Package ‘evclust’

September 4, 2016

Type Package
Title Evidential Clustering
Version 1.0.3
Date 2016-08-28
Author Thierry Denoeux
Maintainer Thierry Denoeux <tdenoeux@utc.fr>
Description Various clustering algorithms that produce a credal partition, i.e., a set of Dempster-Shafer mass functions representing the membership of objects to clusters. The mass functions quantify the cluster-membership uncertainty of the objects. The algorithms are: Evidential c-Means (ECM), Relational Evidential c-Means (RECM), Constrained Evidential c-Means (CECM), EVCLUS and EK-NNclus.
Depends R (>= 3.1.0),
Imports FNN, R.utils, limSolve, Matrix
License GPL-3
LazyData TRUE
RoxygenNote 5.0.1
VignetteBuilder knitr
Suggests knitr,rmarkdown
NeedsCompilation no
Repository CRAN
Date/Publication 2016-09-04 13:29:43

R topics documented:

butterfly .. 2
cecm ... 3
createD .. 5
createPairs .. 6
create_MLCL .. 7
ecm ... 8
butterfly

Description

A toy dataset used to illustrate fuzzy and evidential clustering algorithms. Also called the 'Diamond' dataset. Adapted from Windham (1985), with one outlier added.

Usage

```r
data(butterfly)
```

Format

A matrix with 12 rows and 2 column.

References

Examples

```r
data(butterfly)
plot(butterfly[,1],butterfly[,2],xlab=expression(x[1]),ylab=expression(x[2]))
```
The Constrained Evidential c-means (CECM) algorithm is designed to compute a credal partition from a matrix of attribute data and pairwise constraints. The function `cecm` takes in an input matrix of size \(n \times d \), where \(n \) is the number of objects and \(d \) is the number of attributes. It also accepts parameters such as the number of clusters, type of focal sets, and various constraints and distances.

Arguments

- **x**: Input matrix of size \(n \times d \), where \(n \) is the number of objects and \(d \) the number of attributes.
- **c**: Number of clusters.
- **type**: Type of focal sets ("simple": empty set, singletons and Omega; "full": all \(2^c \) subsets of \(\Omega \); "pairs"; \(\emptyset \), singletons, \(\Omega \), and all or selected pairs).
- **pairs**: Set of pairs to be included in the focal sets; if NULL, all pairs are included. Used only if type="pairs".
- **ntrials**: Number of runs of the optimization algorithm (set to 1 if \(g_\emptyset \) is supplied).
- **ML**: Matrix nbML x 2 of must-link constraints. Each row of ML contains the indices of objects that belong to the same class.
- **CL**: Matrix nbCL x 2 of cannot-link constraints. Each row of CL contains the indices of objects that belong to different classes.
- **g_\emptyset**: Initial prototypes, matrix of size \(c \times d \). If not supplied, the prototypes are initialized randomly.
- **alpha**: Exponent of the cardinality in the cost function.
- **delta**: Distance to the empty set.
- **bal**: Tradeoff between the objective function \(J_{ecm} \) and the constraints: \(J_{cecm}=(1-bal)J_{ecm} + bal J_{const} \).
- **distance**: Type of distance use: 0=Euclidean, 1=Mahalanobis.
- **epsi**: Minimum amount of improvement.
- **disp**: If TRUE (default), intermediate results are displayed.
Details

CECM is a version of ECM allowing the user to specify pairwise constraints to guide the clustering process. Pairwise constraints are of two kinds: must-link constraints are pairs of objects that are known to belong to the same class, and cannot-link constraints are pairs of objects that are known to belong to different classes. CECM can also learn a metric for each cluster, like the Gustafson-Kessel algorithm in fuzzy clustering. At each iteration, the algorithm solves a quadratic programming problem using an interior ellipsoidal trust region and barrier function algorithm with dual solution updating technique in the standard QP form (Ye, 1992).

If initial prototypes g0 are provided, the number of trials is automatically set to 1.

Value

The credal partition (an object of class "credpart").

Author(s)

Thierry Denœux (from a MATLAB code written by Violaine Antoine).

