Package ‘exDE’

November 18, 2022

Type Package

Title Extensible Differential Equations for Mosquito-Borne Pathogen Modeling

Version 1.0.0

Description Provides tools to set up modular ordinary and delay differential equation models for mosquito-borne pathogens, focusing on malaria. Modular design is achieved by S3 dispatch on parameter lists for each component which is used to compute the full set of differential equations which may be solved using any of the packages for numerical simulation of differential equations in R. The methods implemented by this package are described in Wu et al. (2022) <doi:10.1101/2022.11.07.22282044>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.1.9000

BugReports https://github.com/dd-harp/exDE/issues

Imports deSolve, expm, MASS

Suggests ggplot2, data.table, knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

NeedsCompilation no

Author Sean L. Wu [aut, cre] (<https://orcid.org/0000-0002-5781-9493>), David L. Smith [aut] (<https://orcid.org/0000-0003-4367-3849>)

Maintainer Sean L. Wu <slwood89@gmail.com>

Repository CRAN

Date/Publication 2022-11-18 10:00:04 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>approx_equal</td>
<td>3</td>
</tr>
<tr>
<td>diag_inverse</td>
<td>4</td>
</tr>
<tr>
<td>dLdt</td>
<td>4</td>
</tr>
<tr>
<td>dLdt.basic</td>
<td>5</td>
</tr>
<tr>
<td>dLdt.trace</td>
<td>5</td>
</tr>
<tr>
<td>dMYZdt</td>
<td>6</td>
</tr>
<tr>
<td>dMYZdt.RM_dde</td>
<td>6</td>
</tr>
<tr>
<td>dMYZdt.RM_ode</td>
<td>7</td>
</tr>
<tr>
<td>dXdt</td>
<td>8</td>
</tr>
<tr>
<td>dXdt.hMoI</td>
<td>8</td>
</tr>
<tr>
<td>dXdt.SIP</td>
<td>9</td>
</tr>
<tr>
<td>dXdt.SIS</td>
<td>9</td>
</tr>
<tr>
<td>ExogenousForcing</td>
<td>10</td>
</tr>
<tr>
<td>ExogenousForcing.null</td>
<td>10</td>
</tr>
<tr>
<td>F_alpha</td>
<td>11</td>
</tr>
<tr>
<td>F_alpha.basic</td>
<td>11</td>
</tr>
<tr>
<td>F_alpha.trace</td>
<td>12</td>
</tr>
<tr>
<td>F_beta</td>
<td>12</td>
</tr>
<tr>
<td>F_beta.hMoI</td>
<td>13</td>
</tr>
<tr>
<td>F_beta.SIP</td>
<td>13</td>
</tr>
<tr>
<td>F_beta.SIS</td>
<td>14</td>
</tr>
<tr>
<td>F_beta_lag</td>
<td>14</td>
</tr>
<tr>
<td>F_beta_lag.hMoI</td>
<td>15</td>
</tr>
<tr>
<td>F_beta_lag.SIP</td>
<td>15</td>
</tr>
<tr>
<td>F_beta_lag.SIS</td>
<td>16</td>
</tr>
<tr>
<td>F_eggs</td>
<td>16</td>
</tr>
<tr>
<td>F_eggs.RM</td>
<td>17</td>
</tr>
<tr>
<td>F_EIR</td>
<td>17</td>
</tr>
<tr>
<td>F_EIR.hMoI</td>
<td>18</td>
</tr>
<tr>
<td>F_EIR.SIP</td>
<td>18</td>
</tr>
<tr>
<td>F_EIR.SIS</td>
<td>19</td>
</tr>
<tr>
<td>F_kappa</td>
<td>19</td>
</tr>
<tr>
<td>F_kappa.RM_dde</td>
<td>20</td>
</tr>
<tr>
<td>F_kappa.RM_ode</td>
<td>20</td>
</tr>
<tr>
<td>F_tau</td>
<td>21</td>
</tr>
<tr>
<td>F_tau.RM</td>
<td>21</td>
</tr>
<tr>
<td>F_x</td>
<td>22</td>
</tr>
<tr>
<td>F_x.hMoI</td>
<td>22</td>
</tr>
<tr>
<td>F_x.SIP</td>
<td>23</td>
</tr>
<tr>
<td>F_x.SIS</td>
<td>23</td>
</tr>
<tr>
<td>F_x_lag</td>
<td>24</td>
</tr>
<tr>
<td>F_x_lag.hMoI</td>
<td>24</td>
</tr>
<tr>
<td>F_x_lag.SIP</td>
<td>25</td>
</tr>
<tr>
<td>F_x_lag.SIS</td>
<td>25</td>
</tr>
<tr>
<td>F_Z</td>
<td>26</td>
</tr>
<tr>
<td>F_Z.RM</td>
<td>26</td>
</tr>
</tbody>
</table>
approx_equal

Check if two numeric values are approximately equal

Description

Check if two numeric values are approximately equal

Usage

approx_equal(a, b, tol = sqrt(.Machine$double.eps))
Arguments

- a: a numeric object
- b: a numeric object
- tol: the numeric tolerance

Value

- a logical value

diag_inverse

Invert a diagonal matrix

Description

Invert a diagonal matrix which is passed as a vector. If any elements are zero, set them to one.

