Package ‘evaluator’

April 16, 2020

Title Quantified Risk Assessment Toolkit

Version 0.4.2

Depends R (>= 3.3.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports cli, crayon, dplyr, extrafont, ggplot2, mc2d, magrittr, purrr, readr, readxl, rlang, rstudioapi, scales, stringi, tibble, tidyr, vctrs, viridis

RoxygenNote 7.0.2

Suggests DT, EnvStats, covr, ggalt (>= 0.4.0), knitr, flexdashboard (>= 0.4), forcats, furrr, mockery, pander (>= 0.6.1), psych, markdown (>= 1.9), shiny, shinytest, spelling, statip, testthat

SystemRequirements pandoc

VignetteBuilder knitr

URL https://evaluator.tidyrisk.org

BugReports https://github.com/davidski/evaluator/issues

Language en-US

NeedsCompilation no

Author David Severski [aut, cre] (<https://orcid.org/0000-0001-7867-0459>)

Maintainer David Severski <davidski@deadheaven.com>

Repository CRAN

Date/Publication 2020-04-16 09:20:09 UTC
R topics documented:

as_tibble.tidyrisk_scenario .. 3
calculate_max_losses ... 4
compare_tef_vuln ... 4
create_templates ... 5
create_tidyrisk_scenario_skeleton ... 6
derive_controls ... 6
derive_control_key ... 7
dollar_millions ... 7
encode_scenarios ... 8
evaluator ... 8
explore_scenarios ... 9
exposure_histogram .. 10
generate_event_outcomes_plot .. 10
generate_heatmap ... 11
generate_report ... 12
get_base_fontfamily ... 13
get_mean_control_strength ... 14
identify_outliers .. 14
import_capabilities ... 15
import_scenarios ... 16
import_spreadsheet .. 16
is_tidyrisk_scenario .. 17
loss_exceedance_curve .. 17
loss_scatterplot ... 18
mc_capabilities ... 19
mc_domains ... 19
mc_domain_summary ... 20
mc_mappings ... 21
mc_qualitative_scenarios ... 21
mc_quantitative_scenarios ... 22
mc_scenario_summary .. 23
mc_simulation_results .. 24
new_tidyrisk_scenario .. 24
openfair_example .. 25
openfair_tef_tc_diff_lm .. 25
openfair_tef_tc_diff_plm_sr ... 26
print.tidyrisk_scenario .. 27
read_qualitative_inputs .. 27
read_quantitative_inputs ... 28
risk_dashboard ... 28
risk_factory ... 29
run_simulation ... 30
run_simulations ... 31
sample_diff ... 32
sample_lef ... 32
sample_lm ... 33
as_tibble.tidyrisk_scenario

Coerce the parameters of a tidyrisk_scenario to a tibble

Description

Coerce the parameters of a tidyrisk_scenario to a tibble

Usage

```r
## S3 method for class 'tidyrisk_scenario'
as_tibble(x, ...)
```

```r
## S3 method for class 'tidyrisk_scenario'
as.data.frame(x, ...)
```

Arguments

- `x` A `tidyrisk_scenario`
- `...` Currently not used
calculate_max_losses *Calculate maximum losses*

Description

Calculate the biggest single annual loss for each scenario, as well as the minimum and maximum ALE across all iterations. Calculations both with and without outliers (if passed) are returned.

Usage

```r
calculate_max_losses(simulation_results, scenario_outliers = NULL)
```

Arguments

- `simulation_results`: Simulation results dataframe.
- `scenario_outliers`: Optional vector of IDs of outlier scenarios.

Value

A dataframe with the following columns:

- `iteration`: index of the iteration
- `biggest_single_scenario_loss`: the biggest annual loss in that iteration,
- `min_loss`: the smallest annual loss in that iteration,
- `maxLoss`: the total annual losses in that iteration
- `outliers`: logical of whether or not outliers are included

Examples

```r
data(mc_simulation_results)
calculate_max_losses(mc_simulation_results)
```

compare_tef_vuln *Calculate number of loss events which occur in a simulated period*

Description

Composition function for use in `sample_lef`. Given a count of the number of threat events (TEF) and the level of vulnerability (as a percentage), calculate how many of those become loss events (LEF).

Usage

```r
compare_tef_vuln(tef, vuln, n = NULL)
```
create_templates

Arguments

- **tef**
 Threat event frequency (n).

- **vuln**
 Vulnerability (percentage).

- **n**
 Number of samples to generate.

Value

List containing samples (as a vector) and details (as a list).

See Also

Other OpenFAIR helpers: `get_mean_control_strength()`, `openfair_tef_tc_diff_lm()`, `sample_diff()`, `sample_lef()`, `sample_lm()`, `sample_tc()`, `sample_vuln()`, `select_loss_opportunities()`

Examples

```r
compare_tef_vuln(tef = 500, vuln = .25)
```

create_templates
Create a directory structure for risk analysis, pre-populated with templates

Description

Copy the sample files into an `inputs` subdirectory. This makes the starter files available for customizing and data collection. The `inputs` directory will be created if not already present. Preexisting files, if present, will not be overwritten. Also creates an empty `results` subdirectory as a default location for evaluator output.

Usage

```r
create_templates(base_directory)
```

Arguments

- **base_directory**
 Parent directory under which to create starter files.

Value

A dataframe of the starter filenames, along with a flag on whether a file was copied.

Examples

```r
## Not run:
create_templates(~/evaluator)

## End(Not run)
```
derive_controls

create_tidyrisk_scenario_skeleton

Create a skeleton tidyrisk scenario object in the current document

Description

Inserts a code block into the active document in RStudio for creating a `tidyrisk_scenario` object. This is an easy way of rapidly running a simulation.

