###### end of main input arguments.
 ###### Control and secondary arguments:
 description ="",
 cat.back =NULL,
 back.smooth =1.0,
 sectoday =FALSE,
 longlat.to.km =TRUE,
 # fastML=FALSE, #### not yet implemented
 # fast.eps=0.001, #### not yet implemented
 usenlm =TRUE,
 method ="BFGS",
 compsqm =TRUE,
etasclass

\[
\text{epsmax} = 0.0001, \\
\text{iterlim} = 50, \\
\text{ntheta} = 36
\]

Arguments

- **cat.orig**
 An earthquake catalog, possibly an object of class `eqcat`, or however a `data.frame` with variables of names `time`, `lat`, `long`, `z`, `magn1`. No missing values are allowed.

- **time.update**
 Logical. It is `TRUE` if the execution is called by `time.update` to update to new time maximum. Default value = `FALSE`.

- **magn.threshold**
 Threshold magnitude (only events with a magnitude at least `magn.threshold` will be used). Default value = 2.5.

- **magn.threshold.back**
 Threshold magnitude used to build the catalog `cat.back` for the first estimation of the background seismicity. Default value = `magn.threshold+2`.

- **tmax**
 Maximum value of time. Only observations before `tmax` will be used for estimation. Default value = `max(cat.orig$time)`.

- **long.range**
 Longitude range. Only observations with `long` in the range `long.range` will be used for estimation. Default value = `range(cat.orig$long)`.

- **lat.range**
 Latitude range. Only observations with `lat` in the range `lat.range` will be used for estimation. Default value = `range(cat.orig$lat)`.

Values for the 7 parameters of the ETAS model (starting values or fixed values according to `params.ind`):

- **mu**
 Parameter 1 (µ) of the ETAS model: background general intensity; see details. Default value = 1.

- **k0**
 Parameter 2 (κ₀) of the ETAS model: measures the strength of the aftershock activity; see details. Default value = 1.

- **c**
 Parameter 3 of the ETAS model; a shift parameter of the Omori law for temporal decay rate of aftershocks; see details. Default value = 0.5.

- **p**
 Parameter 4 of the ETAS model; the exponent of the Omori law for temporal decay rate of aftershocks; see details. Default value = 1.01.

- **gamma**
 Parameter 5 (γ) of the ETAS model; together with a is related to the efficiency of an event of given magnitude in generating aftershocks; see details. Default value = 0.5.

- **d**
 Parameter 6 of the ETAS model; parameter related to the spatial influence of the mainshock; see details. Default value = 1.

- **q**
 Parameter 7 of the ETAS model; parameter related to the spatial influence of the mainshock; see details. Default value = 1.5.

- **betacov**
 Numerical array. Parameters of the covariates ETAS model (the parameters β_j); see details. Default value = 0.7. Parameters in `betacov` are not limited.

End of model parameter input
params.ind vector of 7 logical values: `params.ind[i] = TRUE` means that the i-th parameter must be estimated. `params.ind[i] = FALSE` means that the i-th parameter is fixed to its input value (the order of parameters is: `mu, k0, c, p, gamma, d, q`). Default value = `replicate(7, TRUE)`, that is, `etasclass` estimates all parameters.

params.lim vector of 7 numerical values: `params.lim[i] = theta0` means that the i-th parameter must be greater than theta0 (the default limits of parameters are: 0 for `mu, k0, c, l` for `p`, 0 for `gamma, d, q`). Default value = `replicate(7, TRUE)`, that is, `etasclass` estimates all parameters.

formula1 a character variable: Formula which defines the covariates acting on the induced seismicity. In classical etas model the covariate is the magnitude. The left side (dummy) element must be the time, which is a variable certainly present in the data set. The right part of the formula determines `ncov` the number of covariates. Default value = `"time~magnitude-1"`; input must be a character value: it is converted in a formula inside the program.

offset An offset, for which no parameter will be estimated. Default value=0

Flags for the kind of declustering and smoothing:

hdef Starting values for the `x, y` bandwidths used in the kernel estimator of background seismicity. Default value = `1, 1`.

w Starting values for the weights used in the kernel estimator of background seismicity. The length must be equal to the number of events of the catalog after event selection (can be less than `nrow(cat.orig)`). Default value = `replicate(nrow(cat.orig), 1)`.

hvarx Longitude bandwidths adjustment used in the kernel estimator of background seismicity. The length must be equal to the number of events of the catalog after event selection (can be less than `nrow(cat.orig)`). Default value = `NULL`.

hvary Longitude bandwidths adjustment used in the kernel estimator of background seismicity. The length must be equal to the number of events of the catalog after event selection (can be less than `nrow(cat.orig)`). Default value = `NULL`.

declustering if `TRUE` the catalog is iteratively declustered to optimally estimate the background intensity (through thinning, if `thinning=TRUE`, or through weighting if `thinning=FALSE`). Default value = `TRUE`.

thinning if `thinning=TRUE` a background catalog is obtained sampling from the original catalog with probabilities estimated during the iterations. Default value = `FALSE`.

flp if `flp=TRUE` then background seismicity is estimated through Forward Likelihood Predictive (see details). Otherwise the Silverman rule is used. Default value = `TRUE`.

m1 Used only if `flp=TRUE`. Indicates the range of points used for the FLP steps. See details. If missing it is set to `nrow(cat)/2`.

ndeclust maximum number of iterations for the general declustering procedure. Default=5.

n.iterweight New in version 2.2. The weighting and the density computations will be alternated `n.iterweight` times after each maximum likelihood step: in many situations this improves the general convergence procedure. Default=1.
onlytime if TRUE then a time process is fitted to data, regardless to space location (in this case is.backconstant is set to TRUE and declustering, flp are set to FALSE). Default value = FALSE.

is.backconstant if TRUE then background seismicity is assumed to be homogeneous in space (and declustering, flp are set to FALSE). Default value = FALSE.