Usage

```r
diag_inverse(x)
```

Arguments

- x: a numeric vector

Value

- a diagonal matrix

dLdt

Derivatives for aquatic stage mosquitoes

Description

This method dispatches on the type of `pars$Lpar`.

Usage

```r
dLdt(t, y, pars, eta)
```

Arguments

- t: current simulation time
- y: state vector
- pars: an environment
- eta: vector giving number of eggs being laid in each larval habitat
Value
a numeric vector of length pars$L_ix

Description
Implements dLdt for the basic competition model.

Usage
S3 method for class 'basic'
dLdt(t, y, pars, eta)

Arguments
t current simulation time
y state vector
pars an environment
eta vector giving number of eggs being laid in each larval habitat

Value
a numeric vector

Description
Implements dLdt for the trace (forced emergence) model.

Usage
S3 method for class 'trace'
dLdt(t, y, pars, eta)

Arguments
t current simulation time
y state vector
pars an environment
eta vector giving number of eggs being laid in each larval habitat
Value

- a numeric vector

dMYZdt
Derivatives for adult mosquitoes

Description

This method dispatches on the type of `pars$MYZpar`.

Usage

```r
dMYZdt(t, y, pars, Lambda, kappa, MosyBehavior)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment
- `Lambda` emergence rate of adult mosquitoes
- `kappa` net infectiousness of human population
- `MosyBehavior` values returned by `MosquitoBehavior`, potentially modified by control `Vector-Control`

Value

- a numeric vector

dMYZdt.RM_dde
Derivatives for adult mosquitoes

Description

Implements `dMYZdt` for the generalized RM DDE model.

Usage

```r
## S3 method for class 'RM_dde'
dMYZdt(t, y, pars, Lambda, kappa, MosyBehavior)
```
Arguments

- **t**: current simulation time
- **y**: state vector
- **pars**: an environment
- **Lambda**: emergence rate of adult mosquitoes
- **kappa**: net infectiousness of human population
- **MosyBehavior**: values returned by `MosquitoBehavior`, potentially modified by control `Vector-Control`

Value

a numeric vector

dMYZdt.RM_ode

Derivatives for adult mosquitoes

Description

Implements `dMYZdt` for the generalized RM ODE model.

Usage

```r
## S3 method for class 'RM_ode'
dMYZdt(t, y, pars, Lambda, kappa, MosyBehavior)
```

Arguments

- **t**: current simulation time
- **y**: state vector
- **pars**: an environment
- **Lambda**: emergence rate of adult mosquitoes
- **kappa**: net infectiousness of human population
- **MosyBehavior**: values returned by `MosquitoBehavior`, potentially modified by control `Vector-Control`

Value

a numeric vector
dXdt

Derivatives for human population

Description
This method dispatches on the type of `pars$Xpar`.

Usage

dXdt(t, y, pars, EIR)

Arguments
- `t`: current simulation time
- `y`: state vector
- `pars`: an environment
- `EIR`: vector giving the per-capita entomological inoculation rate for each strata

Value
a numeric vector

dXdt.hMoI

Derivatives for human population

Description
Implements `dXdt` for the hybrid MoI model.

Usage

```r
## S3 method for class 'hMoI'
dXdt(t, y, pars, EIR)
```

Arguments
- `t`: current simulation time
- `y`: state vector
- `pars`: an environment
- `EIR`: vector giving the per-capita entomological inoculation rate for each strata

Value
a numeric vector
dXdt.SIP

Derivatives for human population

Description

Implements \(dX/dt \) for the SIP model.

Usage

```r
## S3 method for class 'SIP'
dXdt(t, y, pars, EIR)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment
- `EIR`: vector giving the per-capita entomological inoculation rate for each strata

Value

a numeric vector

dXdt.SIS

Derivatives for human population

Description

Implements \(dX/dt \) for the SIS model.

Usage

```r
## S3 method for class 'SIS'
dXdt(t, y, pars, EIR)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment
- `EIR`: vector giving the per-capita entomological inoculation rate for each strata

Value

a numeric vector
ExogenousForcing

Modify parameters due to exogenous forcing

Description
This method dispatches on the type of pars$EXpar.

Usage
ExogenousForcing(t, y, pars)

Arguments
- **t**: current simulation time
- **y**: state vector
- **pars**: an environment

Value
none

ExogenousForcing.null

Modify parameters due to exogenous forcing

Description
Implements ExogenousForcing for the null model of exogenous forcing (do nothing)

Usage

