Package ‘evalITR’

July 7, 2021

Version 0.2.1
Date 2021-07-07
Title Evaluating Individualized Treatment Rules
Maintainer Michael Lingzhi Li <mlli@mit.edu>
Depends stats, R (>= 3.5.0)
License GPL (>= 2)
URL https://github.com/MichaelLLi/evalITR
BugReports https://github.com/MichaelLLi/evalITR/issues
RoxygenNote 7.1.1
Suggests testthat
NeedsCompilation no
Author Michael Lingzhi Li [aut, cre], Kosuke Imai [aut]
Repository CRAN
Date/Publication 2021-07-07 19:40:08 UTC

R topics documented:

 AUPEC .. 2
 AUPECcv ... 3
 PAPD .. 4
 PAPDcv .. 5
 PAPE .. 6
 PAPEcv ... 7
 PAV .. 9
 PAVcv .. 10

1
Estimation of the Area Under Prescription Evaluation Curve (AUPEC) in Randomized Experiments

Description

This function estimates AUPEC. The details of the methods for this design are given in Imai and Li (2019).

Usage

AUPEC(T, tau, Y, centered = TRUE)

Arguments

T A vector of the unit-level binary treatment receipt variable for each sample.

tau A vector of the unit-level continuous score for treatment assignment. We assume those that have tau<0 should not have treatment. Conditional Average Treatment Effect is one possible measure.

Y A vector of the outcome variable of interest for each sample.

centered If TRUE, the outcome variables would be centered before processing. This minimizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

aupec The estimated Area Under Prescription Evaluation Curve

sd The estimated standard deviation of AUPEC.

vec A vector of points outlining the AUPEC curve across each possible budget point for the dataset. Each step increases the budget by 1/n where n is the number of data points.

Author(s)

Michael Lingzhi Li, Operations Research Center, Massachusetts Institute of Technology <mlli@mit.edu>, http://mlli.mit.edu;

References

Imai and Li (2019). “Experimental Evaluation of Individualized Treatment Rules”,
Examples

T = c(1,0,1,0,1,0,1,0)
tau = c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7)
Y = c(4,5,0,2,4,1,-4,3)
aupeclist <- AUPEC(T,tau,Y)
aupeclist$aupec
aupeclist$sd
aupeclist$vec

Description

This function estimates AUPEC. The details of the methods for this design are given in Imai and Li (2019).

Usage

AUPECcv(T, tau, Y, ind, centered = TRUE)

Arguments

- **T**: A vector of the unit-level binary treatment receipt variable for each sample.
- **tau**: A matrix where the i-th column is the unit-level continuous score for treatment assignment generated in the i-th fold.
- **Y**: The outcome variable of interest.
- **ind**: A vector of integers (between 1 and number of folds inclusive) indicating which testing set does each sample belong to.
- **centered**: If TRUE, the outcome variables would be centered before processing. This minimizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

- **aupec**: The estimated AUPEC.
- **sd**: The estimated standard deviation of AUPEC.

Author(s)

Michael Lingzhi Li, Operations Research Center, Massachusetts Institute of Technology <mlli@mit.edu>,
http://mlli.mit.edu;
PAPD

References

Examples

T = c(1,0,1,0,1,0,1,0)
tax = matrix(c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7,0.9),nrow = 8, ncol = 2)
Y = c(4,5,0,2,4,1,-4,3)
ind = c(rep(1,4),rep(2,4))
aupeclist <- AUPECcv(T, tau, Y, ind)
aupeclist$aupec
aupeclist$sd

PAPD

Estimation of the Population Average Prescription Difference in Randomized Experiments

Description

This function estimates the Population Average Prescription Difference with a budget constraint. The details of the methods for this design are given in Imai and Li (2019).

Usage

PAPD(T, Thatfp, Thatgp, Y, plim, centered = TRUE)

Arguments

T A vector of the unit-level binary treatment receipt variable for each sample.
Thatfp A vector of the unit-level binary treatment that would have been assigned by the first individualized treatment rule. Please ensure that the percentage of treatment units of That is lower than the budget constraint.
Thatgp A vector of the unit-level binary treatment that would have been assigned by the second individualized treatment rule. Please ensure that the percentage of treatment units of That is lower than the budget constraint.
Y A vector of the outcome variable of interest for each sample.
plim The maximum percentage of population that can be treated under the budget constraint. Should be a decimal between 0 and 1.
centered If TRUE, the outcome variables would be centered before processing. This minimizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:
papd The estimated Population Average Prescription Difference
sd The estimated standard deviation of PAPD.
Author(s)
Michael Lingzhi Li, Operations Research Center, Massachusetts Institute of Technology <mlli@mit.edu>, http://mlli.mit.edu;

