Package ‘eventglm’

April 26, 2022

Type Package
Title Regression Models for Event History Outcomes
Version 1.2.2
Date 2022-04-26
Description A user friendly, easy to understand way of doing event history regression for marginal estimands of interest, including the cumulative incidence and the restricted mean survival, using the pseudo observation framework for estimation. For a review of the methodology, see Andersen and Pohar Perme (2010) <doi:10.1177/0962280209105020> or Sachs and Gabriel (2022) <doi:10.18637/jss.v102.i09>. The interface uses the well known formulation of a generalized linear model and allows for features including plotting of residuals, the use of sampling weights, and corrected variance estimation.
License GPL-3
URL https://sachsmc.github.io/eventglm/
BugReports https://github.com/sachsmc/eventglm/issues/
Encoding UTF-8
LazyData true
Suggests testthat, prodlim, knitr, rmarkdown, rio, data.table
RoxygenNote 7.1.1
Imports survival, sandwich, stats, geepack
Depends R (>= 2.10)
VignetteBuilder knitr
NeedsCompilation yes
Author Michael C Sachs [aut, cre], Erin E Gabriel [aut], Morten Overgaard [ctb] (Corrected variance calculation), Thomas A Gerds [ctb] (Fast computation of leave one out cumulative incidence), Terry Therneau [ctb] (Restricted mean computation)
calc_ipcw_pos

Maintainer Michael C Sachs <sachsmc@gmail.com>
Repository CRAN
Date/Publication 2022-04-26 11:20:09 UTC

R topics documented:

calc_ipcw_pos 2
check_mod_cens 3
colon .. 3
confint.pseudoglm 4
cumincglm 5
eventglm 8
get_pseudo_cuminc 8
get_pseudo_rmean 9
jackknife.competing.risks2 9
jackknife.survival2 10
leaveOneOut.competing.risks 11
leaveOneOut.competing.risks2 12
leaveOneOut.survival 12
leaveOneOut.survival2 13
match_cause 14
mgus2 14
print.pseudoglm 15
pseudo_aareg 15
pseudo_coxph 16
pseudo_independent 18
pseudo_rmean 19
pseudo_stratified 19
residuals.pseudoglm 20
rmeanglm 21
summary.pseudoglm 24
vcov.pseudoglm 24

Index 26

calc_ipcw_pos
Compute inverse probability of censoring weights pseudo observations

Description

Compute inverse probability of censoring weights pseudo observations

Usage

calc_ipcw_pos(mr, time, causen, type, ipcw.method, Gi)
check_mod_cens

Arguments

- `mr`: Model response object returned by `Surv`.
- `time`: Max time.
- `causen`: Cause of interest (numeric).
- `type`: Outcome type, "cuminc", "survival", or "rmean".
- `ipcw.method`: "binder" or "hajek".
- `Gi`: Vector of estimated censoring probabilities.

Description

Censoring model must take the same named arguments as the predefined modules (though they do not all have to be used), and return a vector of pseudo observations.

Usage

```r
check_mod_cens(model.censoring)
```

Arguments

- `model.censoring`: Censoring model specification as character or function.

colon

Chemotherapy for Stage B/C colon cancer

Description

These are data from one of the first successful trials of adjuvant chemotherapy for colon cancer. Levamisole is a low-toxicity compound previously used to treat worm infestations in animals; 5-FU is a moderately toxic (as these things go) chemotherapy agent. There are only one record per patient for the death outcome (or censoring). This is redistributed from the survival package, with a small modification to include only the death outcome.