Other control parameters:

description a description string used for the output. Default value = "".

cat.back external catalog used for the estimation of the background seismicity. Default value = NULL.

back.smooth Controls the level of smoothing for the background seismicity (meaningful only if flp=FALSE). Default value = 1.

sectoday if TRUE, then time variable of cat.orig is converted from seconds to days. Default value = FALSE.

longlat.to.km if TRUE, then long and lat variables of cat.orig are treated as geographical coordinates and converted to kilometers. Default value = TRUE.

usenlm if TRUE, then nlm function (gauss-newton method) is used in the maximum likelihood steps; if FALSE, then optim function is used (with method =method). Default value = TRUE.

method used if usenlm=FALSE: method used by optim. Default value = "BFGS".

compsqm if TRUE, then standard errors are computed. Default value = TRUE.

epsmax maximum allowed difference between estimates in subsequent iterations (default = 0.0001).

iterlim maximum number of iterations in the maximum likelihood steps (used in nlm or optim). Default value = 100.

ntheta number of subdivisions of the round angle, used in the approximation of the integral involved in the likelihood computation of the ETAS model. Default value = 100.

Details

Estimates the components of an ETAS (Epidemic type aftershock sequence) model for the description of the seismicity of a space-time region. Background seismicity is estimated nonparametrically, while triggered seismicity is estimated by MLE.

From version 2.0 of package etasFLP covariates are allowed to improve the fitting of the triggered part, through the input formula1, which as a default values of "time ~ magnitude -1", which corresponds to the previous version of package etasFLP, that is, magnitude as the only covariate which influence the average number of aftershocks.

The bandwidth of the kernel density estimator is estimated through the Forward Likelihood Predictive approach (FLP), (theoretical reference on Adelfio and Chiodi, 2013) if flp is set to TRUE. Otherwise the bandwidth is estimated through the Silverman’s rule. FLP steps for the estimation of nonparametric background component is alternated with the Maximum Likelihood step for the estimation of parametric components (only if declustering=TRUE). For each event the probability of being a background event or a triggered one is estimated, according to a declustering procedure in a way similar to the proposal of Zhuang, Ogata, and Vere-Jones (2002).
The ETAS model for conditional space time intensity $\lambda(x, y, t)$ is given by:

$$
\lambda(x, y, t) = \mu f(x, y) + \kappa_0 \sum_{t_j < t} \frac{e^{\eta_j}}{(t - t_j + c)^p} \left\{ \frac{(x - x_j)^2 + (y - y_j)^2}{e^{\gamma(m_j - m_0)}} + d \right\}^{-\eta}
$$

where $\eta_j = \sum_{j=1, ncov} \beta_j \text{cov}_{ij}$

parameters β_j are the elements of the array variable betacov

$f(x, y)$ is estimated through a weighted kernel gaussian estimator; if flp is set to TRUE then the bandwidth is estimated through a FLP step.

Weights (computed only if declustering=TRUE) are given by the estimated probabilities of being a background event; for the i-th event this is given by $\rho_i = \frac{\mu f(x_i, y_i)}{\lambda(x_i, y_i, t_i)}$. The weights ρ_i are updated after a whole iteration.

μ (κ_0) measures the background general intensity (which is assumed temporally homogeneous);

k_0 is a scale parameter related to the importance of the induced seismicity;

c and p are the characteristic parameters of the seismic activity of the given region; c is a shift parameter while p, which characterizes the pattern of seismicity, is the exponent parameter of the modified Omori law for temporal decay rate of aftershocks;

$\eta_j = \sum_{j=1, ncov} \beta_j \text{cov}_{ij}$ measures the efficiency of an event of a given magnitude in generating aftershock sequences;

d and q are two parameters related to the spatial influence of the mainshocks.

Many kinds of ETAS models can be estimated, managing some control input arguments. The eight ETAS parameters can be fixed to some input value, or can be estimated, according to params.ind: if params.ind[i]=FALSE the i-th parameter is kept fixed to its input value, otherwise, if params.ind[i]=TRUE the i-th parameter is estimated and the input value is used as a starting value.

By default params.ind=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE), and so a full 7+ncov parameters ETAS model will be estimated.

The seven parameters are internally ordered in this way: params = (mu, k0, c, p, gamma, d, q); for example a model with a fixed value $p=1$ (and params.ind[4] = FALSE) can be estimated and compared with the model where p is estimated (params.ind[4]=TRUE); for example a 6+ncov parameters model can be fitted with gamma=0 and params.ind[5]=FALSE, so that input must be in this case: params.ind=c(TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE);

if onlytime=TRUE a time process is fitted to data (with a maximum of 5 parameters), regardless to space location (however the input catalog cat.orig must contain three columns named long, lat, z);

if is.backconstant=TRUE a process (space-time or time) with a constant background intensity μ is fitted;

if μ is fixed to a very low value a process with very low background intensity is fitted, that is with only clustered intensity (useful to fit a model to a single cluster of events).

If flp=TRUE the bandwidth for the kernel estimation of the background intensity is evaluated maximizing the Forward Likelihood Predictive (FLP) quantity, given by (Chiodi, Adelfio, 2011; Adelfio, Chiodi, 2013):
FLP_k1,k2(\hat{\psi}) \equiv \sum_{k=k_1}^{n-1} \delta_{k,k+1}(\hat{\psi}(H_{tk}); H_{tk+1})

with \(k_1 = \frac{n}{2}, k_2 = n - 1 \) and where \(\delta_{k,k+1}(\hat{\psi}(H_{tk}); H_{tk+1}) \) is the predictive information of the first \(k \) observations on the \(k + 1 \)-th observation, and is so defined:

\[\delta_{k,k+1}(\hat{\psi}(H_{tk}); H_{tk+1}) \equiv \log L(\hat{\psi}(H_{tk}); H_{tk+1}) - \log L(\hat{\psi}(H_{tk}); H_{tk}) \]

where \(H_k \) is the history of the process until time \(t_k \) and \(\hat{\psi}(H_{tk}) \) is an estimate based only on history until the \(k \)-th observation.