References

See Also

create_mlcl, makeF, extractMass, ecm, recm

Examples

```r
## Generation of a two-class dataset
n<-30
x<-cbind(0.2*rnorm(n),rnorm(n))
y<-c(rep(1,n/2),rep(2,n/2))
X[,1]<-x[(n/2+1):n,1]
x[,1]<-x[(n/2+1):n,1]+1
plot(x[,1],x[,2],asp=1,pch=y,col=y)
## Generation of 10 constraints
const<-create_mlcl(y,lbConst=10)
## Call of cecm
clus<-cecm(x=x,c=2,ML=const$M,CL=const$CL,delta=10)
plot(x[,1],x[,2],asp=1,pch=clus$y.pl,col=y)
```
createD

Computation of a Euclidean distance matrix

Description

createD constructs an n x k matrix of Euclidean distances from an n x p matrix of attribute data. For each object, the distances to k randomly selected objects are computed.

Usage

createD(x, k)

Arguments

x
n x p data matrix.

k
Number of distances. If missing, an n x n distance matrix is computed.

Value

A list with two elements:

D
n x k distance matrix.

J
n x k matrix of indices. D[i,j] is the Euclidean distance between x[i,] and x[J[i,j]].

See Also

kevclus

Examples

data(fourclass)
x<-as.matrix(fourclass[,1:2])
dist<-createD(x,k=10)
dim(dist$D)
dim(dist$J)
createPairs
Finding overlapping pairs of clusters

Description

createPairs finds pairs of clusters that are mutual k nearest neighbors in a credal partition. The similarity between two clusters k and l is defined as \(\sum_{i=1}^{n} p_{ik} p_{il} \), where \(p_{ik} \) is the plausibility of object i belonging to cluster k.

Usage

```r
createPairs(clus, k = 1)
```

Arguments

- `clus` An object of class `credpart`. It should contain at least two fields: clus$mass (the credal partition) and clus$pl.n (the normalized plausibilities). The focal sets of the credal partition must be the empty set, the singletons, and (optionally) the whole set of clusters.
- `k` The number of neighbors.

Details

This function allows one to use evidential clustering when the number of clusters is large. A clustering algorithm is first run with a limited number of focal sets (the empty set, the singletons and, optionally, the whole frame). Then, the similarity between clusters is analysed to determine the pairs of neighboring (overlapping) clusters. The clustering algorithm is then run again, adding these pairs to the focal sets (see the example). The focal sets of the passed credal partition must be the empty set (first row), the singletons (next c rows) and, optionally, the whole frame (last row).

Value

A list with the following components:

- `pairs` A matrix with two columns and p rows, containing the p pairs of clusters. This matrix can be passed to ecm, recm, cecm or kevclus.
- `m0` A matrix of size (n,c+2+p), encoding the credal partition. The masses assigned to the pairs are null.
- `S` The c x c matrix of similarities between clusters.

References

Available from https://www.hds.utc.fr/~tdenoeux.
create_MLCL

Random generation of Must-Link and Cannot-Link constraints

Description

create_MLCL randomly generates Must-Link (ML) and Cannot-Link (CL) constraints from a vector y of class labels.

Usage

create_MLCL(y, nbConst)

Arguments

- **y** Vector of class labels.
- **nbConst** Number of constraints.

Value

A list with two components:

- **ML** Matrix of ML constraints. Each row corresponds to a constraint.
- **CL** Matrix of ML constraints. Each row corresponds to a constraint.

See Also

- cecm

Examples

```r
## Example with Four-class data
data("fourclass")
x<-fourclass[,1:2]
y<-fourclass[,3]
c=4
## Running k-EVCLUS with singletons
clus<-kevclus(x=x,k=100,c=c,type='simple')
## Plot the results
plot(clus,X=x,mfrow=c(2,2),ytrue=y)
## Creating the pairs of clusters
p<-createPairs(clus,k=2)
## Running k-EVCLUS again, with pairs of clusters
clus1<-kevclus(x=x,k=100,c=c,type='pairs',pairs=p$pairs,m0=P$m0)
## Plot the results
plot(clus1,X=x,mfrow=c(2,2),ytrue=y)
```
Examples

```r
y<-sample(3,100,replace=TRUE)
const<-create_MLCL(y,nbConst=10)
const$ML
const$CL
```

Description

ecm computes a credal partition from a matrix of attribute data using the Evidential c-means (ECM) algorithm.