Usage

```r
colon
```
Format

A data frame with 929 rows and 17 variables:

- **id**: id
- **study**: 1 for all patients
- **rx**: Treatment - Obs(ervation), Lev(amisole), Lev(amisole)+5-FU
- **sex**: 1=male
- **age**: in years
- **obstruct**: obstruction of colon by tumour
- **perfor**: perforation of colon
- **adhere**: adherence to nearby organs
- **nodes**: number of lymph nodes with detectable cancer
- **time**: days until death or censoring
- **status**: censoring status
- **differ**: differentiation of tumour (1=well, 2=moderate, 3=poor)
- **extent**: Extent of local spread (1=submucosa, 2=muscle, 3=serosa, 4=contiguous structures)
- **surg**: time from surgery to registration (0=short, 1=long)
- **node4**: more than 4 positive lymph nodes
- **etype**: event type: 1=recurrence, 2=death
- **event**: event indicator: censored, death

See Also

- colon

confint.pseudoglm

Confidence Intervals for pseudoglm Model Parameters

Description

Computes Wald confidence intervals for one or more parameters in a fitted model. Users can specify the type of variance estimate used, with the default being the robust sandwich variance estimator.

Usage

```r
## S3 method for class 'pseudoglm'
confint(object, parm, level = 0.95, type = "robust", ...)
```
cumincglm

Arguments

- **object**: A fitted model object from `cumincglm` or `rmeanglm`
- **parm**: a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
- **level**: the confidence level required.
- **type**: The type of variance estimate to use, see `vcov.pseudoglm`
- ... Not used

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2 in

Examples

```r
cumincipcw <- cumincglm(survival::Surv(etime, event) ~ age + sex,
                         time = 200, cause = "pcm", link = "identity",
                         model.censoring = "independent", data = mgus2)
confint(cumincipcw)
```

cumincglm Generalized linear models for cumulative incidence

Description

Using pseudo observations for the cumulative incidence, this function then runs a generalized linear model and estimates the parameters representing contrasts in the cumulative incidence at a particular set of times (specified by the `time` argument) across covariate values. The link function can be "identity" for estimating differences in the cumulative incidence, "log" for estimating ratios, and any of the other link functions supported by `quasi`.

Usage

```r
cumincglm(
  formula,
  time,
  cause = 1,
  link = "identity",
  model.censoring = "independent",
  formula.censoring = NULL,
  ipcw.method = "binder",
  data,
  survival = FALSE,
  weights,
```
Arguments

formula A formula specifying the model. The left hand side must be a Surv object specifying a right censored survival or competing risks outcome. The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2=death). For competing risks, the event variable will be a factor, whose first level is treated as censoring. The right hand side is the usual linear combination of covariates. If there are multiple time points, the special term "tve(.)" can be used to specify that the effect of the variable inside the parentheses will be time varying. In the output this will be represented as the interaction between the time points and the variable.

time Numeric vector specifying the times at which the cumulative incidence or survival probability effect estimates are desired.

cause Numeric or character constant specifying the cause indicator of interest.

link Link function for the cumulative incidence regression model.

model.censoring Type of model for the censoring distribution. Options are "stratified", which computes the pseudo-observations stratified on a set of categorical covariates, "aareg" for Aalen’s additive hazards model, and "coxph" for Cox’s proportional hazards model. With those options, we assume that the time to event and event indicator are conditionally independent of the censoring time, and that the censoring model is correctly specified. If "independent", we assume completely independent censoring, i.e., that the time to event and covariates are independent of the censoring time. the censoring time is independent of the covariates in the model. Can also be a custom function, see Details and the "Extending eventglm" vignette.

formula.censoring A one sided formula (e.g., ~ x1 + x2) specifying the model for the censoring distribution. If NULL, uses the same mean model as for the outcome.

ipcw.method Which method to use for calculation of inverse probability of censoring weighted pseudo observations. "binder" the default, uses the number of observations as the denominator, while the "hajek" method uses the sum of the weights as the denominator.

data Data frame in which all variables of formula can be interpreted.
cumincglm

survival
Set to TRUE to use survival (one minus the cumulative incidence) as the outcome. Not available for competing risks models.

weights
an optional vector of 'prior weights' to be used in the fitting process. Should be NULL or a numeric vector.

subset
an optional vector specifying a subset of observations to be used in the fitting process.

na.action
a function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options, and is na.fail if that is unset. The 'factory-fresh' default is na.omit. Another possible value is NULL, no action. Value na.exclude can be useful.

offset
this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases. One or more offset terms can be included in the formula instead or as well, and if more than one is specified their sum is used. See model.offset. If length(time) > 1, then any offset terms must appear in the formula.

control
a list of parameters for controlling the fitting process. This is passed to glm.control.

model
a logical value indicating whether model frame should be included as a component of the returned value.

x
logical value indicating whether the model matrix used in the fitting process should be returned as components of the returned value.

y
logical value indicating whether the response vector (pseudo-observations) used in the fitting process should be returned as components of the returned value.

singular.ok
logical; if FALSE a singular fit is an error.

contrasts
an optional list. See the contrasts.arg of model.matrix.default.