In the ML step, the vector of parameter \(\theta = (\mu, \kappa_0, c, p, \alpha, \gamma, d, q) \) is estimated maximizing the sample log-likelihood given by:

\[\log L(\theta; H_{tn}) = \sum_{i=1}^{n} \log \lambda(x_i, y_i, t_i; \theta) - \int_{T_0}^{T_{max}} \int \int_{\Omega(x,y)} \lambda(x,y,t; \theta) \, dx \, dy \, dt \]

Value

returns an object of class etasclass.

The main items of the output are:

this.call reports the exact call of the function
params.ind indicates which parameters have been estimated (see details)
params ML estimates of the ETAS parameters.
sqm Estimates of standard errors of the ML estimates of the ETAS parameters (sqm[i]=0 if params.ind[i]=FALSE or where the hessian is not computed or near to singularity).
AIC.iter AIC values at each iteration.
hdef final bandwidth used for the kernel estimation of background spatial intensity (however estimated, with flp=TRUE or flp=FALSE).
rho.weights Estimated probability for each event to be a background event (\(\rho \)).
time.res rescaled time residuals (for time processes only).
params.iter A matrix with estimates values at each iteration.
sqm.iter A matrix with the estimates of the standard errors at each iteration.
rho.weights.iter A matrix with the values of rho.weights at each iteration.
l A vector with estimated intensities, corresponding to observed points

summary, print and plot methods are defined for an object of class etasclass to obtain main output.
A profile method (profile.etasclass) is also defined to make approximate inference on a single parameter
Note

In this version the x-y space region, where the point process is defined, is a rectangle embedding the catalog values.

The optimization algorithm depends on the choice of initial values. Some default guess choice is performed inside the function for parameters without input starting values; the function etas.starting gives rough first guess for initial values. If convergence problem are experienced, a useful strategy can be starting with an higher magnitude threshold value \(m_0 \) (that is, with a smaller catalog with bigger earthquakes), and then using this first output as starting guess for a running with a lower magnitude threshold value \(m_{0l} \). In this trial executions avoid declustering (declustering=FALSE) or at least use a small value of ndeclust; small values of iterlim and ntheta can speed first executions.

Quicker executions are obtained using smaller values of iterlim and ntheta in the input.

Also a first execution with is.backconstant = TRUE, to fit a first approximation model with constant background, can be useful.

Some other useful information can be obtained estimating a pure time process, that can give a good guess at least for some parameters, like \(\mu, \kappa_0, \alpha, c, p \).

Input times are expected in days, and so final intensities are expected number of events per day. If input values are in seconds, then set sectoday=TRUE.

Author(s)

Marcello Chiodi, Giada Adelfio

References

See Also
eqcat.plot.etasclass, print.etasclass, summary.etasclass, profile.etasclass, etas.starting

Examples

Not run:
data(“italycatalog”)
load a sample catalog of the Italian seismicity
esecov1 <- etasclass(cat.orig = catalog.withcov, magn.threshold = 2.5, magn.threshold.back = 3.9,
mu = 0.3, k0 = 0.02, c = 0.015, p = 0.99, gamma = 0, d = 1,
q = 1.5, params.ind = c(TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE),
formula1 = “time ~ magnitude-1”, declustering = TRUE,
thinning = FALSE, flp = TRUE, ndeclust = 15, onlytime = FALSE,
is.backconstant = FALSE, sectoday = FALSE, usenlm = TRUE,
compsqm = TRUE, epsmax = 1e-04, iterlim = 100, ntheta = 36)

execution of etasclass for events with minimum magnitude of 3.0.
The events with magnitude at least 3.5 are used to build a first approximation
for the background intensity function
(magn.threshold.back=3.5)
The magnitude effect is given by the covariate magnitude
in the formula “time ~ magnitude-1”
magnitude is the internal name for magn1-magn.threshold
print method for the etasclass object

print(esecov1)

> print(esecov1)
Call:
etasclass(cat.orig = catalog.withcov, magn.threshold = 2.5, magn.threshold.back = 3.9,
mu = 0.3, k0 = 0.02, c = 0.015, p = 0.99, gamma = 0, d = 1,
q = 1.5, params.ind = c(TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE),
formula1 = "time ~ magnitude-1", declustering = TRUE,
thinning = FALSE, flp = TRUE, ndeclust = 15, onlytime = FALSE,
is.backconstant = FALSE, sectoday = FALSE, usenlm = TRUE,
compsqm = TRUE, epsmax = 1e-04, iterlim = 100, ntheta = 36)

Number of observations 2226
ETAS Parameters:

mu k0 c p gamma d q
0.667509 0.022393 0.014769 1.110059 0.000000 1.905461 1.947223
magnitude
0.740109

summary method for more informative output etasclass object

summary(esecov1)

plot results with maps of intensities and diagnostic tools
plot(esecov1)

an application with 5 covariates
esecov5<-etasclass(cat.orig = catalog.withcov, magn.threshold = 2.5, magn.threshold.back = 3.9,
mu = 0.3, k0 = 0.02, c = 0.015, p = 0.99, gamma = 0, d = 1,
q = 1.5, params.ind = c(TRUE, TRUE, TRUE, FALSE, TRUE, TRUE),
formula1 = "time ~ z + magnitude +nstaloc_rev +min_distance_rev+distmin-1",
deleclustering = TRUE, thinning = FALSE, flp = TRUE, ndeclust = 15,
onlytime = FALSE, is.backconstant = FALSE, sectoday = FALSE,
usenlm = TRUE, compsqm = TRUE, epsmax = 1e-04, iterlim = 100,
ntheta = 36)

print results, more out put with summary
print(esecov5)
Call:
etasclass(cat.orig = catalog.withcov, magn.threshold = 2.5, magn.threshold.back = 3.9,
mu = 0.3, k0 = 0.02, c = 0.015, p = 0.99, gamma = 0, d = 1,
q = 1.5, params.ind = c(TRUE, TRUE, TRUE, FALSE, TRUE, TRUE),
formula1 = "time ~ z + magnitude +nstaloc_rev +min_distance_rev+distmin-1",
deleclustering = TRUE, thinning = FALSE, flp = TRUE, ndeclust = 15,
onlytime = FALSE, is.backconstant = FALSE, sectoday = FALSE,
usenlm = TRUE, compsqm = TRUE, epsmax = 1e-04, iterlim = 100,
ntheta = 36)
Number of observations 2226
ETAS Parameters:

<table>
<thead>
<tr>
<th>mu</th>
<th>k0</th>
<th>c</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.705351</td>
<td>0.073070</td>
<td>0.019396</td>
<td>1.154186</td>
</tr>
<tr>
<td>gamma</td>
<td>d</td>
<td>q</td>
<td>z</td>
</tr>
<tr>
<td>0.000000</td>
<td>1.942929</td>
<td>2.004915</td>
<td>-0.041256</td>
</tr>
<tr>
<td>magnitude</td>
<td>nstaloc_rev</td>
<td>min_distance_rev</td>
<td>distmin</td>
</tr>
<tr>
<td>1.157698</td>
<td>-0.009010</td>
<td>-0.011020</td>
<td>-1.826717</td>
</tr>
</tbody>
</table>

End(Not run)

italycatalog Small sample catalog of italian earthquakes

Description

A small sample catalog of italian earthquakes of magnitude at least 3.0 from year 2005 to year 2013.

Usage

italycatalog
Format

A data matrix with 2,158 observations and 5 variables: time, lat, long, z, magn1.

Source

INGV (Istituto Nazionale di Geofisica e Vulcanologia) ISIDE Data Base.

References

INGV home page: https://www.ingv.it/.

Examples

data(italycatalog)
str(italycatalog)

kde2dnew.fortran

A 2-d normal kernel estimator

Description

A simple and quick 2-d weighted normal kernel estimator, with fixed bandwidth and relative integral.

Usage

```r
kde2dnew.fortran(
  # parallel=FALSE,
  xkern, ykern, gx, gy, h,
  factor.xy=1, eps=0, w=replicate(length(xkern),1),
  hvarx=replicate(length(xkern),1), hvary=replicate(length(xkern),1)
)
kde2d.integral(xkern, ykern, gx=xkern, gy=ykern, eps=0, factor.xy=1,
  h = c( bwd.nrd(xkern, w), bwd.nrd(ykern, w) ), w=replicate(length(xkern),1),
  hvarx=replicate(length(xkern),1), hvary=replicate(length(xkern),1)
)
```

Arguments

- **xkern**: x-values of kernel points of length n (n=length(xkern)).
- **ykern**: y-values of kernel points of length n.
- **gx**: x-values of the points where densities must be estimated.
- **gy**: y-values of the points where densities must be estimated.
- **h**: bandwidths: a length 2 numerical vector.
magn.plot

<table>
<thead>
<tr>
<th>eps</th>
<th>enlargement factor for the region of interest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>factor.xy</td>
<td>expansion factor for bandwidths (density will be smoother if factor.xy>1).</td>
</tr>
<tr>
<td>w</td>
<td>vector of weights to give to observed points (length n).[]</td>
</tr>
<tr>
<td>hvarx</td>
<td>Longitude bandwidths adjustment used in the kernel estimator of background seismicity. The length must be equal to the number of events of the catalog after event selection (can be less than nrow(cat.orig)). Default value = replicate(length(xkern),1)</td>
</tr>
<tr>
<td>hvary</td>
<td>Longitude bandwidths adjustment used in the kernel estimator of background seismicity. The length must be equal to the number of events of the catalog after event selection (can be less than nrow(cat.orig)). Default value = replicate(length(xkern),1)</td>
</tr>
</tbody>
</table>

Details

A standard bivariate normal kernel estimator.

Value

grid values and estimated densities.

Author(s)

Marcello Chiodi.

References

Description

Plots the logarithm of the cumulative frequency of exceedence vs. magnitude in an earthquake catalog.

Usage

magn.plot(catalog, main = "Transformed plot of magnitude frequencies", ...)
Details

For each magnitude m_j, if N_j is the number of values of magn1 greater than m_j, the values of $\log(N_j)$ vs. m_j are plotted.

According to the Gutenberg-Richter law, this plot should be linear. If there is a linear behaviour only for values greater than a given m_0, then m_0 is probably the magnitude threshold of the catalog.

Value

A new plot is printed (see details).

Author(s)

Marcello Chiodi.

Examples

```r
## Not run:
data(italycatalog)
magn.plot(italycatalog)
## End(Not run)
```

`MLA.freq` *Display a pretty frequency table*

Description

Display a pretty frequency table. It is only a wrapper to the function `table` but with a richer output, at least for numerical variables.

Usage

`MLA.freq(x)`

Arguments

- `x` a numeric vector.

Details

The output gives the different kinds of frequencies and cumulated frequencies: single frequencies, cumulated and back cumulated (absolute and relatives).

Value

return a matrix with 7 columns: the modal distinct values of `x`, frequencies, relative frequencies, cumulated frequencies, cumulated relative frequencies, back cumulated frequencies and back cumulated relative frequencies.
Author(s)
Marcello Chiodi

Examples

\[
x=\text{trunc}(\text{runif}(1000)\times10) \\
\text{MLA.freq}(x)
\]

\[
data(\text{italeycatalog}) \\
\text{MLA.freq}(\text{italeycatalog}_\text{magn1})
\]

plot.etasclass
Plot method for etasclass objects

Description

This is the main method to visualize graphically the output of an object of class `etasclass`.
By default the space-time region is the same used for the estimation of the ETAS model. Background, triggered and total space intensities are also plotted for a grid of values.