```r
## S3 method for class 'null'
ExogenousForcing(t, y, pars)
```

Arguments
- **t**: current simulation time
- **y**: state vector
- **pars**: an environment

Value
none
\textbf{F_alpha} \hspace{1cm} \textit{Number of newly emerging adults from each larval habitat}

\textbf{Description}

This method dispatches on the type of \texttt{pars$Lpar}.

\textbf{Usage}

\begin{verbatim}
F_alpha(t, y, pars)
\end{verbatim}

\textbf{Arguments}

- \texttt{t} \hspace{1cm} current simulation time
- \texttt{y} \hspace{1cm} state vector
- \texttt{pars} \hspace{1cm} an environment

\textbf{Value}

- a \texttt{numeric} vector of length \texttt{nHabitats}

\textbf{F_alpha.basic} \hspace{1cm} \textit{Number of newly emerging adults from each larval habitat}

\textbf{Description}

Implements \texttt{F_alpha} for the basic competition model.

\textbf{Usage}

\begin{verbatim}
S3 method for class 'basic'
F_alpha(t, y, pars)
\end{verbatim}

\textbf{Arguments}

- \texttt{t} \hspace{1cm} current simulation time
- \texttt{y} \hspace{1cm} state vector
- \texttt{pars} \hspace{1cm} an environment

\textbf{Value}

- a \texttt{numeric} vector of length \texttt{nHabitats}
F_alpha.trace
Number of newly emerging adults from each larval habitat

Description

Implements `F_alpha` for the trace (forced emergence) model.

Usage

```r
## S3 method for class 'trace'
F_alpha(t, y, pars)
```

Arguments

- `t`
 current simulation time
- `y`
 state vector
- `pars`
 an environment

Value

A numeric vector of length `nHabitats`

F_beta
Biting distribution matrix

Description

This method dispatches on the type of `pars$Xpar`.

Usage

```r
F_beta(t, y, pars)
```

Arguments

- `t`
 current simulation time
- `y`
 state vector
- `pars`
 an environment

Value

A numeric vector of length `nStrata`
F_beta.hMoI

Biting distribution matrix

Description

Implements \texttt{F_beta} for the hybrid MoI model.

Usage

\begin{verbatim}
 ## S3 method for class 'hMoI'
 F_beta(t, y, pars)
\end{verbatim}

Arguments

- \texttt{t} \hspace{1cm} current simulation time
- \texttt{y} \hspace{1cm} state vector
- \texttt{pars} \hspace{1cm} an \texttt{environment}

Value

- a matrix of dimensions \texttt{nStrata} by \texttt{nPatches}.

F_beta.SIP

Biting distribution matrix

Description

Implements \texttt{F_beta} for the SIP model.

Usage

\begin{verbatim}
 ## S3 method for class 'SIP'
 F_beta(t, y, pars)
\end{verbatim}

Arguments

- \texttt{t} \hspace{1cm} current simulation time
- \texttt{y} \hspace{1cm} state vector
- \texttt{pars} \hspace{1cm} an \texttt{environment}

Value

- a matrix of dimensions \texttt{nStrata} by \texttt{nPatches}.
F_beta.SIS

Biting distribution matrix

Description

Implements **F_beta** for the SIS model.

Usage

```r
## S3 method for class 'SIS'
F_beta(t, y, pars)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment

Value

a matrix of dimensions nStrata by nPatches

F_beta_lag

Lagged biting distribution matrix

Description

This method dispatches on the type of pars$Xpar.

Usage

```r
F_beta_lag(t, y, pars, lag)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment
- `lag` duration of lag t-lag

Value

a numeric vector of length nStrata
Description

Implements `F_beta_lag` for the hybrid MoI model.

Usage

```r
## S3 method for class 'hMoI'
F_beta_lag(t, y, pars, lag)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment
- `lag`: duration of lag `t-lag`

Value

A matrix of dimensions `nStrata` by `nPatches`

Description

Implements `F_beta_lag` for the SIP model.

Usage

```r
## S3 method for class 'SIP'
F_beta_lag(t, y, pars, lag)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment
- `lag`: duration of lag `t-lag`

Value

A matrix of dimensions `nStrata` by `nPatches`
F_beta_lag.SIS \hspace{1cm} \textit{Lagged biting distribution matrix}

\textbf{Description}

Implements \texttt{F_beta_lag} for the SIS model.

\textbf{Usage}

\begin{verbatim}
S3 method for class 'SIS'
F_beta_lag(t, y, pars, lag)
\end{verbatim}

\textbf{Arguments}

- \texttt{t} \hspace{1cm} \text{current simulation time}
- \texttt{y} \hspace{1cm} \text{state vector}
- \texttt{pars} \hspace{1cm} \text{an environment}
- \texttt{lag} \hspace{1cm} \text{duration of lag } t\text{-lag}

\textbf{Value}

- \text{a matrix} of dimensions \text{nStrata} by \text{nPatches}

\textbf{F_eggs} \hspace{1cm} \textit{Number of eggs laid by adult mosquitoes}

\textbf{Description}

This method dispatches on the type of \texttt{pars\$MYZpar}.

\textbf{Usage}

\begin{verbatim}
F_eggs(t, y, pars)
\end{verbatim}

\textbf{Arguments}

- \texttt{t} \hspace{1cm} \text{current simulation time}
- \texttt{y} \hspace{1cm} \text{state vector}
- \texttt{pars} \hspace{1cm} \text{an environment}

\textbf{Value}

- \text{a numeric} vector of length \text{nPatches}
F_eggs.RM

Number of eggs laid by adult mosquitoes

Description

Implements `F_eggs` for the generalized RM model.

Usage

```r
## S3 method for class 'RM'
F_eggs(t, y, pars)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment

Value

A numeric vector of length `nPatches`

F_EIR

Entomological inoculation rate on human strata

Description

This method dispatches on the type of `pars$Xpar`.