...
Other arguments passed to glm.fit

Details
The argument "model.censoring" determines how the pseudo observations are calculated. This can be the name of a function or the function itself, which must have arguments "formula", "time", "cause", "data", "type", "formula.censoring", and "ipcw.method". If it is the name of a function, this code will look for a function with the prefix "pseudo_" first, to avoid clashes with related methods such as coxph. The function then must return a vector of pseudo observations, one for each subject in data which are used in subsequent calculations. For examples of the implementation, see the "pseudo-modules.R" file, or the vignette "Extending eventglm".

Value
A pseudoglm object, with its own methods for print, summary, and vcov. It inherits from glm, so predict and other glm methods are supported.

Examples

```
cumincipcw <- cumincglm(Surv(etime, event) ~ age + sex,
                          time = 200, cause = "pcm", link = "identity",
```

model.censoring = "independent", data = mgus2)

stratified on only the categorical covariate
cumincpwc2 <- cumincglm(Surv(etime, event) ~ age + sex,
 time = 200, cause = "pcm", link = "identity",
 model.censoring = "stratified",
 formula.censoring = ~ sex, data = mgus2)

multiple time points
cuminct2 <- cumincglm(Surv(etime, event) ~ age + sex,
 time = c(50, 100, 200), cause = "pcm", link = "identity",
 model.censoring = "independent", data = mgus2)
cuminct3 <- cumincglm(Surv(etime, event) ~ age + tve(sex),
 time = c(50, 100, 200), cause = "pcm", link = "identity",
 model.censoring = "independent", data = mgus2)

eventglm

Regression Models for Event History Outcomes

Description

A user friendly, easy to understand way of doing event history regression for marginal estimands of interest, including the cumulative incidence and the restricted mean survival, using the pseudo observation framework for estimation. The interface uses the well known formulation of a generalized linear model and allows for features including plotting of residuals, the use of sampling weights, and corrected variance estimation.

References

get_pseudo_cuminc

Utility to get jackknife pseudo observations of cumulative incidence

Description

Utility to get jackknife pseudo observations of cumulative incidence

Usage

get_pseudo_cuminc(marginal.estimate, time, cause, mr)

Arguments

- **marginal.estimate**: A survfit object with no covariates
- **time**: Time at which to calculate the obs
- **cause**: which cause
- **mr**: Model response of the survival object
get_pseudo_rmean

Description

Utility to get jackknife pseudo observations of restricted mean

Usage

get_pseudo_rmean(marginal.estimate, time, cause, mr)

Arguments

- marginal.estimate: A survfit object with no covariates
- time: Time at which to calculate the obs
- cause: which cause
- mr: Model response of the survival object

Value

A vector of pseudo-observations

jackknife.competing.risks2

Compute jackknife pseudo-observations of the cause-specific cumulative incidence for competing risks

Description

Compute jackknife pseudo-observations of the cause-specific cumulative incidence for competing risks

Usage

jackknife.competing.risks2(object, times, cause, mr)
Arguments

object
A survfit object, with competing events

times
Times at which the cumulative incidence is computed, must be length 1

cause
Value indicating for which cause the cumulative incidence is to be computed, it must match one of the values available in object (see example)

mr
Model response, the result of a call to Surv, or a matrix with two columns: "time" (observed follow up time) and "status" (0 = censored, 1, ..., k = event types)

Value

A vector of jackknifed pseudo-observations of the cause-specific cumulative incidence at time times

