Package ‘etrm’

October 13, 2022

Type Package
Title Energy Trading and Risk Management
Version 1.0.1
Date 2021-06-22
Author Anders D. Sleire
Maintainer Anders D. Sleire <sleire@gmail.com>
License MIT + file LICENSE
Encoding UTF-8
LazyData TRUE
RoxygenNote 7.1.1
Imports ggplot2, reshape2, methods
Suggests testthat, knitr, rmarkdown, markdown
VignetteBuilder knitr
Depends R (>= 3.5.0)
NeedsCompilation no
Repository CRAN
Date/Publication 2021-06-23 07:30:05 UTC
etrm-package

R topics documented:

etrm-package .. 2
cppi ... 3
CPPI-class ... 4
dppi ... 4
DPPI-class ... 6
GenericStrat-class ... 6
msfc ... 7
MSFC-class ... 8
obpi ... 8
OBPI-class ... 10
plot,GenericStrat-method 10
plot,MSFC-method ... 11
powcal .. 12
powfutures130513 ... 13
powpriors130513 ... 13
show,GenericStrat-method 14
show,MSFC-method ... 14
shpi ... 15
SHPI-class ... 16
slpi ... 16
SLPI-class ... 17
summary,GenericStrat-method 18
summary,MSFC-method 18

Index 19

etrm-package etrm: Energy Trading and Risk Management

Description

Tools for energy market risk management (forward curves and trading strategies)

Author(s)

Anders D. Sleire <sleire@gmail.com>

References

cppi

Constant Proportion Portfolio Insurance (CPPI)

Description
Implement CPPI strategy for commodity price risk management

Usage
cppi(q, tdate, f, tper, rper, tcost = 0, int = TRUE)

Arguments
q numeric value for quantity to be hedged, either positive (net buyer) or negative (net seller)
tdate date vector with trading days
f numeric futures price vector
tper numeric target price markup/down to the price on the first trading day
rper numeric risk factor as a percentage of the price on the first trading day
tcost numeric transaction costs pr unit
int TRUE/FALSE integer restriction on tradable volume

Value
instance of the CPPI class

Examples
CPPI for a buyer (seller), where stop loss is set 10% above (below) initial market price.
set.seed(5)
GBM price process parameters
mu <- 0.2
sigma <- 0.1
S0 <- 100

time
Y <- 2
N <- 500
delta <- Y/N
t <- seq(0, 1, length = N + 1)

price process and date vector
W <- c(0, cumsum(sqrt(delta) * rnorm(N)))
f_gbm <- S0 * exp(mu * t + sigma * W)
tr_dates <- seq(Sys.Date(), Sys.Date()+500, by = "day")

implement cppi strategy for buyer
cppi_b <- cppi(q = 10,
tdate = tr_dates,
f = f_gbm,
tper = 0.1,
rper = 0.1,
tcost = 0,
int = TRUE)

implement cppi strategy for seller
cppi_s <- cppi(q = -10,
tdate = tr_dates,
f = f_gbm,
tper = -0.1,
rper = 0.1,
tcost = 0,
int = TRUE)

CPPI-class

An *S4 class for the CPPI hedging strategy*

Description

An S4 class for the CPPI hedging strategy

Slots

- **RiskFactor** The risk factor (cushion) used in the CPPI model

dppi

Dynamic Proportion Portfolio Insurance (DPPI)

Description

Implements DPPI strategy for commodity price risk management

Usage

dppi(q, tdate, f, tper, rper, tcost = 0, int = TRUE)
Arguments

- `q` numeric value for quantity to be hedged, either positive (net buyer) or negative (net seller)
- `tdate` date vector with trading days
- `f` numeric futures price vector
- `tper` numeric target price factor, markup/down to the price on the first trading day
- `rper` numeric risk factor as a percentage of the price on the first trading day
- `tcost` numeric transaction costs pr unit
- `int` TRUE/FALSE integer restriction on tradable volume