Usage

```r
F_EIR(t, y, pars)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment

Value

A numeric vector of length `nStrata`
F_EIR.hMoI

Entomological inoculation rate on human strata

Description

Implements F_EIR for the hybrid MoI model.

Usage

```r
## S3 method for class 'hMoI'
F_EIR(t, y, pars)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment

Value

A numeric vector of length nStrata

F_EIR.SIP

Entomological inoculation rate on human strata

Description

Implements F_EIR for the SIP model.

Usage

```r
## S3 method for class 'SIP'
F_EIR(t, y, pars)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment

Value

A numeric vector of length nStrata
F_EIR.SIS

Entomological inoculation rate on human strata

Description

Implements `F_EIR` for the SIS model.

Usage

```r
## S3 method for class 'SIS'
F_EIR(t, y, pars)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment

Value

a numeric vector of length `nStrata`

F_kappa

Net infectiousness of human population to mosquitoes

Description

This method dispatches on the type of `pars$MYZpar`.

Usage

`F_kappa(t, y, pars)`

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment

Value

a numeric vector of length `nPatches`
F_kappa.RM_dde
Net infectiousness of human population to mosquitoes

Description

Implements `F_kappa` for the generalized RM DDE model.

Usage

```r
## S3 method for class 'RM_dde'
F_kappa(t, y, pars)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment

Value

a numeric vector of length `nPatches`

F_kappa.RM_ode
Net infectiousness of human population to mosquitoes

Description

Implements `F_kappa` for the generalized RM ODE model.

Usage

```r
## S3 method for class 'RM_ode'
F_kappa(t, y, pars)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment

Value

a numeric vector of length `nPatches`
\(\text{F}_\tau \)

\textit{Time spent host seeking/feeding and resting/ovipositing}

\textbf{Description}

This method dispatches on the type of \texttt{pars$MYZpar}.

\textbf{Usage}

\begin{verbatim}
F_\tau(t, y, pars)
\end{verbatim}

\textbf{Arguments}

- \(t \) \hspace{1cm} \text{current simulation time}
- \(y \) \hspace{1cm} \text{state vector}
- \(\text{pars} \) \hspace{1cm} \text{an environment}

\textbf{Value}

\begin{verbatim}
either a numeric vector if the model supports this feature, or \texttt{NULL}
\end{verbatim}

\textbf{F_\tau.RM}

\textit{Time spent host seeking/feeding and resting/ovipositing}

\textbf{Description}

Implements \texttt{F_\tau} for the generalized RM model.

\textbf{Usage}

\begin{verbatim}
S3 method for class 'RM'
F_\tau(t, y, pars)
\end{verbatim}

\textbf{Arguments}

- \(t \) \hspace{1cm} \text{current simulation time}
- \(y \) \hspace{1cm} \text{state vector}
- \(\text{pars} \) \hspace{1cm} \text{an environment}

\textbf{Value}

\begin{verbatim}
\texttt{NULL}
\end{verbatim}
F_x

Size of effective infectious human population

Description

This method dispatches on the type of pars$Xpar.

Usage

F_x(t, y, pars)

Arguments

t current simulation time
y state vector
pars an environment

Value

a numeric vector of length nStrata

F_x.hMoI

Size of effective infectious human population

Description

Implements F_x for the hybrid MoI model.

Usage

S3 method for class 'hMoI'
F_x(t, y, pars)

Arguments

t current simulation time
y state vector
pars an environment

Value

a numeric vector of length nStrata
F_x.SIP

Size of effective infectious human population

Description

Implements \(F_x \) for the SIP model.

Usage

```r
## S3 method for class 'SIP'
F_x(t, y, pars)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment

Value

A numeric vector of length \(n_{Strata} \)

F_x.SIS

Size of effective infectious human population

Description

Implements \(F_x \) for the SIS model.

Usage

```r
## S3 method for class 'SIS'
F_x(t, y, pars)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment

Value

A numeric vector of length \(n_{Strata} \)
F_x_lag.hMoI

Size of lagged effective infectious human population

Description

This method dispatches on the type of pars\$Xpar.

Usage

\[
F_x_lag(t, y, pars, lag)
\]

Arguments

- **t**: current simulation time
- **y**: state vector
- **pars**: an environment
- **lag**: duration of lag \(t - \text{lag} \)

Value

a numeric vector of length \(nStrata \)

F_x_lag.hMoI

Size of lagged effective infectious human population

Description

Implements \(F_x_lag \) for the hybrid MoI model.