References
Imai and Li (2019). “Experimental Evaluation of Individualized Treatment Rules”,

Examples

\[
T = c(1,0,1,0,1,0,1,0) \\
That = c(0,1,1,0,0,1,1,0) \\
That2 = c(1,0,0,1,1,0,0,1) \\
Y = c(4,5,0,2,4,1,-4,3) \\
papdlist <- PAPD(T,That,That2,Y,plim = 0.5) \\
papdlist$papd \\
papdlist$sd
\]

PAPDcv
Estimation of the Population Average Prescription Difference in Randomized Experiments Under Cross Validation

Description
This function estimates the Population Average Prescription Difference. The details of the methods for this design are given in Imai and Li (2019).

Usage

PAPDcv(T, Thatfp, Thatgp, Y, ind, plim, centered = TRUE)

Arguments

T A vector of the unit-level binary treatment receipt variable for each sample.
Thatfp A matrix where the \(i\)th column is the unit-level binary treatment that would have been assigned by the first individualized treatment rule generated in the \(i\)th fold. Please ensure that the percentage of treatment units of That is lower than the budget constraint.
Thatgp A matrix where the \(i\)th column is the unit-level binary treatment that would have been assigned by the second individualized treatment rule generated in the \(i\)th fold. Please ensure that the percentage of treatment units of That is lower than the budget constraint.
Y The outcome variable of interest.
ind A vector of integers (between 1 and number of folds inclusive) indicating which testing set does each sample belong to.
The maximum percentage of population that can be treated under the budget constraint. Should be a decimal between 0 and 1.

centered

If TRUE, the outcome variables would be centered before processing. This minimizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

papd

The estimated Population Average Prescription Difference.

sd

The estimated standard deviation of PAPD.

Author(s)

Michael Lingzhi Li, Operations Research Center, Massachusetts Institute of Technology <mlli@mit.edu>, http://mlli.mit.edu;

References

Imai and Li (2019). “Experimental Evaluation of Individualized Treatment Rules”,

Examples

T = c(1,0,1,0,1,0,1,0)
That = matrix(c(0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0), nrow = 8, ncol = 2)
That2 = matrix(c(0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0), nrow = 8, ncol = 2)
Y = c(4,5,0,2,4,1,-4,3)
ind = c(rep(1,4),rep(2,4))
papdlist <- PAPDcv(T, That, That2, Y, ind, plim = 0.5)
papdlist$papd
papdlist$sd
Arguments

T A vector of the unit-level binary treatment receipt variable for each sample.

That A vector of the unit-level binary treatment that would have been assigned by the individualized treatment rule. If plim is specified, please ensure that the percentage of treatment units of That is lower than the budget constraint.

Y A vector of the outcome variable of interest for each sample.

plim The maximum percentage of population that can be treated under the budget constraint. Should be a decimal between 0 and 1. Default is NA which assumes no budget constraint.

centered If TRUE, the outcome variables would be centered before processing. This minimizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

pape The estimated Population Average Prescription Effect.

sd The estimated standard deviation of PAPE.

Author(s)

Michael Lingzhi Li, Operations Research Center, Massachusetts Institute of Technology <mlli@mit.edu>, http://mlli.mit.edu;

References

Imai and Li (2019). “Experimental Evaluation of Individualized Treatment Rules”,

Examples

T = c(1,0,1,0,1,0,1,0)
That = c(0,1,1,0,0,1,1,0)
Y = c(4,5,0,2,4,1,-4,3)
papelist <- PAPE(T,That,Y)
papelist$pape
papelist$sd

PAPEcv Estimation of the Population Average Prescription Effect in Randomized Experiments Under Cross Validation

Description

This function estimates the Population Average Prescription Effect with and without a budget constraint. The details of the methods for this design are given in Imai and Li (2019).
Usage

PAPEcv(T, That, Y, ind, plim = NA, centered = TRUE)

Arguments

T
A vector of the unit-level binary treatment receipt variable for each sample.

That
A matrix where the \(i\)th column is the unit-level binary treatment that would have been assigned by the individualized treatment rule generated in the \(i\)th fold. If \(\text{plim}\) is specified, please ensure that the percentage of treatment units of \(\text{That}\) is lower than the budget constraint.