Usage

```r
## S3 method for class 'etasclass'
plot(x,pdf=FALSE,file ="etasplot", ngrid=201,nclass=10,tfixed=0,flag.log=FALSE,...)
```

Arguments

- `x`
 an `etasclass` object.
- `pdf`
 If `TRUE`, then 2D plots are sent to a pdf file
- `file`
 name of the pdf file
- `ngrid`
 number of points for each direction \((x, y)\) of a \(ngrid\times ngrid\) grid where estimated intensities must be evaluated. Default value= 201.
- `nclass`
 number of class for each direction \((x, y)\) of a grid of \(nclass\times nclass\) cells where estimated intensities must be evaluated. Must divide \(ngrid-1\). Default value= 10.
- `tfixed`
 If a positive value is given, then the triggered intensity at time \(t_{\text{fixed}}\) is estimated and visualized.
- `flag.log`
 If `TRUE` then a log scale is used to plot intensities.
- `...`
 other arguments.
Details

Different plots of the output of an object of class etasclass.

By default the space-time region is the same used for the estimation of the ETAS model. Background, triggered and total space intensities are also computed and plotted for a grid of values.

If a positive value is given for tfixed, then the triggered intensity at time tfixed is estimated and visualized. A tipical use can be with tfixed a day after a big earthquake.

For space dimension, four plot are drawn with triggered, observed, total intensity, and total intensity with points.

Starting with the package version 1.2.0 different kind of residual analysis are computed and visualized, separately for the space and time dimensions. (8 plot on three windows for the space and 2 plots on one window for the time)

Then two plots are printed for space residuals for total and background intensities

Space residuals are computed dividing the observed rectangular space area in an equally spaced grid of nclass intervals for each dimension, so to divide the observed space area in nclass x nclass rectangular cells. We obtain the classical comparison between observed and theoretical frequencies. All frequencies are related to the whole time interval (and thus theoretical frequencies are obtained integrating estimated intensities with respect to time).

Fifth graph (image plot)

We define nclass x nclass standardized residuals:

\[z_{\ell j} = \frac{n_{\ell j} - \nu_{\ell j}}{\sqrt{\nu_{\ell j}}} \quad (\ell = 1, 2, \ldots, nclass; \ j = 1, 2, \ldots, nclass) \]

For each cell \(\ell j \) we have observed \(n_{\ell j} \) and theoretical frequency \(\nu_{\ell j} \).

Sixth graph (image plot)

We used a similar technique to compute residuals for the background seismicity only, to check if at least the estimation of the background component is appropriate. To this purpose the observed background frequencies \(b_{\ell j} \) are now computed by the sum of the estimated weights rho.weights and the theoretical background frequency \(b_{\ell j} \) by the estimated marginal space background intensity in each cell.

From these quantities we obtain nclass x nclass standardized residuals for the background intensity only:

\[b_{\ell j} = \frac{b_{\ell j}}{\sqrt{b_{\ell j}}} \quad (\ell = 1, 2, \ldots, nclass; \ j = 1, 2, \ldots, nclass) \]

Seventh plot: (space intensities (integrated over time))

A 3x2 plot: first column for observed vs.theoretical, second column for standardized residuals vs theoretical values. First row for total intensity, second row for background intensity, and third row for their difference, the triggered intensities

Eight-th graph:

To check departure of the model for the time dimension, we first integrated the estimated intensity function with respect to the observed space region, so to obtain an estimated time process (a one dimensional ETAS model):
\[\hat{\lambda}(t) = \int \int_{\Omega(x,y)} \hat{\lambda}(x,y,t) \, dx \, dy \]

As known, a non-homogeneous time process can be transformed to a homogeneous one through the integral transformation:

\[\tau_i = \int_{t_0}^{t_1} \hat{\lambda}(t) \, dt \]

Then, a plot of \(\tau_i \) versus \(i \) can give information about the departures of the models in the time dimension. In particular, this plot, together with a plot of the estimated time intensities, drawn on the same graphic window, can inform on the time at which departures are more evident.

If pdf=TRUE all graphs are printed on a pdf file, as specified by file; otherwise default screen device is used.

Value

This plot method computes, among others, back.grid, trig.grid, with coordinates x.grid and y.grid used to obtain image plots of background, triggered and total spatial estimated intensities (see etasclass to see the details of the mixed estimation method used).

- **x.grid**: x grid values.
- **y.grid**: y grid values.
- **back.grid**: background intensity estimated on a ngrid x ngrid grid.
- **trig.grid**: triggered intensities estimated on a grid of ngrid x ngrid points.
- **tot.grid**: total intensities estimated on a grid of ngrid x ngrid points.
- **tfixed**: the fixed time for which intensity is estimated and visualized.
- **totfixed.grid**: total intensities estimated on a grid of ngrid x ngrid points at time tfixed.
- **back.grid**: background space intensity estimated for observed points.
- **trig.grid**: triggered space intensities estimated for observed points.
- **tot.grid**: total space intensities estimated for observed points.
- **teo1**: matrix of nclass*nclass cells with theoretical total space intensities.
- **teo2**: matrix of nclass*nclass cells with theoretical background space intensities.
- **emp1**: matrix of nclass*nclass cells with empirical total space intensities.
- **emp2**: matrix of nclass*nclass cells with empirical background space intensities.
- **t.trasf**: vector of transformed times.

Note

In this first version the x-y space region, where the point process is defined, by default is a rectangle embedding the catalog values.
Author(s)
Marcello Chiodi, Giada Adelfio

References

See Also
etasclass, eqcat, profile.etasclass

Examples
```r
## Not run:
data("italycatalog")
# load a sample catalog of the italian seismicity
class(italycatalog)<-"eqcat"

# plot method
plot("an etasclass object")

## End(Not run)
```

plot.profile.etasclass

plot method for profile.etasclass objects (profile likelihood of ETAS model)

Description

plot method for profile.etasclass objects (profile likelihood of ETAS model). Plots a smooth interpolation of the profile likelihood of a parameter of an ETAS model, as output from profile.etasclass.
Usage

S3 method for class 'profile.etasclass'
plot(x, prob = c(0.90, 0.95, 0.99), use.main = TRUE, ...)

Arguments

x
An object of the class profile.etasclass.

prob
A vector of coverage probability for the asymptotic confidence interval computed using -2log(LR). Default value prob = c(0.90, 0.95, 0.99).

use.main
Logical. If use.main = TRUE then a title is printed in the profile plot ...

... other arguments.