Usage

create_tidyrisk_scenario_skeleton()

derive_controls

Derive control difficulty parameters for a given qualitative scenario

Description

Given a comma-separated list of control IDs in a scenario, identify the qualitative rankings associated with each scenario, convert to their quantitative parameters, and return a dataframe of the set of parameters.

Usage

derive_controls(capability_ids, capabilities, mappings)

Arguments

capability_ids Comma-delimited list of capabilities in scope for a scenario.
capabilities Dataframe of master list of all qualitative capabilities.
mappings Qualitative mappings dataframe.

Value

A named list of quantitative estimate parameters for the capabilities applicable to a given scenario.

Examples

data(mc_capabilities)
capability_ids <- c("1", "3")
mappings <- data.frame(type = "diff", label = "1 - Immature", l = 0, ml = 2, h = 10, conf = 3, stringsAsFactors = FALSE)
derive_controls(capability_ids, mc_capabilities, mappings)
derive_control_key Derive control ID to control description mappings

Description
Given a comma-separated list of control IDs, return a named list of descriptions for each control with the names set to the control IDs.

Usage
derive_control_key(capability_ids, capabilities)

Arguments
 capability_ids Comma-delimited list of capabilities in scope for a scenario.
 capabilities Dataframe of master list of all qualitative capabilities.

Value
A named list of control IDs and descriptions.

Examples
data(mc_capabilities)
capability_ids <- c("CAP-01", "CAP-03")
derive_control_key(capability_ids, mc_capabilities)

dollar_millions Format dollar amounts in terms of millions of USD

Description
Given a number, return a string formatted in terms of millions of dollars.

Usage
dollar_millions(x)

Arguments
 x A number.

Value
String in the format of $xM.
Examples
dollar_millions(1.523 \times 10^6)

encode_scenarios
Encode qualitative data to quantitative parameters

Description
Given an input of:

- qualitative risk scenarios
- qualitative capabilities
- translation table from qualitative labels to quantitative parameters

Usage
encode_scenarios(scenarios, capabilities, mappings)

Arguments
- scenarios: Qualitative risk scenarios dataframe.
- capabilities: Qualitative program capabilities dataframe.
- mappings: Qualitative to quantitative mapping dataframe.

Details
Create a unified dataframe of quantitative scenarios ready for simulation.

Value
A dataframe of capabilities for the scenario and parameters for quantified simulation.

Examples
data(mc_qualitative_scenarios, mc_capabilities, mc_mappings)
encode_scenarios(mc_qualitative_scenarios, mc_capabilities, mc_mappings)

Description
Quantified Information Risk Simulation Toolkit

Details
See the online documentation located at https://evaluator.tidyrisk.org/
explore_scenarios

Launch the Scenario Explorer web application

Description
Evaluator provides a simple Shiny-based web application for interactive exploration of simulation results. This allows a user to interactively review simulation output without generating an extensive report. For users comfortable with R, working directly with the result dataframes will usually be preferable, with the Explorer application provided as a bare-bones data exploration tool.

Usage
explore_scenarios(
 input_directory = "~/evaluator/inputs",
 results_directory = "~/evaluator/results",
 styles = NULL,
 intermediates_dir = tempdir(),
 quiet = TRUE,
 ...
)

Arguments
input_directory Location of input files to be read by read_quantitative_inputs.
results_directory Directory where the simulations_results.rds file is stored.
styless Optional full path to CSS file to override default styles.
intermediates_dir Location for intermediate knit files.
quiet TRUE to suppress printing of pandoc output.
... Any other parameters to pass to rmarkdown::run.

Value
Invisible NULL.

Examples
Not run:
explore_scenarios("~/inputs", "~/results")

End(Not run)

exposure_histogram
Display a histogram of losses for a scenario

Description

Given a results dataframe for a specific scenario, create a histogram of the annualized loss exposure. This provides a detailed view on the results for a particular scenario.

Usage

```r
exposure_histogram(simulation_result, bins = 30, show_var_95 = FALSE)
```

Arguments

- `simulation_result`
 Simulation result from `run_simulation`.
- `bins`
 Number of bins to use for the histogram.
- `show_var_95`
 Set to TRUE to show the 95 percentile value at risk line.

Value

A ggplot object.

See Also

Other result graphs:
- `generate_event_outcomes_plot()`, `generate_heatmap()`, `generate_scatterplot_deprecated()`, `loss_exceedance_curve()`, `loss_scatterplot()`

Examples

```r
data(mc_simulation_results)
result <- mc_simulation_results$results[[1]]
exposure_histogram(result)
```

generate_event_outcomes_plot
Display the distribution of threat events contained vs. realized across all domains

Description

Creates a barbell plot showing the number and percentage of events contained (not resulting in loss) vs the number and percentage of loss events (threat events resulting in losses).
Usage

generate_event_outcomes_plot(domain_summary, domain_id = domain_id)

Arguments

domain_summary Domain-level summary from domain_summary.
domain_id Variable to group plot by.

Value

A ggplot object.

See Also

Other result graphs: exposure_histogram(), generate_heatmap(), generate_scatterplot-deprecated, loss_exceedance_curve(), loss_scatterplot()

Examples

data(mc_domain_summary)
generate_event_outcomes_plot(mc_domain_summary)

generate_heatmap Display a heatmap of impact by domain

Description

Given a domain_summary and a list of all domains, generate a heatmap colored by the 95% VaR. This plot displays the domains in which aggregate risk is greater than others.

Usage

generate_heatmap(domain_summary)

Arguments

domain_summary Simulations summarized at a domain level via summarize_domains.

Value

A ggplot object.