Usage

```r
ecm(x, c, g0 = NULL, type = "full", pairs = NULL, Omega = TRUE,
ntrials = 1, alpha = 1, beta = 2, delta = 10, epsi = 0.001,
disp = TRUE)
```

Arguments

- **x**: input matrix of size n x d, where n is the number of objects and d the number of attributes.
- **c**: Number of clusters.
- **g0**: Initial prototypes, matrix of size c x d. If not supplied, the prototypes are initialized randomly.
- **type**: Type of focal sets ("simple": empty set, singletons and Omega; "full": all 2^c subsets of \(\Omega \); "pairs": \(\emptyset \), singletons, \(\Omega \), and all or selected pairs).
- **pairs**: Set of pairs to be included in the focal sets; if NULL, all pairs are included. Used only if type="pairs".
- **Omega**: Logical. If TRUE (default), the whole frame is included (for types 'simple' and 'pairs').
- **ntrials**: Number of runs of the optimization algorithm (set to 1 if m0 is supplied).
- **alpha**: Exponent of the cardinality in the cost function.
- **beta**: Exponent of masses in the cost function.
- **delta**: Distance to the empty set.
- **epsi**: Minimum amount of improvement.
- **disp**: If TRUE (default), intermediate results are displayed.
EkNNclus

Details

ECM is an evidential version algorithm of the Hard c-Means (HCM) and Fuzzy c-Means (FCM) algorithms. As in HCM and FCM, each cluster is represented by a prototype. However, in ECM, some sets of clusters are also represented by a prototype, which is defined as the center of mass of the prototypes in each individual cluster. The algorithm iteratively optimizes a cost function, with respect to the prototypes and to the credal partition. By default, each mass function in the credal partition has 2^c focal sets, where c is the supplied number of clusters. We can also limit the number of focal sets to subsets of clusters with cardinalities 0, 1 and c (recommended if c>=10), or to all or some selected pairs of clusters. If initial prototypes g0 are provided, the number of trials is automatically set to 1.

Value

The credal partition (an object of class "credpart").

Author(s)

Thierry Denoeux (from a MATLAB code written by Marie-Helene Masson).

References

See Also

makeF, extractMass, recm, cecm, plot.credpart

Examples

```r
# Clustering of the Four-class dataset
data(fourclass)
x<-fourclass[,1:2]
y<-fourclass[,3]
clus<-ecm(x,c=4,type='full',alpha=1,beta=2,delta=sqrt(2),epsil=1e-3,disp=TRUE)
plot(clus,X=x,mfrow=c(2,2),ytrue=y,Outliers=TRUE,Approx=2)
```

EkNNclus

EkNNclus algorithm

Description

EkNNclus computes hard and credal partitions from dissimilarity or attribute data using the EkNNclus algorithm.
Usage

EkNNclus(x, D, K, y0, ntrials = 1, q = 0.5, p = 1, disp = TRUE,
 tr = FALSE)

Arguments

x n x p data matrix (n instances, p attributes).
D n x n dissimilarity matrix (used only if x is not supplied).
K Number of neighbors.
y0 Initial partition (vector of length n, with values in 1,2,...).
ntrials Number of runs of the algorithm (the best solution is kept).
q Parameter in (0,1). Gamma is set to the inverse of the q-quantile of distances
 from the K nearest neighbors (same notation as in the paper).
p Exponent of distances, $\alpha_{ij} = \phi(d_{ij}^p)$.
disp If TRUE, intermediate results are displayed.
tr If TRUE, a trace of the cost function is returned.

Details

The number of clusters is not specified. It is influenced by parameters K and q. (It is advised to
start with the default values.) For n not too large (say, until one thousand), y0 can be defined as the
vector (1,2,...,n). For larger values of n, it is advised to start with a random partition of c clusters,
c<n.

Value

The credal partition (an object of class "credpart"). In addition to the usual attributes, the output
credal partition has the following attributes:

 trace Trace of the algorithm (sequence of values of the cost function).
 W The weight matrix.

Author(s)

Thierry Denoeux.