Examples

sfit.cuminc <- survival::survfit(survival::Surv(etime, event) ~ 1, data = mgus2)
mrs <- with(mgus2, Surv(etime, event))
pseudo.obs <- jackknife.competing.risks2(sfit.cuminc, times = 200, cause = "pcm", mrs)
mean(pseudo.obs)
agrees with
summary(sfit.cuminc, times = 200)

jackknife.survival2 Compute jackknife pseudo-observations of the survival function

Description

Compute jackknife pseudo-observations of the survival function

Usage

jackknife.survival2(object, times, mr)

Arguments

object
A survfit object, with a single event (no competing risks)

times
Times at which the survival is computed, must be length 1

mr
Model response, the result of a call to Surv, or a matrix with two columns: "time" (observed follow up time) and "status" (0 = censored, 1 = event)

Value

A vector of jackknifed estimates of survival at time times
leaveOneOut.competing.risks

Compute jackknife pseudo-observations of the cause-specific cumulative incidence for competing risks

Description
This version computes them for all times up to times, for the restricted mean lifetime lost.

Usage
leaveOneOut.competing.risks(object, times, cause, mr)

Arguments

object A survfit object, with competing events
times Times at which the cumulative incidence is computed, must be length 1
cause Value indicating for which cause the cumulative incidence is to be computed, it must match one of the values available in object (see example)
mr Model response, the result of a call to Surv, or a matrix with two columns: "time" (observed follow up time) and "status" (0 = censored, 1, ..., k = event types)

Value
A vector of jackknife values of the cause-specific cumulative incidence at time times

Examples

sfit.cuminc <- survival::survfit(survival::Surv(etime, event) ~ 1, data = mgus2)
mrs <- with(mgus2, Surv(etime, event))
jackvals <- leaveOneOut.competing.risks(sfit.cuminc, times = 200, cause = "pcm", mrs)
leaveOneOut.competing.risks2

Compute jackknife pseudo-observations of the cause-specific cumulative incidence for competing risks

Description

Compute jackknife pseudo-observations of the cause-specific cumulative incidence for competing risks

Usage

```r
leaveOneOut.competing.risks2(object, times, cause, mr)
```

Arguments

- `object` A survfit object, with competing events
- `times` Times at which the cumulative incidence is computed, must be length 1
- `cause` Value indicating for which cause the cumulative incidence is to be computed, it must match one of the values available in object (see example)
- `mr` Model response, the result of a call to Surv, or a matrix with two columns: "time" (observed follow up time) and "status" (0 = censored, 1, ..., k = event types)

Value

A vector of jackknifed values of the cause-specific cumulative incidence at time times

Examples

```r
sfit.cuminc <- survival::survfit(survival::Surv(etime, event) ~ 1, data = mgus2)  
mrs <- with(mgus2, Surv(etime, event))  
jackvals <- leaveOneOut.competing.risks2(sfit.cuminc, times = 200, cause = "pcm", mrs)
```

leaveOneOut.survival

Compute leave one out jackknife contributions of the survival function

Description

For each subject, the survival function is recomputed leaving that subject out. This one does the calculation for all observed times, for calculation of the restricted mean

Usage

```r
leaveOneOut.survival(object, times, mr)
```
Arguments

- **object**: A survfit object, with a single event (no competing risks)
- **times**: Compute values at observed times up to and including this time
- **mr**: Model response, the result of a call to Surv, or a matrix with two columns: "time" (observed follow up time) and "status" (0 = censored, 1 = event)

Value

A vector of jackknifed values of survival at time times

Examples

```r
sfit.surv <- survival::survfit(survival::Surv(time, status) ~ 1, data = colon)
mrs <- with(colon, Surv(time, status))
jackvals <- leaveOneOut.survival(sfit.surv, 1000, mrs)
```

Description

For each subject, the survival function is recomputed leaving that subject out. This is the workhorse for `jackknife.survival2` and will generally not be called by the user.