See Also

Other result graphs: exposure_histogram(), generate_event_outcomes_plot(), generate_scatterplot-deprecated, loss_exceedance_curve(), loss_scatterplot()
generate_report

Examples

```r
data(mc_domain_summary)
generate_heatmap(mc_domain_summary)
```

generate_report

Generate sample analysis report

Description

Given a set of input files and summarized simulation results, create a skeleton risk analysis report. This report attempts to summarize the results of the analysis at a top level, using 95% Value at Risk (VaR) as the primary metric, while also providing more detailed analysis at both a per-domain and per-scenario level.

Usage

```r
generate_report(
  input_directory = "~/evaluator/inputs",
  results_directory = "~/evaluator/results",
  output_file,
  styles = NULL,
  include_header = NULL,
  focus_scenario_ids = c("RS-51", "RS-12"),
  format = "html",
  intermediates_dir = tempdir(),
  quiet = TRUE,
  ...
)
```

Arguments

- `input_directory` Location of input files.
- `results_directory` Location of simulation results.
- `output_file` Full path to output file.
- `styles` Optional full path to CSS file to override default styles.
- `include_header` Optional full path to HTML to include in the HEAD section (HTML formats only).
- `focus_scenario_ids` IDs of scenarios of special interest.
- `format` Format to generate (html, pdf, word).
- `intermediates_dir` Location for intermediate knit files.
- `quiet` TRUE to suppress printing of pandoc output.
- `...` Any other parameters to pass straight to `rmarkdown::render`.
Details

This report includes several sections where an analyst will need to modify and fill in details for their specific organization. Of particular note is the Recommendations section, which will always need to be updated.

Value

Default return values of the rmarkdown::render function.

Examples

```r
## Not run:
generate_report("~/inputs", "~/results", "~/risk_report.html")
## End(Not run)
```

get_base_fontfamily

Select a base graphics font family

Description

The Benton Sans Regular font is preferred with a fallback of Arial Narrow. If neither font is available, use a default sans family font.

Usage

```r
get_base_fontfamily()
```

Value

String of the preferred base font.

Examples

```r
get_base_fontfamily()
```
get_mean_control_strength

Calculate difficulty strength across multiple controls by taking the mean

Description

Given a set of estimation parameters, calculate control strength as the arithmetic mean of sampled control effectiveness.

Usage

get_mean_control_strength(n, diff_parameters)

Arguments

n Number of threat events to generate control effectiveness samples.
diff_parameters Parameters to pass to sample_diff.

Value

Vector of control effectiveness.

See Also

Other OpenFAIR helpers: compare_tef_vuln(), openfair_tef_tc_diff_lm(), sample_diff(), sample_lef(), sample_lm(), sample_tc(), sample_vuln(), select_loss_opportunities()

identify_outliers

Unnest a summarized results dataframe, adding outlier information

Description

Given a summarized results dataframe, unnest the summary results column and use the value at risk (VaR) column to identify all the elements that are outliers (having a VaR >= two standard deviations)

Usage

identify_outliers(results)

Arguments

results Scenario summary results
import_capabilities

Value

The supplied dataframe with the following additional columns:

- ale_var_zscore - Annual loss z-score
- outlier - Logical flag when the z-score is greater than or equal to two

Examples

data(mc_scenario_summary)
identify_outliers(mc_scenario_summary)

import_capabilities
Import capabilities from survey spreadsheet

Description

Import capabilities from survey spreadsheet

Usage

import_capabilities(survey_file = NULL, domains = NULL)

Arguments

- survey_file: Path to survey Excel file. If not supplied, a default sample file is used.
- domains: Dataframe of domains and domain IDs.

Value

Extracted capabilities as a dataframe.

Examples

data(mc_domains)
import_capabilities(domains = mc_domains)
import_scenarios Import scenarios from survey spreadsheet

Description
Import scenarios from survey spreadsheet

Usage
import_scenarios(survey_file = NULL, domains = NULL)

Arguments
survey_file Path to survey Excel file. Defaults to a sample file if not supplied.
domains Dataframe of domains and domain IDs.

Value
Extracted qualitative scenarios as a dataframe.

Examples
data(mc_domains)
import_scenarios(domains = mc_domains)

import_spreadsheet Import the scenario spreadsheet

Description
This is a convenience wrapper around the import_scenarios and import_capabilities functions. Writes cleaned comma-separated formatted files for the scenarios and capabilities to disk.

Usage
import_spreadsheet(
 survey_file = system.file("survey", "survey.xlsx", package = "evaluator"),
 domains = NULL,
 output_dir = "~/evaluator/results"
)

Arguments
survey_file Path to survey Excel file. Defaults to an Evaluator-provided sample spreadsheet.
domains Dataframe of domains and domain IDs. Defaults to built-in sample domains dataset.
output_dir Output file directory.
is_tidyrisk_scenario

Value

Dataframe of file information on the two newly created files.

is_tidyrisk_scenario

Test if the object is a tidyrisk_scenario

Description

This function returns TRUE for tidyrisk_scenario (or subclasses) and FALSE for all other objects.

Usage

is_tidyrisk_scenario(x)

Arguments

x

An object

Value

TRUE if the object inherits from the tidyrisk_scenario class.

loss_exceedance_curve

Display the loss exceedance curve for a group of one or more scenarios

Description

Display the loss exceedance curve for a group of one or more scenarios

Usage

loss_exceedance_curve(iteration_results)

Arguments

iteration_results

Iteration-level summary from summarize_iterations.

Value

A ggplot object.

See Also

Other result graphs: exposure_histogram(), generate_event_outcomes_plot(), generate_heatmap(), generate_scatterplot deprecated, loss_scatterplot()
loss_scatterplot

Examples

data(mc_simulation_results)
summarize_iterations(mc_simulation_results$results) %>% loss_exceedance_curve()

loss_scatterplot Display a scatterplot of loss events for a scenario

Description

Given a detailed results dataframe create a scatterplot of the number of loss events versus the total amount of expected annual loss for each simulation. This provides a detailed view on the results.