Value

instance of the DPPI class

Examples

```r
# DPPI for a buyer (seller), where stop loss is set 10% above (below) initial market price.
set.seed(5)
# GBM price process parameters
mu <- 0.2
sigma <- 0.1
S0 <- 100
Y <- 2
N <- 500
delta <- Y/N
t <- seq (0, 1, length = N + 1)

# price process and date vector
W <- c(0, cumsum ( sqrt(delta) * rnorm (N)))
f_gbm <- S0 * exp(mu * t + sigma * W)
tr_dates <- seq(Sys.Date(), Sys.Date()+500, by = "day")

# implement dppi strategy for buyer
dppi_b <- dppi(q = 10,
tdate = tr_dates,
f = f_gbm,
tper = 0.1,
rper = 0.1,
tcost = 0,
int = TRUE)

# implement dppi strategy for seller
dppi_s <- dppi(q = -10,
tdate = tr_dates,
f = f_gbm,
tper = -0.1,
rper = 0.1,
tcost = 0,
int = TRUE)
```

GenericStrat-class

\begin{verbatim}
 rper = 0.1,
 tcost = 0,
 int = TRUE)
\end{verbatim}

DPPI-class

An S4 class for the DPPI hedging strategy

Description
An S4 class for the DPPI hedging strategy

Slots

TargetPercent A percentage of first trading day’s market price used to set target price (cap or floor)
RiskFactor The risk factor (cushion) used in the DPPI model

GenericStrat-class

An S4 VIRTUAL parent class for the hedging strategy classes in etrm

Description
An S4 VIRTUAL parent class for the hedging strategy classes in etrm

Slots

Name A string with the portfolio insurance strategy name
Volume The quantity to be hedged
TargetPrice The target price(s) for the portfolio (cap or floor)
TransCost Transaction costs pr unit traded
TradeisInt TUE/FALSE integer restriction on tradable volume, TRUE sets smallest transacted unit to 1
Results Data frame with strategy results, daily values for market price, transactions, exposure, position, hedge and portfolio price
msfc

Maximum Smoothness Forward Curve (MSFC)

Description
Creates a smooth forward curve from futures prices for a flow delivery

Usage
msfc(tdate, include, contract, sdate, edate, f, prior = 0)

Arguments
- tdate: trading date
- include: logical vector to determine if contracts should be included in calculation
- contract: vector with contract names
- sdate: date vector with contract delivery start dates
- edate: date vector with contract delivery end dates
- f: numeric vector with futures contract prices
- prior: numeric vector with prior forward price curve

Value
instance of the MSFC class

Examples
calculate forward curve for synthetic futures contracts, without prior
date for curve calculation and contract information
tdate <- as.Date("2021-06-17")
include <- rep(TRUE, 10)
"Q1-22", "Q2-22", "Q3-22", "Q4-22")
sdate <- as.Date(c("2021-07-01", "2021-08-01", "2021-09-01", "2021-10-01",
edate <- as.Date(c("2021-07-30", "2021-08-31", "2021-09-30", "2021-10-31",
f <- c(32.55, 32.50, 32.50, 32.08, 36.88, 39.80, 39.40, 25.20, 21.15, 29.50)
fwd_curve <- msfc(tdate = tdate,
include = include,
contract = contract,
sdate = sdate,
edate = edate,
f = f)
MSFC-class

An S4 class for the Maximum Smoothness Forward Curve (MSFC) in etrm

Description

An S4 class for the Maximum Smoothness Forward Curve (MSFC) in etrm

Slots

- **Name** A string with the acronym for Maximum Smoothness Forward Curve, "MSFC"
- **TradeDate** The trading date
- **BenchSheet** A data frame with futures contracts selected for calculation with MSFC computed prices
- **Polynomials** The number of polynomials in the MSFC spline
- **PriorFunc** A numeric vector with the prior function values
- **Results** A data frame with daily values for the calculated MSFC and contracts in "BenchSheet"
- **SplineCoef** List with coefficients for the polynomials in the MSFC spline
- **KnotPoints** Vector with spline knot points
- **CalcDat** Data frame extending "Results" with daily values for time vectors and polynomial coefficients used in calculation

obpi

Option Based Portfolio Insurance (OBPI)