References

T. Denoeux, O. Kanjanatarakul and S. Sriboonchitta. EK-NNclus: a clustering procedure based on
Available from https://www.hds.utc.fr/~tdenoeux.
evclust

Examples

```r
# Clustering of the fourclass dataset
data(fourclass)
n <- nrow(fourclass)
N <- 2
clus <- EkNNclus(fourclass[, 1:2], K = 0, y = (1:n), ntrials = N, q = 0.9, p = 2, disp = TRUE, tr = TRUE)
# Plot of the partition
plot(clus, X = fourclass[, 1:2], y = fourclass$y, Outliers = FALSE)
# Plot of the cost function vs number of iteration
l <- vector(length = N)
for (i in 1:N) l[i] <- dim(clus$trace[clus$trace[, 1] == i, ])[1]
imax <- which.max(l)
plot(0:dim(clus$trace)[1] - 1, -clus$trace[clus$trace[, 1] == imax, 3], type = "l", lty = imax,
xlab = "time steps", ylab = "energy")
for (i in (1:N)) if (i != imax) lines(0:dim(clus$trace)[1] - 1, -clus$trace[clus$trace[, 1] == i, 3], type = "l", lty = i)
```

evclust

evclust: A package for evidential clustering

Description

Various clustering algorithms that generate a credal partition, i.e., a set of mass functions. Mass functions quantify the cluster-membership uncertainty of the objects. The package consists in five main functions, implementing five different evidential clustering algorithms:

- **ecm**: Evidential c-means algorithm (Masson and Denoeux, 2008)
- **reecm**: Relational Evidential c-means algorithm (Masson and Denoeux, 2009)
- **keclus**: k-EVCLUS algorithm (Denoeux and Masson, 2004; Denoeux et al., 2016)
- **EkNNclus**: Ek-NNclus algorithm (Denoeux et al., 2015)
- **cecm**: Constrained Evidential c-means algorithm (Antoine et al, 2012)

References

See Also
ecm, recm, cecm, kevclus, EkNNclus.

extractMass

Creates an object of class "credalPart"

Description

extractMass computes different outputs (hard, fuzzy, rough partitions, etc.) from a credal partition and creates an object of class "credalPart".

Usage

extractMass(mass, F, g = NULL, S = NULL, method, crit, Kmat = NULL, trace = NULL, D = NULL, W = NULL)

Arguments

mass A credal partition (a matrix of n rows and f columns, where n is the number of objects and f is the number of focal sets).
F Matrix (f,c) of focal sets.
g A c x d matrix of prototypes.
S A list of length f containing the matrices S_j defining the metrics for each cluster and each group of cluster.
method The method used to construct the credal partition (a character string).
crit The value of the optimized criterion (depends on the method used).
Kmat The matrix of degrees of conflict. Same size as D (for method kevclus).
trace The trace of criterion values (for methods kevclus and EkNNclus).
D The normalized dissimilarity matrix (for method kevclus).
W The weight matrix (for method EkNNclus).

Details

This function collects varied information on a credal partition and stores it in an object of class "credalPart". The lower and upper approximations of clusters define rough partitions. They can be computed in two ways: either from the set of clusters with maximum mass, or from the set of non dominated clusters. A cluster ω_k is non dominated if $pl(\omega_k) \geq bel(\omega_l)$ for all l different from k. Once a set of cluster Y_i has been computed for each object, object i belongs to the lower approximation of cluster k if $Y_i = \omega_k$. It belongs to the upper approximation of cluster k if $\omega_k \in Y_i$. See Masson and Denoeux (2008) for more details, and Denoeux and Kanjanatarakul (2016) for the interval dominance rule. The function creates an object of class "credalpart". There are two methods for this class: plot.credpart and summary.credpart.
Value

An object of class "credpart" with the following components:

- **method** The method used to construct the credal partition (a character string).
- **F** Matrix of focal sets.
- **conf** Masses assigned to the empty set, vector of length n.
- **mass** Mass functions, matrix of size (n,f).
- **mass.n** Normalized mass functions, matrix of size (n,\(f-1\)).
- **g** The prototypes (if defined).
- **S** The matrices \(S_j\) defining the metrics for each cluster and each group of cluster (if defined).
- **pl** Unnormalized plausibilities of the singletons, matrix of size (n,c).
- **pl.n** Normalized plausibilities of the singletons, matrix of size (n,c).
- **bel** Unnormalized beliefs of the singletons, matrix of size (n,c).
- **bel.n** Normalized beliefs of the singletons, matrix of size (n,c).
- **y.pl** Maximum plausibility clusters, vector of length n.
- **y.bel** Maximum belief clusters, vector of length n.
- **betp** Unnormalized pignistic probabilities of the singletons.
- **betp.n** Normalized pignistic probabilities of the singletons.
- **Y** Sets of clusters with maximum mass, matrix of size (n,c).
- **outlier** n-vector of 0’s and 1’s, indicating which objects are outliers. An outlier is an object such that the largest mass is assigned to the empty set.
- **lower.approx** Lower approximations of clusters, a list of length c. Each element lower.approx[[i]] is a vector of object indices.
- **upper.approx** Upper approximations of clusters, a list of length c. Each element upper.approx[[i]] is a vector of object indices.
- **Ynd** Sets of clusters selected by the interval dominance rule, matrix of size (n,c).
- **lower.approx.nd** Lower approximations of clusters using the interval dominance rule, a list of length c. Each element lower.approx.nd[[i]] is a vector of objects.
- **upper.approx.nd** Upper approximations of clusters using the interval dominance rule, a list of length c. Each element upper.approx.nd[[i]] is a vector of objects.
- **N** Average nonspecificity.
- **crit** The value of the optimized criterion (depends on the method used).
- **Kmat** The matrix of degrees of conflict. Same size as D (for method kevclus).
- **D** The normalized dissimilarity matrix (for method kevclus).
- **trace** The trace of criterion values (for methods kevclus and EkNNclus).
- **W** The weight matrix (for method EkNNclus).
References

Available from https://www.hds.utc.fr/~tdenoeux.

See Also

plot.credpart, summary.credpart

Examples

```r
## Four-class data
data(fourclass)
x<-fourclass[,1:2]
y<-fourclass[,3]
D<-as.matrix(dist(x))^2
clus<-recm(D,c=4,delta=10,ntrials=1)
summary(clus)
plot(clus,X=x,mfrow=c(1,1),ytrue=y,Outliers=TRUE)
```

fourclass

Synthetic four-class dataset

Description

A synthetic dataset with two attributes and four classes of 100 points each, generated from a multivariate t distribution with five degrees of freedom and centered, respectively, on [0;0], [0;4], [4;0] and [4;4].

Usage

data(fourclass)

Format

A data frame with three variables: x1, x2 and y (the true class).

References

kevclus

Examples

```r
data(fourclass)
plot(fourclass$x1,fourclass$x2,xlab=expression(x[1]),ylab=expression(x[2]),
col=fourclass$y,pch=fourclass$y)
```

Description

`kevclus` computes a credal partition from a dissimilarity matrix using the k-EVCLUS algorithm.

Usage

```r
kevclus(x, k = n, D, J, c, type = "simple", pairs = NULL, m0 = NULL,
ntrials = 1, disp = TRUE, maxit = 1000, epsi = 1e-05,
d0 = quantile(D, 0.9), tr = FALSE, change.order = FALSE)
```

Arguments

- `x`: n xp matrix of p attributes observed for n objects (optional).
- `k`: Number of distances to compute for each object (default: n).
- `D`: n x n or n x k dissimilarity matrix (used only if x is not supplied).
- `J`: n x k matrix of indices. D[i,j] is the distance between objects i and J[i,j]. (Used only if D is supplied and k<n).
- `c`: Number of clusters
- `type`: Type of focal sets ("simple": empty set, singletons and Omega; "full": all 2^c subsets of Ω; "pairs": ∅, singletons, Ω, and all or selected pairs).
- `pairs`: Set of pairs to be included in the focal sets; if NULL, all pairs are included. Used only if `type`="pairs".
- `m0`: Initial credal partition. Should be a matrix with n rows and a number of columns equal to the number f of focal sets specified by `type` and `pairs`.
- `ntrials`: Number of runs of the optimization algorithm (set to 1 if m0 is supplied and change.order=FALSE).
- `disp`: If TRUE (default), intermediate results are displayed.
- `maxit`: Maximum number of iterations.
- `epsi`: Minimum amount of improvement.
- `d0`: Parameter used for matrix normalization. The normalized distance corresponding to d0 is 0.95.
- `tr`: If TRUE, a trace of the stress function is returned.
- `change.order`: If TRUE, the order of objects is changed at each iteration of the Iterative Row-wise Quadratic Programming (IRQP) algorithm.
Details