Usage

loss_scatterplot(simulation_result)

Arguments

simulation_result

Simulation results from run_simulation.

Value

A ggplot object.

See Also

Other result graphs: exposure_histogram(), generate_event_outcomes_plot(), generate_heatmap(), generate_scatterplot_deprecated, loss_exceedance_curve()

Examples

data(mc_simulation_results)
loss_scatterplot(mc_simulation_results$results[[1]])
mc_capabilities

Capabilities

Description
A sample set of capabilities for the demonstration (and artificial) MetroCare information security program.

Usage
```
mc_capabilities
```

Format
- **capability_id**: unique id of the capability
- **domain_id**: domain id to which the capability applies
- **capability**: full text summary of the capability
- **diff**: qualitative label of control effectiveness

Source
This is hypothetical information. Any similarity to any other entity is completely coincidental.

mc_domains

Domain mappings

Description
A sample set of the domains for the demonstration (and artificial) MetroCare information security program.

Usage
```
mc_domains
```

Format
- **domain_id**: abbreviated name of the domain
- **domain**: full title of the domain

Source
This is hypothetical information. Any similarity to any other entity is completely coincidental.
Domain-level risk summary

Description
A sample set of quantified information security risk exposure, summarized at the domain level, for the demonstration (and artificial) MetroCare information security program.

Usage
mc_domain_summary

Format
- **domain_id**: abbreviated name of the domain
- **loss_events_mean**: mean number of loss events
- **loss_events_min**: minimum number of loss events
- **loss_events_max**: maximum number of loss events
- **loss_events_median**: median number of loss events
- **ale_max**: minimum annual loss expected
- **ale_median**: median annual loss expected
- **ale_mean**: mean annual loss expected
- **ale_max**: maximum annual loss expected
- **ale_sd**: standard deviation annual loss expected
- **ale_var**: value at risk, ale
- **mean_threat_events**: mean threat events
- **mean_avoided_events**: mean avoided events
- **mean_tc_exceedance**: mean threat capability exceedance
- **mean_diff_exceedance**: mean difficulty exceedance
- **mean_vuln**: mean vulnerability of the scenario

Source
This is hypothetical information. Any similarity to any other entity is completely coincidental.
mc_mappings

Qualitative to quantitative mappings

Description
A sample set of qualitative to quantitative mappings for the demonstration (and artificial) MetroCare information security program.

Usage
mc_mappings

Format
- **type** The element in the OpenFAIR ontology to which this mapping applies
- **label** Qualitative label
- l BetaPERT low value
- ml BetaPERT most likely value
- h BetaPERT high value
- conf BetaPERT confidence value

Source
This is hypothetical information. Any similarity to any other entity is completely coincidental.

mc_qualitative_scenarios

Qualitative information security risk scenarios

Description
A sample set of qualitative information security risk scenarios for the demonstration (and artificial) MetroCare information security program.

Usage
mc_qualitative_scenarios
mc_quantitative_scenarios

Format

- **scenario_id**: id of the scenario, primary key
- **scenario**: full text description of the risk scenario
- **tcomm**: full text name of threat community
- **tef**: qualitative label of threat frequency
- **tc**: qualitative label of threat capability
- **lm**: qualitative label of loss magnitude
- **domain_id**: domain id
- **controls**: comma delimited list of controls ids

Details

No connection with any other similarly named entity is intended or implied.

Source

This is hypothetical information. Any similarity to any other entity is completely coincidental.

mc_quantitative_scenarios

Quantified information risk scenarios

Description

A sample set of quantified information security risk scenarios for the demonstration (and artificial) MetroCare information security program.

Usage

mc_quantitative_scenarios

Format

A dataset of quantified risk scenarios, with parameters describing the distribution of each input.

- **scenario_id**: id of the scenario, primary key
- **scenario_description**: full text description of the risk scenario
- **tcomm**: description of the threat community
- **domain_id**: domain id
- **control_descriptions**: named list of the text description of controls involved
- **scenario**: tidyrisk_scenario objects

Source

This is hypothetical information. Any similarity to any other entity is completely coincidental.
Scenario-level risk summary

Description
A sample set of quantified information security risk exposure, summarized at the scenario level, for the demonstration (and artificial) MetroCare information security program.

Usage
mc_scenario_summary

Format
scenario_id ID of the scenario
domain_id domain id
control_description control description
results nested data frame of simulation results for the scenario
loss_events_mean mean number of loss events
loss_events_median median number of loss events
loss_events_min minimum number of loss events
loss_events_max maximum number of loss events
ale_median median annual loss expected
ale_max maximum annual loss expected
ale_var value at risk, ale
sle_min minimum single loss expectancy
sle_max maximum single loss expectancy
sle_mean mean single loss expectancy
sle_median median single loss expectancy
mean_tc_exceedance mean threat capability exceedance
mean_diff_exceedance mean difficulty exceedance
mean_vuln mean vulnerability of the scenario

Source
This is hypothetical information. Any similarity to any other entity is completely coincidental.
mc_simulation_results Simulation results

Description
A sample set of information security risk scenario simulation results for the demonstration (and artificial) MetroCare information security program.

Usage
mc_simulation_results

Format
scenario_id id of the scenario
domain_id domain id
results nested data frame of simulation results for the scenario

Source
This is hypothetical information. Any similarity to any other entity is completely coincidental.

new_tidyrisk_scenario Construct a quantitative scenario object

Description
Supply one or more named lists in the format of foo_params, where each foo is an OpenFAIR factor name (e.g. tef, tc, diff, lm). Each factor should include a function name (func) to which the other named elements in the list are passed as parameters when sampling.