Usage

```r
## S3 method for class 'hMoI'
F_x_lag(t, y, pars, lag)
```

Arguments

- **t**: current simulation time
- **y**: state vector
- **pars**: an environment
- **lag**: duration of lag \(t - \text{lag} \)

Value

a numeric vector of length \(n\text{Strata} \)
F_x_lag.SIP

Size of lagged effective infectious human population

Description

Implements F_{x_lag} for the SIP model.

Usage

```r
## S3 method for class 'SIP'
F_x_lag(t, y, pars, lag)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment
- `lag` duration of lag $t-lag$

Value

A numeric vector of length `nStrata`

F_x_lag.SIS

Size of lagged effective infectious human population

Description

Implements F_{x_lag} for the SIS model.

Usage

```r
## S3 method for class 'SIS'
F_x_lag(t, y, pars, lag)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment
- `lag` duration of lag $t-lag$

Value

A numeric vector of length `nStrata`
F_Z

Density of infectious mosquitoes

Description

This method dispatches on the type of `pars$MYZpar`.

Usage

\[F_Z(t, y, \text{pars}) \]

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment

Value

a numeric vector of length `nPatches`

F_Z.RM

Density of infectious mosquitoes

Description

Implements `F_Z` for the generalized RM model.

Usage

```
## S3 method for class 'RM'
F_Z(t, y, pars)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment

Value

a numeric vector of length `nPatches`
F_Z_lag

Density of lagged infectious mosquitoes

Description

This method dispatches on the type of `pars$MYZpar`.

Usage

```r
F_Z_lag(t, y, pars, lag)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment
- `lag`: duration of lag `t-lag`

Value

A numeric vector of length `nPatches`

F_Z_lag.RM

Density of lagged infectious mosquitoes

Description

Implements `F_Z_lag` for the generalized RM model.

Usage

```r
## S3 method for class 'RM'
F_Z_lag(t, y, pars, lag)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment
- `lag`: duration of lag `t-lag`

Value

A numeric vector of length `nPatches`
make_index_L

Add indices for aquatic stage mosquitoes to parameter list

Description

This method dispatches on the type of `pars$Lpar`. Adds field `L_ix` to parameter list.

Usage

```r
make_index_L(pars)
```

Arguments

- `pars` : an environment

Value

the modified parameter list

make_index_L.basic

Add indices for aquatic stage mosquitoes to parameter list

Description

Implements `make_index_L` for basic competition model.

Usage

```r
## S3 method for class 'basic'
make_index_L(pars)
```

Arguments

- `pars` : an environment

Value

the modified parameter list
make_index_L.trace

Add indices for aquatic stage mosquitoes to parameter list

Description

Implements make_index_L for trace (forced emergence) model.

Usage

S3 method for class 'trace'
make_index_L(pars)

Arguments

pars an environment

Value

the modified parameter list

make_index_MYZ

Add indices for adult mosquitoes to parameter list

Description

This method dispatches on the type of pars$MYZpar.

Usage

make_index_MYZ(pars)

Arguments

pars an environment

Value

the modified parameter list
make_index_MYZ.RM

Add indices for adult mosquitoes to parameter list

Description

Implements make_index_MYZ for the generalized RM model.

Usage

```r
## S3 method for class 'RM'
make_index_MYZ(pars)
```

Arguments

- `pars`
an environment

Value

the modified parameter list

make_index_X

Add indices for human population to parameter list

Description

This method dispatches on the type of `pars$Xpar`.

Usage

```r
make_index_X(pars)
```

Arguments

- `pars`
an environment

Value

the modified parameter list
Description

Implements `make_index_X` for the hybrid MoI model.

Usage

```r
## S3 method for class 'hMoI'
make_index_X(pars)
```

Arguments

- `pars` an environment

Value

the modified parameter list

Description

Implements `make_index_X` for the SIP model.

Usage

```r
## S3 method for class 'SIP'
make_index_X(pars)
```

Arguments

- `pars` an environment

Value

the modified parameter list
make_index_X.SIS Add indices for human population to parameter list

Description

Implements make_index_X for the SIS model.

Usage

```r
## S3 method for class 'SIS'
make_index_X(pars)
```

Arguments

pars an environment

Value

the modified parameter list

make_indices Set indices for generalized spatial model

Description

Set indices for generalized spatial model

Usage

```r
make_indices(pars)
```

Arguments

pars an environment

Value

one
make_Omega

Make the mosquito demography matrix

Description

Make the mosquito demography matrix

Usage

```r
make_Omega(g, sigma, K, nPatches)
```

Arguments

- `g`: mortality rate
- `sigma`: emigration rate
- `K`: mosquito dispersal matrix
- `nPatches`: number of patches

Value

A matrix of dimensions `nPatches` by `nPatches`

make_parameters_exogenous_null

Make parameters for the null model of exogenous forcing (do nothing)

Description

Make parameters for the null model of exogenous forcing (do nothing)

Usage