This version of the EVCLUS algorithm uses the Iterative Row-wise Quadratic Programming (IRQP) algorithm (see ter Braak et al., 2009). It also makes it possible to use only a random sample of the dissimilarities, reducing the time and space complexity from quadratic to roughly linear (Denoeux et al., 2016). The user must supply: - a matrix x or size (n,p) containing the values of p attributes for n objects, or - a matrix D of size (n,n) of dissimilarities between n objects, or - a matrix D of size (n,k) of dissimilarities between the n objects and k randomly selected objects, and a matrix J of size (n,k) of indices, such that D[i,j] is the distance between objects i and J[i,j].

Value

The credal partition (an object of class "credpart"). In addition to the usual attributes, the output credal partition has the following attributes:

Kmat The matrix of degrees of conflict. Same size as D.

D The normalized dissimilarity matrix.

trace Trace of the algorithm (Stress function vs iterations).

Author(s)

Thierry Denoeux.

References

Available from https://www.hds.utc.fr/~tdenoeux.

See Also

`created, makef, extractMass`

Examples

```r
## Example with a non metric dissimilarity matrix: the Protein dataset
data(protein)
clus <- kevclus(D=protein$D,c=4,type='simple',d0=max(protein$D))
z<- cmdscale(protein$D,k=2) # Computation of Z attributes by Multidimensional Scaling
plot(clus,X=z,mfrow=c(2,2),ytrue=protein,y,Outliers=FALSE,Approx=1)
```
knn_dist

K nearest neighbors in a dissimilarity matrix

Description

knn_dist searches for nearest neighbors in a dissimilarity matrix.

Usage

knn_dist(D, K)

Arguments

D Dissimilarity matrix of size (n,n), where n is the number of objects.
K Number of neighbors

Details

This function is called by EkNNclus if argument x is not supplied. It is not optimized and cannot be used for very large D. If an attribute matrix x is supplied and D is the matrix of Euclidean distances, it is preferable to use function get.knn from package FNN.

Value

A list with two components:

nn.dist An (n,K) matrix for the nearest neighbor dissimilarities.
nn.index An (n,K) matrix for the nearest neighbor indices.

Author(s)

Thierry Denoeux.

See Also

get.knn, EkNNclus

Examples

data(butterfly)
n <- nrow(butterfly)
D<-as.matrix(dist(butterfly))
knn<-knn_dist(D,K=2)
knn$nn.dist
knn$nn.index
makeF
Creation of a matrix of focal sets

Description

`makeF` creates a matrix of focal sets.

Usage

```r
makeF(c, type = c("simple", "full", "pairs"), pairs = NULL, Omega = TRUE)
```

Arguments

- `c`: Number of clusters.
- `type`: Type of focal sets ("simple": ∅, singletons and Ω; "full": all 2^c subsets of Ω; "pairs": ∅, singletons, Ω, and all or selected pairs).
- `pairs`: Set of pairs to be included in the focal sets; if NULL, all pairs are included. Used only if type="pairs".
- `Omega`: Logical. If TRUE (default), Ω is a focal set (for types 'simple' and 'pairs').

Value

A matrix (f,c) of focal sets.