Details

Plots a spline interpolation of the profile likelihood for a parameter of the ETAS model for earthquake seismicity, computed with profile.etasclass;

the order of parameters is: (mu, k0, c, p, a, gamma, d, q).

A plot method is defined for profile.etasclass objects. A number of grid points nprofile of 7 (the default) usually is enough to have a good interpolation of the profile likelihood.

Value

Plots a profile likelihood (in the scale -2log(LR)), and plots horizontal lines corresponding to the percentiles of a 1df chi-square variable of levels prob; the approximate confidence intervals corresponding to the levels prob are printed. Returns a list:

spline.profile The spline interpolation of the profile likelihood.
conf The approximate confidence intervals corresponding to the levels prob.
prob The prob values used.

Note

A odd number of grid points nprofile is advised, so that the central point is the unconstrained ML estimate for the profiled parameter, and the interpolation of the profile likelihood will have a better quality.

Author(s)

Marcello Chiodi, Giada Adelfio

See Also

eqcat.etasclass, profile.etasclass
Examples

```r
## Not run:
## see example in profile.etasclass

## End(Not run)
```

Description

Print method for an object of class `etasclass`.
Gives some information on the execution and gives estimates of the ETAS parameters.

Usage

```r
## S3 method for class 'etasclass'
print(x,...)
```

Arguments

- `x` an `etasclass` object.
- `...` other arguments.

Details

Print brief information about an object of class `etasclass`. More output is obtained with `summary`.

Value

Displays parameters estimates and information on the execution of the `etasclass` estimation process. Displays also the exact call of the function that generated `etasclass`.

Author(s)

Marcello Chiodi, Giada Adelfio

See Also

- `etasclass`, `eqcat`, `profile.etasclass`
profile.etasclass: profile method for etasclass objects (ETAS model) (To be checked)

Description

profile method for etasclass objects (ETAS model).

Usage

```r
## S3 method for class 'etasclass'
profile(fitted, iprofile = 1, nprofile = 7, kprofile = 3, profile.approx = FALSE, ...)
```

Arguments

- `fitted`: An object of the class etasclass.
- `iprofile`: An integer in the range 1-7. Profile likelihood will be computed with respect to the parameter of index `iprofile`. The order of parameters is: mu, k0, c, p, a, gamma, d, q. In this version 2.0.0 profile only foretas parameters, not for covariates parameters. It will added future versions.
- `nprofile`: Number of values of `params[iprofile]` for which profile likelihood must be computed. Default value=7.
- `kprofile`: Maximum absolute standardized value for `params[iprofile]`. Profile likelihood will be computed in the standardized range [-`kprofile`, `kprofile`]. Default value=3.
- `profile.approx`: if TRUE, then a conditional-likelihood approach is used as a first value for each maximization step in profile likelihood computation. Default value=FALSE.
- `...`: other arguments.

Details

Profile likelihood for the `iprofile`-th parameter of the ETAS model for earthquake seismicity, estimated with etasclass; the order of parameters is: mu, k0, c, p, a, gamma, d, q and betacov.

A plot method is defined for profile.etasclass objects. A number of grid points nprofile of 7 (the default) usually is enough to have a good interpolation of the profile likelihood. The profile is computed using the final estimation of the background seismicity used to obtain the object etas of class etasclass and regardless to the method used. The computing time (for each of the nprofile values) is generally less than a single execution of etasclass without clustering, because only ML estimation is performed. Parameters not estimated in etas (with `params.ind[i]=FALSE`) will remain fixed do the value `params.fix[i]`.

To obtain profiles for different parameters, run profile.etasclass with different values of `iprofile`.
profile.etasclass

Value

Returns a list:

- **params.vec**: vector of values of the parameter iprofile used to evaluate the profile likelihood.
- **logl.vec**: vector of likelihoods corresponding to the values of params.vec

The `plot` method is defined to represent profile likelihood (in scale -2log(LR)), using a spline interpolation through grid points, with superimposition of approximate confidence intervals.

Note

A odd number of grid points nprofile is advised, so that the central point is the unconstrained ML estimate for the profiled parameter, and the interpolation of the profile likelihood will have a better quality.

Author(s)

Marcello Chiodi, Giada Adelfio

See Also

- `eqcat`
- `etasclass`
- `plot.profile.etasclass`

Examples

```r
## Not run: ##
data(italycatalog)
# load a sample catalog of italian seismicity

etas.flp <- etasclass(italycatalog,
magn.threshold = 3.0, magn.threshold.back = 3.5,
k0 = 0.005, c = 0.005, p = 1.01, gamma = 0.6, q = 1.52, d = 1.1,
params.ind = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE),
formula1 = "time ~ magnitude - 1", declustering = TRUE,
thinning = FALSE, flp = TRUE, ndeclust = 15,
onlytime = FALSE, is.backconstant = FALSE,
description = "etas flp", sectoday = TRUE,
usenlm = TRUE, epsmax = 0.001)
# execution of etasclass for events with minimum magnitude of 3.0.
# The events with magnitude at least 3.5 are used to build a first approximation
# for the background intensity function
# (magn.threshold.back=3.5)

## compute profile likelihood for the first parameter (mu)
system.time( prof.flp <- profile(etas.flp, nprofile = 7, iprofile = 1))
plot(prof.flp)
```

output:

Asymptotic confidence intervals:
- Coverage: Lower Upper
- 1: 0.90 0.335 0.376
simpson.coeff

Computes Simpson integration rule coefficients

Description

Computes Simpson integration rule coefficients.

Usage

simpson.coeff(n)
simpson.kD(n,k=2)

Arguments

n number of points of the simpson formula a single dimension
k number of dimensions

Details

simpson.coeff computes the coefficients of the standard Simpson rule (for unit spaced points), according to the sequence \((1+4+2+4+\ldots+2+4+1)/3\) for each dimension. simpson.kD expand the formula over a grid of \(n^k\) points in k dimensions.

Value

a vector of n coefficients (for simpson.coeff), a k-dimensions array with a total of \(n^k\) elements for simpson.kD.