Usage

`leaveOneOut.survival2(object, times, mr)`

Arguments

- **object**: A survfit object, with a single event (no competing risks)
- **times**: Times at which the survival is computed, must be length 1
- **mr**: Model response, the result of a call to Surv, or a matrix with two columns: "time" (observed follow up time) and "status" (0 = censored, 1 = event)

Value

A vector of jackknifed values of survival at time times

Examples

```r
sfit.surv <- survival::survfit(survival::Surv(time, status) ~ 1, data = colon)
mrs <- with(colon, Surv(time, status))
jackvals <- leaveOneOut.survival2(sfit.surv, times = 1000, mrs)
```
match_cause

Match cause specification against model response

Description

Match cause specification against model response

Usage

match_cause(mr, cause)

Arguments

mr model.response as returned by Surv
cause Numeric or string indicating the cause of interest

mgus2

Monoclonal gammopathy data

Description

Natural history of 1341 sequential patients with monoclonal gammopathy of undetermined significance (MGUS). This is a superset of the mgus data, at a later point in the accrual process. This dataset is redistributed from the survival package with an added competing risks event indicator.

Usage

mgus2

Format

A data frame with 1384 observations on the following 10 variables.

id subject identifier
age age at diagnosis, in years
sex a factor with levels F M
dxyr year of diagnosis
hgb hemoglobin
creat creatinine
mspike size of the monoclonal serum spike
ptime time until progression to a plasma cell malignancy (PCM) or last contact, in months
pstat occurrence of PCM: 0=no, 1=yes
futime time until death or last contact, in months
death occurrence of death: 0=no, 1=yes
etime time until either death, pcm, or last contact
event factor indicating which event occurred first
print.pseudoglm

Print method for pseudoglm

Description

Print method for pseudoglm

Usage

```r
## S3 method for class 'pseudoglm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```

Arguments

- `x`: A pseudoglm object, as returned by `cumincglm` or `rmeanglm`
- `digits`: Number of significant digits
- `...`: Not used

Value

- `x`, invisibly

pseudo_aareg

Compute censoring weighted pseudo observations

Description

Assuming that the censoring depends on covariates, the pseudo observations are calculated with the inverse probability of censoring weighted approach, where the censoring probabilities are estimated using Aalen’s additive hazards model.

Usage

```r
pseudo_aareg(
  formula,
  time,
  cause = 1,
  data,
  type = c("cuminc", "survival", "rmean"),
  formula.censoring = NULL,
  ipcw.method = NULL
)
```
Arguments

- **formula**: A formula specifying the outcome model. The left hand side must be a `Surv` object specifying a right censored survival or competing risks outcome. The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2=death). For competing risks, the event variable will be a factor, whose first level is treated as censoring. The right hand side is the usual linear combination of covariates.

- **time**: Numeric constant specifying the time at which the cumulative incidence or survival probability effect estimates are desired.

- **cause**: Numeric or character constant specifying the cause indicator of interest.

- **data**: Data frame in which all variables of formula can be interpreted.

- **type**: One of "survival", "cuminc", or "rmean"

- **formula.censoring**: A right-sided formula specifying which variables to use in the model for the censoring distribution.

- **ipcw.method**: Which method to use for calculation of inverse probability of censoring weighted pseudo observations. "binder" the default, uses the number of observations as the denominator, while the "hajek" method uses the sum of the weights as the denominator.

Value

A vector of pseudo observations

See Also

- `aareg`

Examples