Examples

```r
c<-4
## Generation of all 16 focal sets
F<-makeF(c,type='full')
## Generation of focal sets of cardinality 0, 1 and c
F<-makeF(c,type='simple')
## Generation of focal sets of cardinality 0, 1, and 2
F<-makeF(c,type='pairs',Omega=FALSE)
## Generation of focal sets of cardinality 0, 1, and c, plus the pairs (1,2) and (1,3)
F<-makeF(c,type='pairs',pairs=matrix(c(1,2,1,3),nrow=2,byrow=TRUE))
```

plot.credpart
Plotting a credal partition

Description

Generates plots of a credal partition.
Usage

```r
## S3 method for class 'credpart'
plot(x, X = NULL, ..., mfrow = c(1, 1), ytrue = NULL,
     Outliers = TRUE, Approx = 1, cex = 0.7, cex_outliers = 1.3, lwd = 2,
     ask = FALSE)
```

Arguments

- `x`: An object of class "credpart", encoding a credal partition.
- `X`: A data matrix. If it has more than two columns (attributes), only the first two columns are used.
- `...`: Other arguments to be passed to the plot function.
- `mfrow`: A 2-vector defining the number of rows and columns of the plot. If mfrow=c(1,1), only one figure is drawn. Otherwise, mfrow[1] x mfrow[2] should not be less than x, the number of clusters.
- `ytrue`: The vector of true class labels. If not supplied, the hard partition corresponding to the maximum plausibility is used instead.
- `Outliers`: If TRUE, the outliers are plotted, and they are not included in the lower and upper approximations of the clusters.
- `Approx`: If Approx==1 (default), the lower and upper cluster approximations are computed using the interval dominance rule. Otherwise, the maximum mass rule is used.
- `cex`: Size of data points.
- `cex_outliers`: Size of data points for outliers.
- `lwd`: Line width for drawing the lower and upper approximations.
- `ask`: Logical; if TRUE, the user is asked before each plot.

Details

This function plots the hard and rough partitions (lower and upper approximations) extracted from a credal partition, together with two dimensional attribute data.

Value

The maximum plausibility hard partition, as well as the lower and upper approximations of each cluster are drawn in the two-dimensional space specified by matrix `X`. If prototypes are defined (for methods "ecm" and "cecm"), they are also represented on the plot. For method "kevclus", a second plot with Shepard’s diagram (degrees of conflict vs. transformed dissimilarities) is drawn. If input `X` is not supplied, and method="kevclus", then only the Shepard diagram is drawn.

References

Available from https://www.hds.utc.fr/~tdenoeux.

See Also

extractMass, summary.credpart, ecm, recm, cecm, kevclus.

Examples

```r
## Example with Four-class data
data("fourclass")
x<-fourclass[,1:2]
y<-fourclass[,3]
c=4
## Running k-EVCLUS with singletons
clus<-kevclus(x=x,k=100,c=c,type='simple')
## Plot the results
plot(clus,X=x,mfrow=c(2,2),ytrue=y)
```

protein

Protein dataset

Description

This real data set consists of a dissimilarity matrix derived from the structural comparison of 213 protein sequences. Each of these proteins is known to belong to one of four classes of globins: hemoglobin-alpha (HA), hemoglobin-beta (HB), myoglobin (M) and heterogeneous globins (G).

Usage

data(protein)

Format

A list with three elements:

D The 213x213 dissimilarity matrix.
class A 213-vector containing the class encoded as a factor with four levels: "G", "HA", "HB", "M".
y A 213-vector containing the class encoded by an integer between 1 and 4.
References

Examples

```r
data(protein)
z <- cmdscale(protein$D, k = 2)  # Multidimensional scaling
plot(z[,1], z[,2], xlab = expression(z[1]), ylab = expression(z[2]), pch = protein$y, col = protein$y)
```

recm computes a credal partition from a dissimilarity matrix using the Relational Evidential c-means (RECM) algorithm.

Usage

```r
recm(D, c, type = "full", pairs = NULL, Omega = TRUE, m0 = NULL, ntrials = 1, alpha = 1, beta = 1.5, delta2 = quantile(D[upper.tri(D)] | lower.tri(D)], 0.95), epsi = 1e-04, maxit = 5000, disp = TRUE)
```

Arguments

- `D`: Dissimilarity matrix of size (n,n), where n is the number of objects. Dissimilarities must be squared Euclidean distances to ensure convergence.
- `c`: Number of clusters.
- `type`: Type of focal sets ("simple": empty set, singletons and Omega; "full": all 2^c subsets of Ω; "pairs": ∅, singletons, Ω, and all or selected pairs).
- `pairs`: Set of pairs to be included in the focal sets; if NULL, all pairs are included. Used only if type="pairs".
- `Omega`: Logical. If TRUE (default), the whole frame is included (for types 'simple' and 'pairs').
- `m0`: Initial credal partition. Should be a matrix with n rows and a number of columns equal to the number f of focal sets specified by `type` and 'pairs'.
- `ntrials`: Number of runs of the optimization algorithm (set to 1 if m0 is supplied).
- `alpha`: Exponent of the cardinality in the cost function.
beta Exponent of masses in the cost function.
delta2 Squared distance to the empty set.
epsi Minimum amount of improvement.
maxit Maximum number of iterations.
disp If TRUE (default), intermediate results are displayed.