Usage
new_tidyrisk_scenario(..., model = "openfair_tef_tc_diff_lm")
tidyrisk_scenario(..., model = "openfair_tef_tc_diff_lm")

Arguments
... One or more named OpenFAIR factor with parameters for sampling
model Name of model to run
openfair_example

Launch OpenFAIR demonstration web application

Description
A simple web application to demonstrate OpenFAIR modeling. This application allows a user to enter beta PERT parameters and run simulations to see the distribution of results, with high level summary statistics. As a demonstration application, only TEF, TC, DIFF, and LM parameters may be entered.

Usage
openfair_example(intermediates_dir = tempdir(), quiet = TRUE)

Arguments
intermediates_dir
Location for intermediate knit files.
quiet
TRUE to suppress printing of pandoc output.

Value
Invisible NULL

Examples
Not run:
openfair_example()

End(Not run)

openfair_tef_tc_diff_lm

Run an OpenFAIR simulation at the TEF/TC/DIFF/LM levels

Description
Run an OpenFAIR model with parameters provided for TEF, TC, DIFF, and LM sampling. If there are multiple controls provided for the scenario, the arithmetic mean (average) is taken across samples for all controls to get the effective control strength for each threat event.

Usage
openfair_tef_tc_diff_lm(tef, tc, diff, lm, n = 10^4, verbose = FALSE)
openfair_tef_tc_diff_plm_sr

Arguments

- **tef**: Parameters for TEF simulation.
- **tc**: Parameters for TC simulation.
- **diff**: Parameters for DIFF simulation.
- **lm**: Parameters for LM simulation.
- **n**: Number of iterations to run.
- **verbose**: Whether to print progress indicators.

Value

Dataframe of scenario name, threat_event count, loss_event count, mean TC and DIFF exceedance, and ALE samples.

See Also

Other OpenFAIR helpers: `compare_tef_vuln()`, `get_mean_control_strength()`, `sample_diff()`, `sample_lef()`, `sample_lm()`, `sample_tc()`, `sample_vuln()`, `select_loss_opportunities()`

Examples

data(mc_quantitative_scenarios)
params <- mc_quantitative_scenarios$scenario[[1]]$parameters
openfair_tef_tc_diff_lm(params$tef, params$tc, params$diff, params$lm, 10)

openfair_tef_tc_diff_plm_sr

Run an OpenFAIR simulation at the TEF/TC/DIFF/PLM/SR levels

Description

Run an OpenFAIR model with parameters provided for TEF, TC, DIFF, PLM, and SR sampling. If there are multiple controls provided for the scenario, the arithmetic mean (average) is taken across samples for all controls to get the effective control strength for each threat event.

Usage

`openfair_tef_tc_diff_plm_sr(tef, tc, diff, plm, sr, n = 10^4, verbose = FALSE)`

Arguments

- **tef**: Parameters for TEF simulation.
- **tc**: Parameters for TC simulation.
- **diff**: Parameters for DIFF simulation.
- **plm**: Parameters for PLM simulation.
- **sr**: Parameters for SR simulation.
- **n**: Number of iterations to run.
- **verbose**: Whether to print progress indicators.
Value

Dataframe of scenario name, threat_event count, loss_event count, mean TC and DIFF exceedance, and ALE samples.

See Also

Other OpenFAIR models: `sample_tef()`

print.tidyrisk_scenario

Default printing of a tidyrisk_scenario

Description

Basic printing of a tidyrisk scenario

Usage

```r
## S3 method for class 'tidyrisk_scenario'
print(x, ...)
```

Arguments

- `x` : A tidyrisk_scenario
- `...` : Currently not used

read_qualitative_inputs

Load qualitative inputs

Description

Given an input directory, load the key qualitative objects into memory.

Usage

```r
read_qualitative_inputs(input_directory = "~/evaluator/inputs")
```

Arguments

- `input_directory` : Location of input files.
Details
The key qualitative inputs for Evaluator processing include:

- domains.csv: domains and domain_ids
- mappings.csv: qualitative to quantitative mappings
- capabilities.csv: qualitative capabilities
- qualitative_scenarios.csv: qualitative risk scenarios

Value
List of domains, mappings, capabilities, and qualitative_scenarios

Examples
```r
## Not run:
read_qualitative_inputs("~/evaluator/inputs")
## End(Not run)
```

Description
Given an input directory, load the quantitative objects into memory.

Usage
```r
read_quantitative_inputs(input_directory = "~/evaluator/inputs")
```

Arguments
- input_directory
 Location of input files.

Details
The key quantitative inputs for Evaluator processing include:

- domains.csv - domains and domain_ids
- risk_tolerances.csv - the risk tolerances of the organization
- quantitative_scenarios.rds - risk scenarios and quantified parameters

Value
List of domains, quantitative_scenarios, and risk_tolerances
Example

Not run:

```r
read_quantitative_inputs("~/evaluator/inputs")
```

End(Not run)

risk_dashboard

Launch a single page summary risk dashboard

Description

Given the input files and the analysis summary file, create a basic one-page summary with an overview of the results per domain and scenario. Intended as a skeleton showing how the results could be displayed at an executive level.

Usage

```r
risk_dashboard(
  input_directory = "~/evaluator/inputs",
  results_directory = "~/evaluator/results",
  output_file,
  intermediates_dir = tempdir(),
  quiet = TRUE,
  ...
)
```

Arguments

- `input_directory`
 - Location of input files read by `read_quantitative_inputs`.
- `results_directory`
 - Directory where the `simulation_results.rds` file is located.
- `output_file`
 - Full path to the desired output file.
- `intermediates_dir`
 - Location for intermediate knit files.
- `quiet`
 - `TRUE` to suppress printing of pandoc output.
- `...`
 - Any other parameters to pass to `rmarkdown::render`

Value

Default return values of the `rmarkdown::render` function.