```r
make_parameters_exogenous_null(pars)
```

Arguments

- `pars`: an environment

Value

none
make_parameters_L_basic

Make parameters for basic competition aquatic mosquito model

Description
Make parameters for basic competition aquatic mosquito model

Usage
make_parameters_L_basic(pars, psi, phi, theta, L0)

Arguments
- pars: an environment
- psi: maturation rates for each aquatic habitat
- phi: density-independent mortality rates for each aquatic habitat
- theta: density-dependent mortality terms for each aquatic habitat
- L0: initial conditions

Value
a list with class basic.

make_parameters_L_trace

Make parameters for trace aquatic mosquito model

Description
Make parameters for trace aquatic mosquito model

Usage
make_parameters_L_trace(pars, Lambda)

Arguments
- pars: an environment
- Lambda: vector of emergence rates from each aquatic habitat

Value
a list with class trace.
make_parameters_MYZ_RM_dde

Make parameters for generalized RM DDE adult mosquito model

Description
Make parameters for generalized RM DDE adult mosquito model

Usage
make_parameters_MYZ_RM_dde(
pars,
g,
sigma,
calK,
f,
q,
nu,
eggsPerBatch,
tau,
M0,
G0,
Y0,
Z0
)

Arguments
pars an environment
g mosquito mortality rate
sigma emigration rate
calK mosquito dispersal matrix of dimensions nPatches by nPatches
f feeding rate
q human blood fraction
nu oviposition rate of gravid mosquitoes
eggsPerBatch eggs laid per oviposition
tau length of extrinsic incubation period
M0 total mosquito density at each patch
G0 gravid mosquito density at each patch
Y0 infected mosquito density at each patch
Z0 infectious mosquito density at each patch

Value
none
Description

Make parameters for generalized RM ODE adult mosquito model

Usage

make_parameters_MYZ_RM_ode(
 pars,
 g,
 sigma,
 calK,
 f,
 q,
 nu,
 eggsPerBatch,
 tau,
 M0,
 G0,
 Y0,
 Z0
)

Arguments

pars an environment
 mosquito mortality rate
g mosquito dispersion matrix of dimensions nPatches by nPatches
sigma emigration rate
 feeding rate
f human blood fraction
nu oviposition rate of gravid mosquitoes
eggsPerBatch eggs laid per oviposition
tau length of extrinsic incubation period
M0 total mosquito density at each patch
G0 gravid mosquito density at each patch
Y0 infected mosquito density at each patch
Z0 infectious mosquito density at each patch

Value

none
make_parameters_vc_lemenach

Make parameters for Le Menach ITN model of vector control

Description

This model of ITN based vector control was originally described in https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-6-10.

Usage

```r
make_parameters_vc_lemenach(
  pars,
  tau0_frac = c(0.68/3, 2.32/3),
  r = 0.56,
  s = 0.03,
  phi = function(t) {
    0
  }
)
```

Arguments

- `pars` an environment
- `tau0_frac` a numeric vector giving the proportion of time spent in host seeking/bloodfeeding and resting/oviposition
- `r` probability of mosquito being repelled upon contact with ITN
- `s` probability of mosquito successfully feeding upon contact with ITN
- `phi` a function that takes a single argument `t` and returns the level of ITN coverage at that time

Value

none

make_parameters_vc_null

Make parameters for the null model of vector control (do nothing)

Description

Make parameters for the null model of vector control (do nothing)
Usage

make_parameters_vc_null(pars)

Arguments

pars an environment

Value

none

--
make_parameters_X_hMoI

 Make parameters for hybrid MoI human model

--

Description

MoI stands for Multiplicity of Infection, and refers to malarial superinfection.

Usage

make_parameters_X_hMoI(pars, b, c1, c2, r1, r2, Psi, wf = 1, m10, m20, H)

Arguments

pars an environment
b transmission probability (efficiency) from mosquito to human
c1 transmission probability (efficiency) from inapparent human infections to mosquito
c2 transmission probability (efficiency) from patent human infections to mosquito
r1 recovery rate from inapparent infections
r2 recovery rate from patent infections
Psi a matrix of dimensions nPatches by nStrata
wf vector of biting weights of length nStrata
m10 mean MoI among inapparent human infections
m20 mean MoI among patent human infections
H size of human population in each strata

Value

a list with class hMoI.
make_parameters_X_SIP
Make parameters for SIP human model

Description

Make parameters for SIP human model

Usage

```r
make_parameters_X_SIP(pars, b, c, r, rho, eta, Psi, wf = 1, X0, P0, H)
```

Arguments

- `pars` an environment
- `b` transmission probability (efficiency) from mosquito to human
- `c` transmission probability (efficiency) from human to mosquito
- `r` recovery rate
- `rho` probability of successful treatment upon infection
- `eta` prophylaxis waning rate
- `Psi` a matrix of dimensions `nPatches` by `nStrata`
- `wf` vector of biting weights of length `nStrata`
- `X0` size of infected population in each strata
- `P0` size of population protected by prophylaxis in each strata
- `H` size of human population in each strata

Value

a list with class SIP.

make_parameters_X_SIS
Make parameters for SIS human model

Description

Make parameters for SIS human model

Usage

