Package ‘exactextractr’

May 10, 2021

Title Fast Extraction from Raster Datasets using Polygons
Version 0.6.1
Description Provides a replacement for the 'extract' function from the 'raster' package that is suitable for extracting raster values using 'sf' polygons.
Depends R (>= 3.4.0)
License Apache License (== 2.0)
SystemRequirements GEOS (>= 3.5.0)
Imports Rcpp (>= 0.12.12), methods, raster, sf (>= 0.9.0),
URL https://isciences.gitlab.io/exactextractr/,
https://github.com/isciences/exactextractr
BugReports https://github.com/isciences/exactextractr/issues
LinkingTo Rcpp
Suggests dplyr, foreign, knitr, rgdal, rmarkdown, testthat,
Encoding UTF-8
RoxygenNote 7.1.1
VignetteBuilder knitr
NeedsCompilation yes
Author Daniel Baston [aut, cre],
ISciences, LLC [cph]
Maintainer Daniel Baston <dbaston@isciences.com>
Repository CRAN
Date/Publication 2021-05-10 14:00:03 UTC

R topics documented:

coverage_fraction ... 2
exact_extract ... 3
exact_resample ... 9

Index 10

1
coverage_fraction

Compute the fraction of raster cells covered by a polygon

Description

Compute the fraction of raster cells covered by a polygon

Usage

```r
## S4 method for signature 'RasterLayer,sf'
coverage_fraction(x, y, crop = FALSE)

## S4 method for signature 'RasterLayer,sfc_MULTIPOLYGON'
coverage_fraction(x, y, crop)

## S4 method for signature 'RasterLayer,sfc_POLYGON'
coverage_fraction(x, y, crop)
```

Arguments

- **x**: a (possibly empty) RasterLayer whose resolution and extent will be used for the generated RasterLayer.
- **y**: a sf object with polygonal geometries
- **crop**: if TRUE, each generated RasterLayer will be cropped to the extent of its associated feature.

Value

a list with a RasterLayer for each feature in y. Values of the raster represent the fraction of each cell in x that is covered by y.

Examples

```r
rast <- raster::raster(matrix(1:100, ncol=10), xmn=0, ymn=0, xmx=10, ymx=10)
poly <- sf::st_as_sfc('POLYGON ((2 2, 7 6, 4 9, 2 2))')

cov_frac <- coverage_fraction(rast, poly)[[1]]
```
exact_extract

Description

Extracts the values of cells in Raster* that are covered by polygons in a simple feature collection (sf or sfc) or SpatialPolygonsDataFrame. Returns either a summary of the extracted values or the extracted values themselves.

Usage

```r
## S4 method for signature 'Raster,sf'
exact_extract(
x, y,
fun = NULL,

## S4 method for signature 'Raster,SpatialPolygonsDataFrame'
exact_extract(x, y,...)

## S4 method for signature 'Raster,SpatialPolygons'
exact_extract(x, y,...)

## S4 method for signature 'Raster,sfc_MULTIPOLYGON'
exact_extract(x, y,
fun = NULL,
```
weights = NULL,
append_cols = NULL,
coverage_area = FALSE,
default_value = NA_real_,
default_weight = NA_real_,
include_area = FALSE,
include_cell = FALSE,
include_cols = NULL,
include_xy = FALSE,
force_df = FALSE,
full_colnames = FALSE,
stack_apply = FALSE,
summarize_df = FALSE,
quantiles = NULL,
progress = TRUE,
max_cells_in_memory = 3e+07
)

S4 method for signature 'Raster,sfc_POLYGON'
exact_extract(
 x,
 y,
 fun = NULL,
 ...
)
weights = NULL,
append_cols = NULL,
coverage_area = FALSE,
default_value = NA_real_,
default_weight = NA_real_,
include_area = FALSE,
include_cell = FALSE,
include_cols = NULL,
include_xy = FALSE,
force_df = FALSE,
full_colnames = FALSE,
stack_apply = FALSE,
summarize_df = FALSE,
quantiles = NULL,
progress = TRUE,
max_cells_in_memory = 3e+07
)

S4 method for signature 'Raster,sfc_GEOMETRY'
exact_extract(
 x,
 y,
 fun = NULL,
 ...
)
```r
weights = NULL,
append_cols = NULL,
coverage_area = FALSE,
default_value = NA_real_,
default_weight = NA_real_,
include_area = FALSE,
include_cell = FALSE,
include_cols = NULL,
include_xy = FALSE,
force_df = FALSE,
full_colnames = FALSE,
stack_apply = FALSE,
summarize_df = FALSE,
quantiles = NULL,
progress = TRUE,
max_cells_in_memory = 3e+07
)

## S4 method for signature 'Raster,sfc_GEOMETRYCOLLECTION'
exact_extract(
  x,
  y,
  fun = NULL,
  ...,
  weights = NULL,
  append_cols = NULL,
  coverage_area = FALSE,
default_value = NA_real_,
default_weight = NA_real_,
include_area = FALSE,
include_cell = FALSE,
include_cols = NULL,
include_xy = FALSE,
force_df = FALSE,
full_colnames = FALSE,
stack_apply = FALSE,
summarize_df = FALSE,
quantiles = NULL,
progress = TRUE,
max_cells_in_memory = 3e+07
)
```