Examples

Not run:

```r
risk_dashboard("~/inputs", "~/simulations")
```

End(Not run)
risk_factory

Create a tidyrisk_factor sample function

Description

Create a tidyrisk_factor sample function

Usage

```r
risk_factory(factor_label = "TC")
```

Arguments

- `factor_label` abbreviation of the OpenFAIR element

run_simulation

Run simulations for a scenario

Description

Given a quantitative scenario object of type `tidyrisk_scenario`, run an OpenFAIR Monte Carlo simulation.

Usage

```r
run_simulation(
  scenario,
  iterations = 10000L,
  ale_maximum = NULL,
  verbose = FALSE,
  simulation_count = NULL
)
```

Arguments

- `scenario` A `tidyrisk_scenario` object.
- `iterations` Number of iterations to run on each scenario.
- `ale_maximum` Maximum practical annual losses.
- `verbose` Whether verbose console output is requested.
- `simulation_count` **DEPRECATED** Number of simulations to perform.

Value

Dataframe of results.
Examples

data(mc_quantitative_scenarios)
run_simulation(mc_quantitative_scenarios$scenario[[1]], 10)

run_simulations

Run simulations for a list of scenarios

Description

Given a list of quantitative scenario objects of type tidyrisk_scenario, run a OpenFAIR Monte Carlo simulation for each scenario.

Usage

run_simulations(
 scenario,
 ...,
 iterations = 10000L,
 ale_maximum = NULL,
 verbose = FALSE,
 simulation_count = NULL
)

Arguments

scenario A tidyrisk_scenario object.
... Additional tidyrisk_scenario objects to simulate.
iterations Number of iterations to run on each scenario.
ale_maximum Maximum practical annual losses.
verbose Whether verbose console output is requested.
simulation_count DEPRECATED Number of simulations to perform.

Value

A list of one dataframe of results for each scenario.

Examples

fetch three scenarios for this example
data(mc_quantitative_scenarios)
scenario_a <- mc_quantitative_scenarios$scenario[[1]]
scenario_b <- mc_quantitative_scenarios$scenario[[2]]
scenario_c <- mc_quantitative_scenarios$scenario[[3]]
run_simulations(scenario_a, scenario_b, scenario_c, iterations = 10)
sample_diff

Calculate the difficulty presented by controls, given a function and parameters for that function

Description

Calculate the difficulty presented by controls, given a function and parameters for that function

Usage

```r
sample_diff(n, .func = NULL, params = NULL)
```

Arguments

- `n` Number of samples to generate.
- `.func` Function to use to simulate DIFF, defaults to `rpert`.
- `params` Optional parameters to pass to `.func`.

Value

List containing type ("diff"), samples (as a vector), and details (as a list).

See Also

Other OpenFAIR helpers: `compare_tef_vuln()`, `get_mean_control_strength()`, `openfair_tef_tc_diff_lm()`, `sample_lef()`, `sample_lm()`, `sample_tc()`, `sample_vuln()`, `select_loss_opportunities()`

sample_lef

Sample loss event frequency

Description

Sample loss event frequency

Usage

```r
sample_lef(n, .func = NULL, params = NULL)
```

Arguments

- `n` Number of samples to generate.
- `.func` Function to use to simulate LEF, defaults to `rnorm`.
- `params` Optional parameters to pass to `.func`.
sample_lm

Value

List containing type ("lm"), samples (as a vector), and details (as a list).

See Also

Other OpenFAIR helpers: `compare_tef_vuln()`, `get_mean_control_strength()`, `openfair_tef_tc_diff_lm()`, `sample_diff()`, `sample_lm()`, `sample_tc()`, `sample_vuln()`, `select_loss_opportunities()`

Given a number of loss events and a loss distribution, calculate losses

Description

Given a number of loss events and a loss distribution, calculate losses

Usage

```r
sample_lm(n, .func = NULL, params = NULL)
```

Arguments

- `n` Number of samples to generate.
- `.func` Function to use to simulate TEF, defaults to `rpert`.
- `params` Optional parameters to pass to `.func`.

Value

List containing type ("lm"), samples (as a vector), and details (as a list).

See Also

Other OpenFAIR helpers: `compare_tef_vuln()`, `get_mean_control_strength()`, `openfair_tef_tc_diff_lm()`, `sample_diff()`, `sample_lef()`, `sample_tc()`, `sample_vuln()`, `select_loss_opportunities()`
sample_tc

Sample threat capabilities (TC) from a distribution function

Description
Sample threat capabilities (TC) from a distribution function

Usage
sample_tc(n, params = NULL, .func = NULL)

Arguments
- **n**: Number of samples to generate.
- **params**: Optional parameters to pass to `.func`.
- **.func**: Function to use to simulate TC, defaults to `rpert`.

Value
List containing type ("tc"), samples (as a vector), and details (as a list).

See Also
Other OpenFAIR helpers: `compare_tef_vuln()`, `get_mean_control_strength()`, `openfair_tef_tc_diff_lm()`, `sample_diff()`, `sample_lef()`, `sample_lm()`, `sample_vuln()`, `select_loss_opportunities()`

sample_tef

Calculate the number of simulated threat event frequencies (TEF)

Description
Calculate the number of simulated threat event frequencies (TEF)

Usage
sample_tef(n, params = NULL, .func = NULL)

Arguments
- **n**: Number of samples to generate.
- **params**: Optional parameters to pass to `.func`.
- **.func**: Function to use to simulate TEF, defaults to `rpert`.