```r
make_parameters_X_SIS(pars, b, c, r, Psi, wf = 1, X0, P0, H)
```
Arguments

- **pars**: an environment
- **b**: transmission probability (efficiency) from mosquito to human
- **c**: transmission probability (efficiency) from human to mosquito
- **r**: recovery rate
- **Psi**: a matrix of dimensions `nPatches` by `nStrata`
- **wf**: vector of biting weights of length `nStrata`
- **X0**: size of infected population in each strata
- **H**: size of human population in each strata

Value

- a list with class SIS.

metric_calD

Parasite dispersal by humans

Description

Compute the $p \times p$ matrix D whose columns describe how potentially infectious person time from persons in that patch are dispersed across other patches.

$$D = \text{diag}(W) \cdot \beta^T \cdot \text{diag}(bDH) \cdot \beta$$

Usage

```
metric_calD(W, beta, b, D, H)
```

Arguments

- **W**: ambient human population at each patch
- **beta**: the biting distribution matrix
- **b**: transmission efficiency from mosquitoes to humans
- **D**: human transmitting capacity
- **H**: human population size of each strata

Value

- a numeric matrix
metric_calR

Parasite Dispersal through one Parasite Generation (Humans)

Description

Computes an n by n matrix describing parasite dispersal from infecteds (columns) to infectees (rows).

$$R = b \beta \cdot \mathcal{V} \cdot \text{diag}(W) \cdot \beta^T \cdot \text{diag}(D \cdot H)$$

Usage

```r
metric_calR(b, beta, calV, W, D, H)
```

Arguments

- `b`: transmission efficiency from mosquitoes to humans
- `beta`: the biting distribution matrix
- `calV`: parasite dispersal by mosquitoes matrix (see `metric_calV`)
- `W`: ambient human population at each patch
- `D`: human transmitting capacity
- `H`: human population size of each strata

Value

A numeric matrix

metric_calV

Parasite dispersal by mosquitoes

Description

Compute the p by p matrix \mathcal{V} whose columns describe how infective bites arising from all the mosquitoes biting a single human on a single day are dispersed to other patches, accounting for movement and mortality.

$$\mathcal{V} = fq\Omega^{-1} \cdot e^{-\Omega \tau} \cdot \text{diag} \left(\frac{fqM}{W} \right)$$

Usage

```r
metric_calV(f, q, Omega, tau, M, W)
```
Arguments

- **Omega**: the mosquito demography matrix
- **tau**: duration of the extrinsic incubation period
- **f**: the feeding rate
- **q**: fraction of bloodmeals taken on humans
- **M**: size of mosquito population in each patch
- **W**: ambient human population at each patch

Value

A numeric matrix

Description

Computes a $p \times p$ matrix describing parasite dispersal from infecteds (columns) to infectees (rows).

$$Z = e^{-\Omega \tau} \cdot \text{diag} \left(\frac{fqM}{W} \right) \cdot D \cdot fq\Omega^{-1}$$

Usage

`metric_calZ(Omega, tau, f, q, M, W, calD)`

Arguments

- **Omega**: the mosquito demography matrix
- **tau**: duration of the extrinsic incubation period
- **f**: the feeding rate
- **q**: fraction of bloodmeals taken on humans
- **M**: size of mosquito population in each patch
- **W**: ambient human population at each patch
- **calD**: parasite dispersal by humans matrix (see `metric_calD`)

Value

A numeric matrix
Compute bloodfeeding and mortality rates

Description

This method dispatches on the type of `pars$MYZpar`. It should, at a minimum return the values \(f \), \(q \), \(g \) (blood feeding rate, human feeding proportion, and mortality rate) at the current time, although it may return vectors of these values at multiple times for models with delay. These baseline values will be modified by the vector control component. The return type is a named list with those 3 values, and \(f \) should have an attribute labeled `time` giving the time(s) in the simulation that these bionomic values correspond to.

Usage

```r
MosquitoBehavior(t, y, pars)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment

Value

- a list

MosquitoBehavior.RM

Compute bloodfeeding and mortality rates

Description

Implements `MosquitoBehavior` for the generalized RM model.