```r
POi <- pseudo_aareg(Surv(time, status) ~ 1, 1500, cause = 1, data = colon, type = "rmean", formula.censoring = ~ sex + age, ipcw.method = "binder")
mean(POi)
```

pseudo_coxph

Compute censoring weighted pseudo observations

Description

Assuming that the censoring depends on covariates, the pseudo observations are calculated with the inverse probability of censoring weighted approach, where the censoring probabilities are estimated using Cox’s proportional hazards model.
Usage

pseudo_coxph(
 formula,
 time,
 cause = 1,
 data,
 type = c("cuminc", "survival", "rmean"),
 formula.censoring = NULL,
 ipcw.method = NULL
)

Arguments

formula A formula specifying the outcome model. The left hand side must be a Surv object specifying a right censored survival or competing risks outcome. The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2=death). For competing risks, the event variable will be a factor, whose first level is treated as censoring. The right hand side is the usual linear combination of covariates.

time Numeric constant specifying the time at which the cumulative incidence or survival probability effect estimates are desired.

cause Numeric or character constant specifying the cause indicator of interest.

data Data frame in which all variables of formula can be interpreted.

type One of "survival", "cuminc", or "rmean"

formula.censoring A right-sided formula specifying which variables to use in the model for the censoring distribution.

ipcw.method Which method to use for calculation of inverse probability of censoring weighted pseudo observations. "binder" the default, uses the number of observations as the denominator, while the "hajek" method uses the sum of the weights as the denominator.

Value

A vector of pseudo observations

See Also

coxph

Examples

POi <- pseudo_coxph(Surv(time, status) ~ 1, 1500, cause = 1, data = colon, type = "survival", formula.censoring = ~ sex + age, ipcw.method = "hajek")

mean(POi)
pseudo_independent

Compute pseudo observations under independent censoring

Description

Assuming completely independent censoring, i.e., censoring does not depend on the survival time nor any covariates in the model, the pseudo observations are calculated with the standard jackknife approach.

Usage

```r
pseudo_independent(
  formula,
  time,
  cause = 1,
  data,
  type = c("cuminc", "survival", "rmean"),
  formula.censoring = NULL,
  ipcw.method = NULL
)
```

Arguments

- `formula`: A formula specifying the model. The left hand side must be a `Surv` object specifying a right censored survival or competing risks outcome. The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2=death). For competing risks, the event variable will be a factor, whose first level is treated as censoring. The right hand side is the usual linear combination of covariates.
- `time`: Numeric constant specifying the time at which the cumulative incidence or survival probability effect estimates are desired.
- `cause`: Numeric or character constant specifying the cause indicator of interest.
- `data`: Data frame in which all variables of formula can be interpreted.
- `type`: One of "survival", "cuminc", or "rmean".
- `formula.censoring`: Not used with this method, see `pseudo_stratified`, `pseudo_aareg` or `pseudo_coxph`.
- `ipcw.method`: Not used with this method.

Value

A vector of jackknife pseudo observations

Examples

```r
POi <- pseudo_independent(Surv(time, status) ~ 1, 1500, cause = 1, data = colon, type = "survival")
mean(POi)
```
Compute pseudo-observations for the restricted mean survival

Usage

```r
pseudo_rmst2(sfit, jacks, times, tmax, type = "cuminc")
```

Arguments

- `sfit`: A `survfit` object
- `jacks`: A matrix of leave-one-out jackknife values, subjects in the rows, times in the columns
- `times`: Times at which the survival is calculated
- `tmax`: Max time
- `type`: "cuminc" or "survival"

Value

A vector of pseudo observations for the restricted mean or lifetime lost

Compute pseudo observations using stratified jackknife

Description

Assuming that the censoring depends on covariates with a finite set of levels, the pseudo observations are calculated with the jackknife approach stratified on those covariates.

Usage