Value
List containing type ("tef"), samples (as a vector), and details (as a list).
sample_vuln

Calculate the vulnerability

Description

Calculate the vulnerability

Usage

```r
sample_vuln(n, .func = NULL, params = NULL)
```

Arguments

- `n`: Number of samples to generate.
- `.func`: Function to use to simulate VULN, defaults to `rbinom`.
- `params`: Optional parameters to pass to `.func`.

Value

List containing type ("vuln"), samples (as a vector), and details (as a list).

See Also

Other OpenFAIR helpers: `compare_tef_vuln()`, `get_mean_control_strength()`, `openfair_tef_tc_diff_lm()`, `sample_diff()`, `sample_lef()`, `sample_lm()`, `sample_tc()`, `select_loss_opportunities()`

select_loss_opportunities

Determine which threat events result in loss opportunities

Description

Composition function for use in `sample_vuln`, does a simple compare of all threat events where the threat capability (TC) is greater than the difficulty (DIFF).

Usage

```r
select_loss_opportunities(tc, diff, n = NULL, ...)
```
Arguments

- `tc` Threat capability (as a percentage).
- `diff` Difficulty (as a percentage).
- `n` Number of samples to generate.
- `...` Optional parameters (currently ignored).

Value

List containing boolean values of length TC (as a vector) and details (as a list).

See Also

Other OpenFAIR helpers: `compare_tef_vuln()`, `get_mean_control_strength()`, `openfair_tef_tc_diff_lm()`, `sample_diff()`, `sample_lef()`, `sample_lm()`, `sample_tc()`, `sample_vuln()`

Examples

```r
threat_capabilities <- c(.1, .5, .9)
difficulties <- c(.09, .6, .8)
select_loss_opportunities(threat_capabilities, difficulties)
```

split_sheet

`split_sheet` is a function that splits a single sheet of a survey spreadsheet into either capabilities or threats.

Description

The default data collection Excel spreadsheet solicits threat scenarios and applicable controls for each domain. This function takes a single sheet from the spreadsheet, as read by `read_excel` and pulls out either the capabilities or threats, as directed by the user.

Usage

```r
split_sheet(dat, table_type = "capabilities")
```

Arguments

- `dat` Raw sheet input from `read_excel`.
- `table_type` Either capabilities or threats

Value

Extracted table as a dataframe.
summarize_domains

Create domain-level summary of simulation results

Description

Given a dataframe of raw results from `run_simulations`, summarize the individual results at a per-domain level. This domain-level summary is a useful data structure for aggregate reporting.

Usage

```r
summarize_domains(simulation_results, domain_variable = "domain_id")
```

Arguments

- `simulation_results`
 Simulation results dataframe.
- `domain_variable`
 Variable by which individual simulations should be grouped.

Details

Summary stats created include:

- Mean/Min/Max/Median are calculated for loss events
- Median/Max/VaR are calculated for annual loss expected (ALE)
- Mean/Median/Max/Min are calculated for single loss expected (SLE)
- Mean percentage of threat capability exceeding difficulty on successful threat events
- Mean percentage of difficulty exceeding threat capability on defended events
- Vulnerability percentage

Value

Simulation results summarized across domains.

Examples

```r
## Not run:
data(mc_simulation_results)
summarize_domains(mc_simulation_results)
## End(Not run)
```
summarize_iterations
Create a summary of outcomes across all scenarios

Description

Given a dataframe of raw results from `run_simulations`, summarize the individual results at a per-iteration level.

Usage

`summarize_iterations(simulation_result, ..., .key = "iteration")`

Arguments

- `simulation_result`
 Results object for a single scenario.
- `...`
 Additional simulation result objects to summarize.
- `.key`
 Iteration ID field

Details

Summary stats created include:

- Mean/Min/Max/Median are calculated for loss events
- Median/Max/VaR are calculated for annual loss expected (ALE)
- Mean/Median/Max/Min are calculated for single loss expected (SLE)
- Mean percentage of threat capability exceeding difficulty on successful threat events
- Mean percentage of difficulty exceeding threat capability on defended events
- Vulnerability percentage
- Z-score of ALE (outliers flagged as 2 >= z-score)

Value

Dataframe.

Examples

```r
data(mc_simulation_results)
summarize_iterations(mc_simulation_results$results)
```

summarize_scenario
Create a summary of the simulation results for a single scenario

Description

Given a dataframe of raw results from `run_simulations`, create summary statistics for the scenario. This is generally the most granular level of useful data for reporting and analysis (full simulation results are rarely directly helpful).
summarize_to_disk

Usage

summarize_scenario(simulation_result)

summarize_scenarios(simulation_results)

Arguments

simulation_result
 Results object for a single scenario.

simulation_results
 Simulation results dataframe.

Details

Summary stats created include:
- Mean/Min/Max/Median are calculated for loss events
- Median/Max/VaR are calculated for annual loss expected (ALE)
- Mean/Median/Max/Min are calculated for single loss expected (SLE)
- Mean percentage of threat capability exceeding difficulty on successful threat events
- Mean percentage of difficulty exceeding threat capability on defended events
- Vulnerability percentage

Value

Dataframe of summary statistics.

Examples

data(mc_simulation_results)
summarize a single scenario
summarize_scenario(mc_simulation_results$results$[1])

summarize all scenarios in a data frame
data(mc_simulation_results)
summarize_scenarios(mc_simulation_results)

summarize_to_disk Create all summary files and write to disk

Description

This is a wrapper around summarize_scenario and summarize_domains, calling both functions and writing the dataframes to a location on disk.

Usage

summarize_to_disk(simulation_results, results_dir)
theme_evaluator

Arguments

- simulation_results
 Simulation results dataframe.
- results_dir
 Directory to place simulation files.

Value

Tibble with paths to the created data files.

Examples

```r
## Not run:
data(mc_simulation_results)
summarize_to_disk(mc_simulation_results, results_dir = tempdir())
## End(Not run)
```

theme_evaluator

Default ggplot theme used by all Evaluator-supplied graphics

Description

Returns a standardized ggplot theme used by all built-in Evaluator plots.