Description

Implements OBPI strategy for commodity price risk management

Usage

```r
obpi(
  q,
  tdate,
  f,
  k = f[1],
  vol,
  r = 0,
  tdays = 250,
  daysleft,
  tcost = 0,
  int = TRUE
)
```
Arguments

- **q**: numeric value for quantity to be hedged, either positive (net buyer) or negative (net seller)
- **tdate**: date vector with trading days
- **f**: numeric futures price vector
- **k**: numeric value for option strike price
- **vol**: value for volatility
- **r**: value for interest rate
- **tdays**: integer assumed number of trading days per year
- **daysleft**: integer with days left to option expiry
- **tcost**: numeric transaction costs per unit
- **int**: TRUE/FALSE integer restriction on tradable volume

Value

instance of the OBPI class

Examples

OBPI for a buyer (seller), where stop loss is set 10% above (below) initial market price.

set.seed(5)
GBM price process parameters
mu <- 0.2
sigma <- 0.1
S0 <- 100

time
Y <- 2
N <- 500
delta <- Y/N
t <- seq (0, 1, length = N + 1)

price process and date vector
W <- c(0, cumsum (sqrt(delta) * rnorm (N)))
f_gbm <- S0 * exp(mu * t + sigma * W)
tr_dates <- seq(Sys.Date(), Sys.Date()+500, by = "day")

#implement obpi strategy for buyer
obpi_b <- obpi(q = 10,
tdate = tr_dates,
f = f_gbm,
k = f_gbm[1],
vol = 0.2,
r = 0,
tdays = 250,
daysleft = length(f_gbm),
tcost = 0,
int = TRUE)

implement obpi strategy for seller
obpi_s <- obpi(q = -10,
tdate = tr_dates,
f = f_gbm,
k = f_gbm[1],
vol = 0.2,
r = 0,
tdays = 250,
daysleft = length(f_gbm),
tcost = 0,
int = TRUE)

OBPI-class

An S4 class for the OBPI hedging strategy

Description

An S4 class for the OBPI hedging strategy

Slots

- **StrikePrice**: Strike price for the synthetic option hedging
- **AnnVol**: Annualized volatility for the contract to be traded
- **InterestRate**: Risk-free rate of interest
- **TradingDays**: The number of trading days per year

plot.GenericStrat-method

S4 method for the plot generic for portfolio insurance strategy classes

Description

S4 method for the plot generic for portfolio insurance strategy classes

Usage

```r
## S4 method for signature 'GenericStrat'
plot(
x, 
y = NULL, 
title = "Strategy plot", 
`xlab` = "", 
```
Arguments

- **x**: instance of the strategy class created by the corresponding strategy function
- **y**: NULL
- **title**: plot title
- **xlab**: label for x-axis
- **ylab.1**: label for y-axis on price plot in top panel
- **ylab.2**: label for y-axis on hedge plot in bottom panel
- **pcols**: vector with four color codes for plot
- **legend**: legend position in c("top", "bottom")

Value

a two-panel chart with daily values for (top panel) target price, market price and portfolio price and (bottom) portfolio hedge rate

Description

S4 method for the plot generic for class "MSFC"

Usage

```r
## S4 method for signature 'MSFC'
plot(
x,  
y = NULL,  
plot.prior = FALSE,  
title = "",  
xlab = "",  
ylab = "Price",  
legend = "right"
)
```
Arguments

- **x**: instance of the MSFC class created by the msfc function
- **y**: NULL
- **plot.prior**: TRUE/FALSE for including prior function in plot
- **title**: plot title
- **xlab**: x-axis title
- **ylab**: y-axis title
- **legend**: position of legend, as implemented in ggplot2

Value

- A chart with daily values for the forward curve and contracts used in calculation

powcal
Historical daily closing prices for 11 calendar year power futures contracts

Description

A synthetic dataset containing the closing prices and other attributes of 11 power futures contracts for calendar year delivery for 2006 - 2016.