Author(s)

Marcello Chiodi
Summary method for etasclass objects

Description

This is the main method to summarize the output of an object of class etasclass. It gives some information on the execution and gives estimates of the ETAS parameters together with the standard errors.

More detailed output is available by inspecting str(etasclass.object), and printing single objects.

Usage

S3 method for class 'etasclass'
summary(object, full=FALSE,...)

Arguments

object an etasclass object to pass to summary.
full logical. New in version 2.2. If TRUE the full original call will be displayed together with some more output.
... other arguments.

Details

Displays summary information about an object of class etasclass.

Value

Displays AIC values, parameters estimates and their standard errors, together with some information on the execution of the etasclass estimation process. Displays also the exact call of the function that generated etasclass.

Author(s)

Marcello Chiodi, Giada Adelfio

See Also

etasclass, eqcat, profile.etasclass
Examples

Not run:
summary method for the etasclass object esecov1 and esecov5

(see examples in code(link(etasclass)))

only with one covariate, the magnitude, classical ETAS model
> summary(esecov1)

Call:
etasclass(cat.orig = catalog.withcov, magn.threshold = 2.5, magn.threshold.back = 3.9,
 mu = 0.3, k0 = 0.02, c = 0.015, p = 0.99, gamma = 0, d = 1,
 q = 1.5, params.ind = c(TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE),
 formula1 = "time ~ magnitude - 1", declustering = TRUE,
 thinning = FALSE, flp = TRUE, ndeclust = 15, onlytime = FALSE,
 is.backconstant = FALSE, sectoday = FALSE, usenlm = TRUE,
 compsqm = TRUE, epsmax = 1e-04, iterlim = 100, ntheta = 36)

Execution started: 2020-05-03 00:24:08
Elapsed time of execution (hours) 0.2294818
Number of observations 2226
Magnitude threshold 2.5
declustering TRUE
Number of declustering iterations 6
Kind of declustering weighting
flp TRUE
sequence of AIC values for each iteration
44887.75 43348.46 43250.77 43249.77 43249.27 43249.19
final AIC value
44887.75 43348.46 43250.77 43249.77 43249.27 43249.19

formula for covariates of the triggered components:
time ~ magnitude - 1
<environment: 0x55968d6fd660>
ETAS Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimates</th>
<th>std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>0.667509</td>
<td>0.022620</td>
</tr>
<tr>
<td>k0</td>
<td>0.022393</td>
<td>0.005781</td>
</tr>
<tr>
<td>c</td>
<td>0.014769</td>
<td>0.002708</td>
</tr>
<tr>
<td>p</td>
<td>1.110059</td>
<td>0.015709</td>
</tr>
<tr>
<td>gamma</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>d</td>
<td>1.905461</td>
<td>0.260360</td>
</tr>
<tr>
<td>q</td>
<td>1.947223</td>
<td>0.077627</td>
</tr>
<tr>
<td>magnitude</td>
<td>0.740109</td>
<td>0.092558</td>
</tr>
</tbody>
</table>
summary.etasclass

using covariates
> summary(esecov5)
Call:
etasclass(cat.orig = catalog.withcov, magn.threshold = 2.5, magn.threshold.back = 3.9,
 mu = 0.3, k0 = 0.02, c = 0.015, p = 0.99, gamma = 0, d = 1,
 q = 1.5, params.ind = c(TRUE, TRUE, TRUE, TRUE, FALSE, TRUE,
 TRUE), formula1 = "time ~ z + magnitude + nstaloc_rev + min_distance_rev + distmin - 1",
 declustering = TRUE, thinning = FALSE, flp = TRUE, ndeclust = 15,
 onlytime = FALSE, is.backconstant = FALSE, sectoday = FALSE,
 usenlm = TRUE, compsqm = TRUE, epsmax = 1e-04, iterlim = 100,
 ntheta = 36)

Execution started: 2020-05-03 12:22:31
Elapsed time of execution (hours) 0.4827933
Number of observations 2226
Magnitude threshold 2.5
declustering TRUE
Number of declustering iterations 3
Kind of declustering weighting
flp TRUE
sequence of AIC values for each iteration
44693.04 42884.07 42706.16
final AIC value
44693.04 42884.07 42706.16

formula for covariates of the triggered components:
time ~ z + magnitude + nstaloc_rev + min_distance_rev + distmin - 1
<environment: 0x55968d5ed118>
ETAS Parameters:

<table>
<thead>
<tr>
<th>Estimates</th>
<th>std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>0.705351</td>
</tr>
<tr>
<td>k0</td>
<td>0.073070</td>
</tr>
<tr>
<td>c</td>
<td>0.019396</td>
</tr>
<tr>
<td>p</td>
<td>1.154186</td>
</tr>
<tr>
<td>gamma</td>
<td>0.000000</td>
</tr>
<tr>
<td>d</td>
<td>1.942929</td>
</tr>
<tr>
<td>q</td>
<td>2.004915</td>
</tr>
<tr>
<td>z</td>
<td>-0.041256</td>
</tr>
<tr>
<td>magnitude</td>
<td>1.157698</td>
</tr>
<tr>
<td>nstaloc_rev</td>
<td>-0.009010</td>
</tr>
<tr>
<td>min_distance_rev</td>
<td>-0.011020</td>
</tr>
<tr>
<td>distmin</td>
<td>-1.826717</td>
</tr>
</tbody>
</table>
time2date

Date time conversion tools

Description

Date time conversion tools, useful in connection with package etasFLP for earthquake description. Base date is Jan. 1st 1900.

Usage

\[\text{time2date}(t) \]
\[\text{timecharunique2seq}(\text{timestring}) \]

Arguments

- \(t \) seconds elapsed from 1900-1-1.
- \(\text{timestring} \) A time string.

Details

\text{time2date} converts sequential time in seconds into character string; \text{timecharunique2seq} converts character times of catalogs into sequential time (seconds elapsed from the base date): the input is a single string.