```r
pseudo_stratified(
  formula,
  time,
  cause = 1,
  data,
  type = c("cuminc", "survival", "rmean"),
  formula.censoring = NULL,
  ipcw.method = NULL
)
```
Arguments

formula A formula specifying the model. The left hand side must be a Surv object specifying a right censored survival or competing risks outcome. The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2=death). For competing risks, the event variable will be a factor, whose first level is treated as censoring. The right hand side is the usual linear combination of covariates.
time Numeric constant specifying the time at which the cumulative incidence or survival probability effect estimates are desired.
cause Numeric or character constant specifying the cause indicator of interest.
data Data frame in which all variables of formula can be interpreted.
type One of "survival", "cuminc", or "rmean"
formula.censoring A right-sided formula specifying which variables to stratify on. All variables in this formula must be categorical.
ipcw.method Not used with this method

Value

A vector of jackknife pseudo observations

Examples

POi <- pseudo_stratified(Surv(time, status) ~ 1, 1500, cause = 1, data = colon, formula.censoring = ~ sex, type = "rmean")
mean(POi)

Description

Usage

S3 method for class 'pseudoglm'
residuals(object, type = NULL, ...)

Arguments

object A pseudoglm object, as returned by cumincglm or rmeanglm
type Either "scaled" (the default for cumulative incidence outcomes) or one of the types available in residuals.glm for restricted mean outcomes, with the default being "deviance".
... Arguments passed on to residuals.glm.
Details

The scaled residuals are computed as

$$\hat{\epsilon}_i = \frac{\hat{E}(V_i) - \hat{Y}_i}{\sqrt{\hat{Y}_i(1 - \hat{Y}_i)}}$$

When the outcome is the cumulative incidence, the denominator corresponds to an estimate of the standard error of the conditional estimate of the outcome in the absence of censoring. For the restricted mean, no such rescaling is done and the computation is passed off to residuals.glm.

Value

A numeric vector of residuals

References

rmeanglm

Generalized linear models for the restricted mean survival

Description

Using pseudo observations for the restricted mean, or the restricted mean lifetime lost in the competing risks case, this function then runs a generalized linear model to estimate associations of the restricted mean/lifetime lost up to a particular time (specified by the time argument) with covariates. The link function can be "identity" for estimating differences in the restricted mean, "log" for estimating ratios, and any of the other link functions supported by quasi.

Usage

rmeanglm(
 formula,
 time,
 cause = 1,
 link = "identity",
 model.censoring = "independent",
 formula.censoring = NULL,
 ipcw.method = "binder",
 data,
 weights,
 subset,
 na.action,
 offset,
 control = list(...),
 model = FALSE,
x = TRUE,
y = TRUE,
singular.ok = TRUE,
contrasts = NULL,
...)

Arguments

formula A formula specifying the model. The left hand side must be a Surv object specifying a right censored survival or competing risks outcome. The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2=death). For competing risks, the event variable will be a factor, whose first level is treated as censoring. The right hand side is the usual linear combination of covariates.
time Numeric constant specifying the time up to which the restricted mean effect estimates are desired.
cause Numeric or character constant specifying the cause indicator of interest.
link Link function for the restricted mean regression model.
model.censoring Type of model for the censoring distribution. Options are "stratified", which computes the pseudo-observations stratified on a set of categorical covariates, "aareg" for Aalen's additive hazards model, and "coxph" for Cox's proportional hazards model. With those options, we assume that the time to event and event indicator are conditionally independent of the censoring time, and that the censoring model is correctly specified. If "independent", we assume completely independent censoring, i.e., that the time to event and covariates are independent of the censoring time. the censoring time is independent of the covariates in the model. Can also be a custom function, see Details and the "Extending eventglm" vignette.
formula.censoring A one sided formula (e.g., ~ x1 + x2) specifying the model for the censoring distribution. If NULL, uses the same mean model as for the outcome.
ipcw.method Which method to use for calculation of inverse probability of censoring weighted pseudo observations. "binder" the default, uses the number of observations as the denominator, while the "hajek" method uses the sum of the weights as the denominator.
data Data frame in which all variables of formula can be interpreted.
weights an optional vector of 'prior weights' to be used in the fitting process. Should be NULL or a numeric vector.
subset an optional vector specifying a subset of observations to be used in the fitting process.