Usage

- **powcal**

Format

A data frame with 3253 rows and 12 columns:

- **Date**: the trading date
- **CAL-06**: the closing price for the 2006 futures contract
- **CAL-07**: the closing price for the 2007 futures contract
- **CAL-08**: the closing price for the 2008 futures contract
- **CAL-09**: the closing price for the 2009 futures contract
- **CAL-10**: the closing price for the 2010 futures contract
- **CAL-11**: the closing price for the 2011 futures contract
- **CAL-12**: the closing price for the 2012 futures contract
- **CAL-13**: the closing price for the 2013 futures contract
- **CAL-14**: the closing price for the 2014 futures contract
- **CAL-15**: the closing price for the 2015 futures contract
- **CAL-16**: the closing price for the 2016 futures contract
powfutures130513

Closing prices for power futures contracts at trading date 2013-05-13

Description
A synthetic dataset containing the closing prices and other attributes of 38 power futures contracts.

Usage
powfutures130513

Format
A data frame with 38 rows and 5 columns:
- **Include** boolean variable to determine if contract should be included in forward curve calculation
- **Contract** the name of the futures contract
- **Start** delivery start date for the futures contract
- **End** delivery start date for the futures contract
- **Closing** the futures contract closing price

powpriors130513

Example priors at trading date 2015-05-13

Description
An example of two simple priors for forward market price to be used with powfutures130513

Usage
powpriors130513

Format
A data frame with 3885 rows and 3 columns:
- **Date** vector of dates ranging from 2013-05-13 to final end date of contracts in powfutures130513
- **trig.prior** a simple smooth trigonometric prior describing power price seasonality
- **mod.prior** a trigonometric prior adjusted for typical calendar effects
show,GenericStrat-method

S4 method for the show generic for portfolio insurance strategy classes

Description

S4 method for the show generic for portfolio insurance strategy classes

Usage

S4 method for signature 'GenericStrat'
show(object)

Arguments

object instance of a strategy class

Value

a data frame with daily observations for market price, transactions, exposed volume, forward positions, hedge rate, target price and portfolio price

show,MSFC-method

S4 method for the show generic for class "MSFC"

Description

S4 method for the show generic for class "MSFC"

Usage

S4 method for signature 'MSFC'
show(object)

Arguments

object instance of the MSFC class

Value

data frame with daily values for forward curve and forward contracts used in calculation
Step Hedge Portfolio Insurance (SHPI)

Description
Implements SHPI strategy for commodity price risk management

Usage
shpi(q, tdate, f, daysleft, tper, tcost = 0, int = TRUE)

Arguments
- **q**: numeric value for quantity to be hedged, either positive (net buyer) or negative (net seller)
- **tdate**: date vector with trading days
- **f**: numeric futures price vector
- **daysleft**: integer with days left to contract expiry
- **tper**: numeric target price markup/down to the price on the first trading day
- **tcost**: numeric transaction costs pr unit
- **int**: TRUE/FALSE integer restriction on tradable volume