Usage

```r
## S3 method for class 'RM'
MosquitoBehavior(t, y, pars)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment

Value

- a named list
VectorControl

Modify baseline values due to vector control

Description

This method dispatches on the type of pars$VCpar. It takes the baseline MosyBehavior values and modifies them, potentially at multiple time points for models with delay.

Usage

VectorControl(t, y, pars, MosyBehavior)

Arguments

t current simulation time
y state vector
pars an environment
MosyBehavior values returned by MosquitoBehavior

Value

a list

VectorControl.lemenach

Modify baseline values due to vector control

Description

Implements VectorControl for the Le Menach ITN model of vector control

Usage

S3 method for class 'lemenach'
VectorControl(t, y, pars, MosyBehavior)

Arguments

t current simulation time
y state vector
pars an environment
MosyBehavior values returned by MosquitoBehavior

Value

a named list
Description

Implements `VectorControl` for the null model of vector control (do nothing)

Usage

```r
## S3 method for class 'null'
VectorControl(t, y, pars, MosyBehavior)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment
- `MosyBehavior`: values returned by `MosquitoBehavior`

Value

a named list

xDE_diffeqn

Generalized spatial differential equation model

Description

Compute derivatives for `deSolve::ode` or `deSolve::dede` using generic methods for each model component. The arguments `EIR_delta` and `kappa_delta` are for adding external forcing to the system from unmodeled sources. This can arise if humans can acquire infection by traveling outside the spatial domain, and arises for mosquitoes if traveling outside the spatial domain or are being infected by unmodeled (non-human) sources. By default these are set to `NULL` and are turned off.

Usage

```r
xDE_diffeqn(t, y, pars, EIR_delta = NULL, kappa_delta = NULL)
```

Arguments

- `t`: current simulation time
- `y`: state vector
- `pars`: an environment
- `EIR_delta`: a vector of values to be added to the internal EIR
- `kappa_delta`: a vector of values to be added to the internal kappa
Value

a list containing the vector of all state derivatives

xDE_diffeqn_mosy
Generalized spatial differential equation model (mosquito only)

Description

Mirrors **xDE_diffeqn** but only includes the adult and aquatic mosquito components.

Usage

```
xDE_diffeqn_mosy(t, y, pars, kappa, MosyBehavior)
```

Arguments

- `t` current simulation time
- `y` state vector
- `pars` an environment
- `kappa` a vector
- `MosyBehavior` a list emulating the output of **MosquitoBehavior** for the appropriate adult mosquito model

Value

a list containing the vector of all state derivatives
Index

approx_equal, 3
attr, 43
deSolve::dede, 45
deSolve::ode, 45
diag_inverse, 4
dlDt, 4, 5
dlDt.basic, 5
dlDt.trace, 5
dMYZdt, 6, 6, 7
dMYZdt.RM_dde, 6
dMYZdt.RM.ode, 7
dXdt, 8, 8, 9
dXdt.hMoI, 8
dXdt.SIP, 9
dXdt.SIS, 9

environment, 4–40, 43–46
ExogenousForcing, 10, 10
ExogenousForcing.null, 10

F_alpha, 11, 11, 12
F_alpha.basic, 11
F_alpha.trace, 12
F_beta, 12, 13, 14
F_beta.hMoI, 13
F_beta.SIP, 13
F_beta.SIS, 14
F_beta_lag, 14, 15, 16
F_beta_lag.hMoI, 15
F_beta_lag.SIP, 15
F_beta_lag.SIS, 16
F_eggs, 16, 17
F_eggs.RM, 17
F_EIR, 17, 18, 19
F_EIR.hMoI, 18
F_EIR.SIP, 18
F_EIR.SIS, 19
F_kappa, 19, 20
F_kappa.RM_dde, 20

F_kappa.RM.ode, 20
F_tau, 21, 21
F_tau.RM, 21
F_x, 22, 22, 23
F_x.hMoI, 22
F_x.SIP, 23
F_x.SIS, 23
F_x_lag, 24, 24, 25
F_x_lag.hMoI, 24
F_x_lag.SIP, 25
F_x_lag.SIS, 25
F_Z, 26, 26
F_Z.RM, 26
F_Z_lag, 27, 27
F_Z_lag.RM, 27

function, 37

list, 28–32, 34, 38–40, 43–46
logical, 4

make_index_L, 28, 28, 29
make_index_L.basic, 28
make_index_L.trace, 29
make_index_MYZ, 29, 30
make_index_MYZ.RM, 30
make_index_X, 30, 31, 32
make_index_X.hMoI, 31
make_index_X.SIP, 31
make_index_X.SIS, 32
make_indices, 32
make_Omega, 33

make_parameters_exogenous_null, 33
make_parameters_L_basic, 34
make_parameters_L.trace, 34
make_parameters_MYZ_RM_dde, 35
make_parameters_MYZ.RM.ode, 36
make_parameters_vc_lemenach, 37
make_parameters_vc_null, 37
make_parameters_X.hMoI, 38
make_parameters_X.SIP, 39

47
make_parameters_X_SIS, 39
matrix, 4, 13–16, 33, 38–42
metric_calD, 40, 42
metric_calR, 41
metric_calV, 41, 41
metric_calZ, 42
MosquitoBehavior, 6, 7, 43, 43, 44–46
MosquitoBehavior_RM, 43
NULL, 21
numeric, 4–9, 11, 12, 14, 16–27, 37
VectorControl, 6, 7, 44, 44, 45
VectorControl_lemenach, 44
VectorControl_null, 45
xDE_diffeqn, 45, 46
xDE_diffeqn_mosy, 46