Usage

theme_evaluator(base_family = "BentonSansRE")

Arguments

- base_family
 Font family.

Value

A ggplot theme object.

Examples

```r
library(ggplot2)
p <- ggplot(mtcars) + geom_point(aes(wt, mpg, color = factor(gear))) + facet_wrap(~am)
font_family <- get_base_fontfamily()
p + theme_evaluator(font_family)
```
tidyrisk_factor

Construct a tidyrisk_factor object

Description

Construct a tidyrisk_factor object

Usage

```r
new_tidyrisk_factor(
  samples = double(),
  factor_label = character(),
  details = list()
)
```

```r
tidyrisk_factor(samples, factor_label, details = list())
```

Arguments

- `samples`: samples
- `factor_label`: factor_label
- `details`: details

validate_scenarios Validate qualitative scenario data

Description

Run a set of basic consistency checks on the key qualitative data inputs (scenarios, capabilities, domains, and mappings).

Usage

```r
validate_scenarios(scenarios, capabilities, domains, mappings)
```

Arguments

- `scenarios`: Dataframe of qualitative scenarios.
- `capabilities`: Dataframe of capabilities.
- `domains`: Dataframe of domain mappings.
- `mappings`: Dataframe of qualitative to quantitative mappings.
validate_tidyrisk_scenario

Details

Checks that:

- All scenarios are distinct
- All controls referenced in scenarios are defined in the controls table
- All controls are distinct

Value

An invisible boolean as to success/failure of validation steps.

Examples

```r
## Not run:
validate_scenarios(scenarios, capabilities, domains, mappings)
## End(Not run)
```

validate_tidyrisk_scenario

Validates that a scenario object is well formed

Description

Validates that a scenario object is well formed

Usage

```r
validate_tidyrisk_scenario(x)
```

Arguments

- `x` An object
vec_cast.tidyrisk_factor

Cast a `tidyrisk_factor` vector to a specified type

Description

Cast a `tidyrisk_factor` vector to a specified type

Usage

```r
## S3 method for class 'tidyrisk_factor'
vec_cast(x, to)
```

Arguments

- `x`: Vectors to cast.
- `to`: Type to cast to. If `NULL`, `x` will be returned as is.

vec_ptype_abbr.tidyrisk_scenario

Set an abbreviation when displaying an S3 column in a tibble

Description

Set an abbreviation when displaying an S3 column in a tibble

Usage

```r
vec_ptype_abbr.tidyrisk_scenario(x)
```

Arguments

- `x`: An object
Index

*Topic datasets
 mc_capabilities, 19
 mc_domain_summary, 20
 mc_domains, 19
 mc_mappings, 21
 mc.qualitative_scenarios, 21
 mc.quantitative_scenarios, 22
 mc.simulation_results, 24
as.data.frame.tidyrisk_scenario
 (as_tibble.tidyrisk_scenario), 3
as_tibble.tidyrisk_scenario, 3
 calculate_max_losses, 4
 compare_tef_vuln, 4, 14, 26, 32–36
 create_templates, 5
 derive_control_key, 7
 derive_controls, 6
 dollar_millions, 7
 encode_scenarios, 8
 evaluator, 8
 explore_scenarios, 9
 exposure_histogram, 10, 11, 17, 18
 generate_event_outcomes_plot, 10, 10, 11, 17, 18
 generate_heatmap, 10, 11, 11, 17, 18
 generate_report, 12
 get_base_fontfamily, 13
 get_mean_control_strength, 5, 14, 26, 32–36
 identify_outliers, 14
 import_capabilities, 15, 16
 import_scenarios, 16
 import_spreadsheet, 16
 is_tidyrisk_scenario, 17
 loss.exceedance_curve, 10, 11, 17, 18
 loss.scatterplot, 10, 11, 17, 18
mc_capabilities, 19
mc_domain_summary, 20
mc_domains, 19
mc_mappings, 21
mc.qualitative_scenarios, 21
mc.quantitative_scenarios, 22
mc.simulation_results, 24
new_tidyrisk_factor (tidyrisk_factor), 41
new_tidyrisk_scenario, 24
openfair_example, 25
openfair_tef_tc_diff_lm, 5, 14, 25, 32–36
openfair_tef_tc_diff_plm_sr, 26, 35
 print.tidyrisk_scenario, 27
rbinom, 35
read_excel, 36
read.qualitative_inputs, 27
read.quantitative_inputs, 9, 28, 29
risk_dashboard, 29
risk_factory, 30
rnorm, 32
rpert, 32–34
run_simulation, 30
run_simulations, 31, 37, 38
sample.diff, 5, 14, 26, 32, 33–36
sample.lef, 4, 5, 14, 26, 32, 32, 33–36
sample.lm, 5, 14, 26, 32, 33, 33, 34–36
sample.tc, 5, 14, 26, 32, 33, 34, 35, 36
sample.tef, 27, 34
sample.vuln, 5, 14, 26, 32–35, 35, 36
INDEX

select_loss_opportunities, 5, 14, 26, 32–35, 35
split_sheet, 36
summarize_domains, 37, 39
summarize_iterations, 38
summarize_scenario, 38, 39
summarize_scenarios
 (summarize_scenario), 38
summarize_to_disk, 39

theme_evaluator, 40
tidyrisk_factor, 41
tidyrisk_scenario, 6, 22, 30, 31
tidyrisk_scenario
 (new_tidyrisk_scenario), 24
validate_scenarios, 41
validate_tidyrisk_scenario, 42
vec_cast.tidyrisk_scenario, 42
vec_ptype_abbr.tidyrisk_scenario, 43