Y
The outcome variable of interest.

ind
A vector of integers (between 1 and number of folds inclusive) indicating which testing set does each sample belong to.

plim
The maximum percentage of population that can be treated under the budget constraint. Should be a decimal between 0 and 1. Default is NA which assumes no budget constraint.

centered
If TRUE, the outcome variables would be centered before processing. This minimizes the variance of the estimator. Default is TRUE.

Value

A list that contains the following items:

pape
The estimated Population Average Prescription Effect.

sd
The estimated standard deviation of PAPE.

Author(s)

Michael Lingzhi Li, Operations Research Center, Massachusetts Institute of Technology <mlli@mit.edu>,
http://mlli.mit.edu;

References

Examples

```r
T = c(1,0,1,0,1,0,1,0)
That = matrix(c(0,1,1,0,0,1,0,1,1,0,0,1,1,0,0,1), nrow = 8, ncol = 2)
Y = c(4,5,0,2,4,1,-4,3)
ind = c(rep(1,4),rep(2,4))
papelist <- PAPEcv(T, That, Y, ind)
papelist$pape
papelist$sd
```
Description

This function estimates the Population Average Value. The details of the methods for this design are given in Imai and Li (2019).

Usage

\[\text{PAV}(T, \text{That}, Y, \text{centered} = \text{TRUE}) \]

Arguments

- **T**: A vector of the unit-level binary treatment receipt variable for each sample.
- **That**: A vector of the unit-level binary treatment that would have been assigned by the individualized treatment rule. If \(\text{plim} \) is specified, please ensure that the percentage of treatment units of \(\text{That} \) is lower than the budget constraint.
- **Y**: A vector of the outcome variable of interest for each sample.
- **centered**: If \(\text{TRUE} \), the outcome variables would be centered before processing. This minimizes the variance of the estimator. Default is \(\text{TRUE} \).

Value

A list that contains the following items:

- **pav**: The estimated Population Average Value.
- **sd**: The estimated standard deviation of PAV.

Author(s)

Michael Lingzhi Li, Operations Research Center, Massachusetts Institute of Technology \(<\text{mlli@mit.edu}>\), \(\text{http://mlli.mit.edu} \);

References

Examples

```r
T = c(1, 0, 1, 0, 1, 0, 1, 0)
That = c(0, 1, 1, 0, 0, 1, 1, 0)
Y = c(4, 5, 0, 2, 4, 1, -4, 3)
pavlist <- PAV(T, That, Y)
pavlist$pav
pavlist$sd
```
Estimation of the Population Average Value in Randomized Experiments Under Cross Validation

Description

This function estimates the Population Average Value. The details of the methods for this design are given in Imai and Li (2019).

Usage

\[\text{PAVcv}(T, \text{That}, Y, \text{ind}, \text{centered} = \text{TRUE}) \]

Arguments

- **T**: A vector of the unit-level binary treatment receipt variable for each sample.
- **That**: A matrix where the \(i \)th column is the unit-level binary treatment that would have been assigned by the individualized treatment rule generated in the \(i \)th fold. If \(\text{plim} \) is specified, please ensure that the percentage of treatment units of \(\text{That} \) is lower than the budget constraint.
- **Y**: The outcome variable of interest.
- **ind**: A vector of integers (between 1 and number of folds inclusive) indicating which testing set does each sample belong to.
- **centered**: If \(\text{TRUE} \), the outcome variables would be centered before processing. This minimizes the variance of the estimator. Default is \(\text{TRUE} \).

Value

A list that contains the following items:

- **pav**: The estimated Population Average Value.
- **sd**: The estimated standard deviation of PAV.

Author(s)

Michael Lingzhi Li, Operations Research Center, Massachusetts Institute of Technology <mlli@mit.edu>, http://mlli.mit.edu;

References

Imai and Li (2019). “Experimental Evaluation of Individualized Treatment Rules”,

Examples

T = c(1,0,1,0,1,0,1,0)
That = matrix(c(0,1,1,0,1,0,1,0,0,1,0,0,1,1,0,0,1), nrow = 8, ncol = 2)
Y = c(4,5,0,2,4,1,-4,3)
ind = c(rep(1,4),rep(2,4))
pavlist <- PAVcv(T, That, Y, ind)
pavlist$pav
pavlist$sd
Index

∗ evaluation
 AUPEC, 2
 AUPECcv, 3
 PAPD, 4
 PAPDcv, 5
 PAPE, 6
 PAPEcv, 7
 PAV, 9
 PAVcv, 10

AUPEC, 2
AUPECcv, 3

PAPD, 4
PAPDcv, 5
PAPE, 6
PAPEcv, 7
PAV, 9
PAVcv, 10