Value
instance of the SHPI class

Examples

```r
# SHPI for a buyer (seller), where stop loss is set 10% above (below) initial market price.
set.seed(5)
# GBM price process parameters
mu <- 0.2
sigma <- 0.1
S0 <- 100

# time
Y <- 2
N <- 500
delta <- Y/N
t <- seq(0, 1, length = N + 1)

# price process and date vector
W <- c(0, cumsum(sqrt(delta) * rnorm(N)))
f_gbm <- S0 * exp(mu * t + sigma * W)
tr_dates <- seq(Sys.Date(), Sys.Date()+500, by = "day")
```
implement step-hedge strategy for buyer
shpi_b <- shpi(q = 10,
tdate = tr_dates,
f = f_gbm,
daysleft = length(tr_dates),
tper = 0.1,
tcost = 0,
int = TRUE)

implement step-hedge strategy for seller
shpi_s <- shpi(q = -10,
tdate = tr_dates,
f = f_gbm,
daysleft = length(tr_dates),
tper = -0.1,
tcost = 0,
int = TRUE)

SHPI-class

An S4 class for the SHPI hedging strategy

Description

An S4 class for the SHPI hedging strategy

slpi

Stop Loss Portfolio Insurance (SLPI)

Description

Implements SLPI strategy for commodity price risk management

Usage

```r
slpi(q, tdate, f, tper, tcost = 0, int = TRUE)
```

Arguments

- **q**: numeric value for quantity to be hedged, either positive (net buyer) or negative (net seller)
- **tdate**: date vector with trading days
- **f**: numeric futures price vector
- **tper**: numeric target price markup/down to the price on the first trading day
- **tcost**: numeric transaction costs pr unit
- **int**: TRUE/FALSE integer restriction on tradable volume
Value

instance of the SLPI class

Examples

SLPI for a buyer (seller), where stop loss is set 10% above (below) initial market price.

set.seed(5)
GBM price process parameters
mu <- 0.2
sigma <- 0.1
S0 <- 100

time
Y <- 2
N <- 500
delta <- Y/N
t <- seq (0, 1, length = N + 1)

price process and date vector
W <- c(0, cumsum (sqrt(delta) * rnorm (N)))
f_gbm <- S0 * exp(mu * t + sigma * W)
tr_dates <- seq(Sys.Date(), Sys.Date()+500, by = "day")

implement stop-loss strategy for buyer
slpi_b <- slpi(q = 10,
tdate = tr_dates,
f = f_gbm,
tper = 0.1,
tcost = 0,
int = TRUE)

implement stop-loss strategy for seller
slpi_s <- slpi(q = -10,
tdate = tr_dates,
f = f_gbm,
tper = -0.1,
tcost = 0,
int = TRUE)
Summary,GenericStrat-method
S4 method for the summary generic for portfolio insurance strategy classes

Description
S4 method for the summary generic for portfolio insurance strategy classes

Usage
S4 method for signature 'GenericStrat'
summary(object)

Arguments
object instance of a strategy class

Value
a list with five elements. 1) A string describing the type of portfolio insurance trading strategy and number of observations, 2) volume to be hedged, calculated churn rate (number of times volume to be hedged has been traded) and 5) a data frame with summary statistics for achieved results

Summary,MSFC-method
S4 method for the summary generic for class "MSFC"

Description
S4 method for the summary generic for class "MSFC"

Usage
S4 method for signature 'MSFC'
summary(object)

Arguments
object instance of the MSFC class

Value
a list with three elements. 1) A string describing length of forward curve, number of polynomials used in spline and trading date, 2) a vector with a sample of the prior used via head(prior) and 3) a data frame with all forward contracts used in the calculation along with computed forward curve prices
Index

* datasets
 powcal, 12
 powfutures130513, 13
 powpriors130513, 13

cppi, 3
CPPI-class, 4

dpdi, 4
DPPI-class, 6

etrm-package, 2

GenericStrat-class, 6

msfc, 7
MSFC-class, 8

obpi, 8
OBPI-class, 10

plot,GenericStrat-method, 10
plot,MSFC-method, 11
powcal, 12
powfutures130513, 13
powpriors130513, 13

show,GenericStrat-method, 14
show,MSFC-method, 14
shpi, 15
SHPI-class, 16
slpi, 16
SLPI-class, 17
summary,GenericStrat-method, 18
summary,MSFC-method, 18