na.action a function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options, and is na.fail if that is unset. The 'factory-fresh' default is na.omit. Another possible value is NULL, no action. Value na.exclude can be useful.
offset can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases. One or more offset terms can be included in the formula or as well, and if more than one is specified their sum is used. See model.offset.

ccontrol a list of parameters for controlling the fitting process. This is passed to glm.control.

model a logical value indicating whether model frame should be included as a component of the returned value.

x logical value indicating whether the model matrix used in the fitting process should be returned as components of the returned value.

y logical value indicating whether the response vector (pseudo-observations) used in the fitting process should be returned as components of the returned value.

singular.ok logical; if FALSE a singular fit is an error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

... Other arguments passed to glm.fit

Details

The argument "model.censoring" determines how the pseudo observations are calculated. This can be the name of a function or the function itself, which must have arguments "formula", "time", "cause", "data", "type", "formula.censoring", and "ipcw.method". If it is the name of a function, this code will look for a function with the prefix "pseudo_" first, to avoid clashes with related methods such as coxph. The function then must return a vector of pseudo observations, one for each subject in data which are used in subsequent calculations. For examples of the implementation, see the "pseudo-modules.R" file, or the vignette "Extending eventglm".

Value

A pseudoglm object, with its own methods for print, summary, and vcov. It inherits from glm, so predict and other glm methods are supported.

Examples

cumincipcw <- rmeanglm(Surv(etime, event) ~ age + sex,
 time = 200, cause = "pcm", link = "identity",
 model.censoring = "independent", data = mgus2)
stratified on only the categorical covariate
cumincipcw2 <- rmeanglm(Surv(etime, event) ~ age + sex,
 time = 200, cause = "pcm", link = "identity",
 model.censoring = "stratified",
 formula.censoring = ~ sex, data = mgus2)
summary.pseudoglm Summary method

Description
Summary method

Usage
S3 method for class 'pseudoglm'
summary(
 object,
 correlation = FALSE,
 symbolic.cor = FALSE,
 type = "robust",
 ...
)

Arguments

 object A pseudoglm object, as returned by cumincglm or rmeanglm
 correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned and printed.
 symbolic.cor logical; If TRUE, print the correlations in a symbolic form rather than as numbers.
 type The method to use for variance estimation; one of "corrected", "robust", "naive", or "cluster"
 ...

Value
An object of class summary.glm

vcov.pseudoglm Compute covariance matrix of regression coefficient estimates

Description
Compute covariance matrix of regression coefficient estimates

Usage
S3 method for class 'pseudoglm'
vcov(object, type = "robust", ...)
vcov.pseudoglm

Arguments

object A pseudoglm object, as returned by cumincglm or rmeanglm.
type The method to use for variance estimation; one of "corrected", "robust", "naive", or "cluster"
... Not used

Details

The "corrected" variance estimate for the cumulative incidence is as described in Overgaard et al. (2017) <doi:10.1214/16-AOS1516>, with code adapted from Overgaard's Stata program. This method does not handle ties and only has marginal benefits in reasonable sample sizes. The default is "robust" which uses the sandwich estimator vcovHC as implemented in the sandwich package. "cluster" is another option if you have clustered observations that uses the vcovCL function in sandwich. Finally "naive" uses the same method as glm to compute the variance, and is known to be anti-conservative. The bootstrap is another recommended option that can be implemented using other tools; there is an example in the vignette.

Value

A numeric matrix containing the variance-covariance estimates

References

See Also

vcovHC, vcovCL
Index

* datasets
 colon, 3
 mgus2, 14
aareg, 16
calc_ipcw_pos, 2
ccheck_mod_cens, 3
colon, 3, 4
cconfint.pseudoglm, 4
coxph, 17
cumincglm, 5, 5, 15, 20, 24, 25
eventglm, 8
get_pseudo_cuminc, 8
get_pseudo_rmean, 9
glm.control, 7, 23
glm.fit, 7, 23
jackknife.competing.risks2, 9
jackknife.survival2, 10, 13
leaveOneOut.competing.risks, 11
leaveOneOut.competing.risks2, 12
leaveOneOut.survival, 12
leaveOneOut.survival2, 13
match.cause, 14
mgus2, 14, 15
model.matrix.default, 7, 23
model.offset, 7, 23
na.exclude, 7, 22
na.fail, 7, 22
na.omit, 7, 22
offset, 7, 23
options, 7, 22
print.pseudoglm, 15
pseudo_aareg, 15, 18
pseudo_coxph, 16, 18
pseudo_independent, 18
pseudo_rmst2, 19
pseudo_stratified, 18, 19
quasi, 5, 21
residuals.glm, 20, 21
residuals.pseudoglm, 20
rmeanglm, 5, 15, 20, 21, 24, 25
summary.glm, 24
summary.pseudoglm, 24
Surv, 3, 6, 14, 16–18, 20, 22
vcov.pseudoglm, 5, 24
vcovCL, 25
vcovHC, 25