Value

\text{time2date} returns a character string; \text{timecharunique2seq} returns a list:

- \(\text{char} \) the input string.
- \(\text{sec} \) seconds elapsed from the base date.
- \(\text{day} \) days elapsed from the base date.

Author(s)

Marcello Chiodi

Examples

```r
## Not run:
tchar="1960-11-06 11:09:35.000"
tsec =timecharunique2seq(tchar)[["sec"]]
time2date(tsec)
## End(Not run)
```
Description

New in version 2.2. A time updating of an etasclass objects: a very experimental version that can be used only on etasclass objects obtained from etasflp versions 2.2 or newer.

Usage

timeupdate.etasclass(object, params.estimation = FALSE, ...)

Arguments

object an etasclass object obtained from etasFLP versions 2.2 or newer that will be updated for a new time window with new events.

params.estimation logical. if TRUE parameters will be estimated again even if quickly, with few optimizations steps. Elsewhere ETAS estimates of input object will be maintained

... optional arguments that will override the corresponding arguments in object, possibly including a new catalog input or a new tmax

Details

It is a beta version. A new ETAS model is fitted to a previous object of class etasclass with a new catalog which must be a catalog which extends the previous one on a wider time window, that is a catalog with new observations.

As a default a new quick execution is made, with one quick iteration for parameter updating and an iteration for background density estimation.

Value

a new etasclass object

See Also

update.etasclass
Description

New in version 2.2. A method update for etasclass objects: a very experimental version that can be used only on etasclass objects obtained from etasflp versions 2.2 or newer.

Usage

S3 method for class 'etasclass'
update(object, ...)

Arguments

object

an etasclass object obtained from etasflp versions 2.2 or newer that will be updated.

... optional arguments that will override the corresponding arguments in object

Details

It is a beta version. The catalog must be the same, and options in "..." must leave unchanged the number of observations used for estimation. Arguments given in "..." will override arguments already present in object. Not all arguments are suitable for updating: among them formula and params.ind should not be included in "..." list (to update such parameters it is better to assign them to a variable and then pass the variable name). A new etasclass execution will start, using as arguments values of input object, eventually integrated with the list in "...". Typically a first execution can be given with low values of iterlim, ndeclust, ntheta and high values of epsmax (e.g. iterlim=5, ndeclust=1, ntheta=24, epsmax=0.01), to obtain good starting values for parameters and for weights. Then an update can be run with better values such as iterlim=50, ndeclust=10, ntheta=60, epsmax=0.0001.

Value

un updated etasclass object

See Also

timeupdate.etasclass
xy.grid

Description

Creates a 2-d grid.

Usage

```
xy.grid(rangex, rangey, nx, ny = nx)
```

Arguments

- `rangex`: A length 2 numeric vector: the range of the x-variable.
- `rangey`: A length 2 numeric vector: the range of the y-variable.
- `nx`: The number of points of the grid in the x-direction.
- `ny`: The number of points of the grid in the y-direction.

Value

A grid of the coordinates of `nx*ny` points on the x-y plane, expanded in a matrix of `nx*ny` rows and 2 columns: a row gives the (x,y) coordinates of a point.

Examples

```
xy.grid(c(3,7), c(11,17), nx=5, ny=4)
```
Index

* **ETAS**
 - etas.starting, 10
 - etasclass, 13
 - etasFLP-package, 2
 - plot.etasclass, 26
 - plot.profile.etasclass, 29
 - print.etasclass, 31
 - profile.etasclass, 32
 - summary.etasclass, 35

* **FLP**
 - etasFLP-package, 2

* **Gutenberg-Richter**
 - magn.plot, 24

* **Gutenberg**
 - b.guten, 4

* **MLE**
 - etasFLP-package, 2

* **PointProcess**
 - etasFLP-package, 2

* **Richter**
 - b.guten, 4

* **bandwidth**
 - bwd.nrd, 5

* **catalog**
 - compare.etasclass, 8
 - eqcat, 9

* **covariates**
 - etasclass, 13

* **datasets**
 - californiacatalog, 6
 - catalog.withcov, 7
 - compare.etasclass, 8
 - eqcat, 9
 - etas.starting, 10
 - etasclass, 13
 - italycatalog, 22
 - profile.etasclass, 32
 - summary.etasclass, 35

* **etasclass**
 - compare.etasclass, 8

* **flp**
 - etasclass, 13

* **kernel**
 - bwd.nrd, 5
 - etasclass, 13
 - kde2dnew.fortran, 23

* **likelihood**
 - etas.starting, 10
 - plot.profile.etasclass, 29
 - profile.etasclass, 32

* **magnitude**
 - b.guten, 4
 - magn.plot, 24

* **package**
 - etasFLP-package, 2

* **plot**
 - plot.etasclass, 26

* **print**
 - print.etasclass, 31

* **profile**
 - plot.profile.etasclass, 29
 - profile.etasclass, 32

* **quadrature**
 - simpson.coeff, 34

* **simpson**
 - simpson.coeff, 34
INDEX

* summary

 summary.etasclass, 35

b.guten, 4
bw.nrd, 6
bwd.nrd, 5

californiacatalog, 6
catalog.withcov, 7
compare.etasclass, 8
daily.etasclass, 9
eqcat, 9, 21, 29–31, 33, 35
etas.starting, 10, 21
etasclass, 8, 10, 13, 13, 28–31, 33, 35
etasFLP (etasFLP-package), 2
etasFLP-package, 2

italycatalog, 22

kde2d.integral (kde2dnew.fortran), 23
kde2dnew.fortran, 23

magn.plot, 5, 24
MLA.freq, 25

plot.eqcat (eqcat), 9
plot.etasclass, 21, 26
plot.profile.etasclass, 29, 33
print.etasclass, 21, 31
profile.etasclass, 19, 21, 29–31, 32, 35

simpson.coeff, 34
simpson.kD (simpson.coeff), 34
summary.eqcat (eqcat), 9
summary.etasclass, 21, 35

time2date, 38
timecharunique2seq (time2date), 38
timeupdate.etasclass, 39, 40

update.etasclass, 39, 40

xy.grid, 41