Details
RECM is a relational version of the Evidential c-Means (ECM) algorithm. Convergence is guaranteed only if elements of matrix D are squared Euclidean distances. However, the algorithm is quite robust and generally provides sensible results even if the dissimilarities are not metric. By default, each mass function in the credal partition has 2^c focal sets, where c is the supplied number of clusters. We can also limit the number of focal sets to subsets of clusters with cardinalities 0, 1 and c (recommended if $c \geq 10$), or to all or some selected pairs of clusters. If an initial credal partition m_0 is provided, the number of trials is automatically set to 1.

Value
The credal partition (an object of class "credpart").

Author(s)
Thierry Denoeux (from a MATLAB code written by Marie-Helene Masson).

References

See Also
makeF, extractMass, ecm

Examples
Clustering of the Butterfly dataset
n <- nrow(butterfly)
D <- as.matrix(dist(butterfly))^2
clus <- recm(D, c=2, delta2=50)
m <- clus$mass
plot(1:n,m[,1],type="l",ylim=c(0,1),xlab="objects",ylab="masses")
lines(1:n,m[,2],lty=2)
lines(1:n,m[,3],lty=3)
lines(1:n,m[,4],lty=4)

Clustering the protein data
data(protein)
clus <- recm(D=protein$D,c=4,type='full',alpha=0.2,beta=1.1,delta2=20)
s2

s2

S2 dataset

Description

This dataset contains 5000 two-dimensional vectors grouped in 15 Gaussian clusters.

Usage

data(s2)

Format

A matrix with 5000 rows and two columns.

References

Examples

data(s2)
plot(s2[,1],s2[,2],xlab=expression(x[1]),ylab=expression(x[2]))

summary.credpart

Summary of a credal partition

Description

summary.credpart is the summary method for "credpart" objects.

Usage

S3 method for class 'credpart'
summary(object, ...)

z<- cmdscale(protein$D0,k=2)
plot(clus,X=z,mfrow=c(2,2),ytrue=protein$y,Outliers=FALSE,Approx=1)
Arguments

object
 An object of class "credpart", encoding a credal partition.
...
 Additional arguments (not used).

Details

This function extracts basic information from "credpart" objects, such as created by ecm, recm, cecm, EkNNclus or kevclus.

Value

Prints basic information on the credal partition.

References

Available from https://www.hds.utc.fr/~tdenoeux.

See Also

extractMass, plot.credpart, ecm, recm, cecm, EkNNclus, kevclus.

Examples

```r
## Example with Four-class data
data("fourclass")
x<-fourclass[,1:2]
y<-fourclass[,3]
c=4
## Running k-EVCLUS with singletons
clus<-kevclus(x=x,k=100,c=c,type='simple')
summary(clus)
```
Index

*Topic datasets
 butterfly, 2
 fourclass, 14
 protein, 20
 s2, 23

butterfly, 2

cecm, 3, 6, 7, 9, 12, 20, 24
create_MLCL, 4, 7
created, 5, 16
createPairs, 6
ecm, 4, 6, 7, 8, 12, 20, 22, 24
EkNNclus, 9, 12, 13, 17, 24
evclust, 11
evclust-package (evclust), 11
extractMass, 4, 7, 9, 12, 16, 20, 22, 24

fourclass, 14

getchn, 17

kevclus, 5–7, 12, 13, 15, 20, 24
knn_dist, 17

makeF, 4, 9, 16, 18, 22

plot.credpart, 9, 12, 14, 18, 24
protein, 20

recm, 4, 6, 7, 9, 12, 20, 21, 24

s2, 23

summary.credpart, 12, 14, 20, 23