Arguments

- **x**: a `RasterLayer`, `RasterStack`, or `RasterBrick`
- **y**: a `sf`, `sfc`, `SpatialPolygonsDataFrame`, or `SpatialPolygons` object with polygonal geometries
- **fun**: an optional function or character vector, as described below
weights: a weighting raster to be used with the `weighted_mean` and `weighted_sum` summary operations, or a user-defined summary function. When `weights` is set to 'area', the cell areas of `x` will be calculated and used as weights.

append_cols: when `fun` is not `NULL`, an optional character vector of columns from `y` to be included in returned data frame.

coverage_area: if `TRUE`, output pixel coverage_area instead of coverage_fraction

default_value: an optional value to use instead of NA in `x`

default_weight: an optional value to use instead of NA in `weights`

include_area: if `TRUE`, and `fun` is `NULL`, augment the data frame for each feature with a column for the cell area. If the units of the raster CRS are degrees, the area in square meters will be calculated based on a spherical approximation of Earth. Otherwise, a Cartesian area will be calculated (and will be the same for all pixels.) If `TRUE` and `fun` is not `NULL`, add area to the data frame passed to `fun` for each feature.

include_cell: if `TRUE`, and `fun` is `NULL`, augment the data frame for each feature with a column for the cell index (cell). If `TRUE` and `fun` is not `NULL`, add cell to the data frame passed to `fun` for each feature.

include_cols: an optional character vector of column names in `y` to be added to the data frame for each feature that is either returned (when `fun` is `NULL`) or passed to `fun`.

include_xy: if `TRUE`, and `fun` is `NULL`, augment the returned data frame for each feature with columns for cell center coordinates (x and y). If `TRUE` and `fun` is not `NULL`, add x and y to the data frame passed to `fun` for each feature.

force_df: always return a data frame instead of a vector, even if `x` has only one layer and `fun` has length 1

full_colnames: include the names of `x` and `weights` in the names of the data frame for each feature, even if `x` or `weights` has only one layer. This is useful when the results of multiple calls to `exact_extract` are combined with `cbind`.

stack_apply: if `TRUE`, apply `fun` independently to each layer or `x` (and its corresponding layer of `weights`, if provided.) The number of layers in `x` and `weights` must equal each other or 1, in which case the single layer raster will be recycled. If `FALSE`, apply `fun` to all layers of `x` (and `weights`) simultaneously.

summarize_df: pass values, coverage fraction/area, and weights to `fun` as a single data frame instead of separate arguments.

quantiles: quantiles to be computed when `fun` = 'quantile'

progress: if `TRUE`, display a progress bar during processing

max_cells_in_memory: the maximum number of raster cells to load at a given time when using a named summary operation for `fun` (as opposed to a function defined using R code). If a polygon covers more than `max_cells_in_memory` raster cells, it will be processed in multiple chunks.
Details

`exact_extract` extracts the values of cells in a Raster* that are covered by polygons in a simple feature collection (sf or sfc) or SpatialPolygonDataFrame, as well as the fraction or area of each cell that is covered by the polygon. The function can either return these values directly to the caller, or can return the result of a predefined summary operation or user-defined R function applied to the values. These three approaches are described in the subsections below.

Returning extracting values directly:

If `fun` is not specified, `exact_extract` will return a list with one data frame for each feature in the input feature collection. The data frame will contain a column with cell values from each layer in the input Raster* (and optional weighting Raster*) and a column indicating the fraction or area of the cell that is covered by the polygon.

If the input rasters have only one layer, the corresponding columns in the data frame will be named `values` or `weights`. When the input rasters have more than one layer, the columns will be named according to `names(x)` and `names(weights)`. The column containing pixel coverage will be called `coverage_fraction` when `coverage_area = FALSE`, or `coverage_area` when `coverage_area = TRUE`.

If the output data frames are to be combined (e.g., with `rbind`, it may be useful to include identifying column(s) from the input features in the returned data frames using `include_cols`. Additional columns can be added to the returned data frames with the `include_area`, `include_cell`, and `include_xy` arguments.

Predefined summary operations:

Often the individual pixel values are not needed; only one or more summary statistics (e.g., mean, sum) is required for each polygon. Common summary statistics can be calculated by `exact_extract` directly using a predefined summary operation. Where possible, this approach is advantageous because it allows the package to calculate the statistics incrementally, avoiding the need to store all pixel values in memory at the same time. This allows the package to process arbitrarily large data with a small amount of memory. (The `max_pixels_in_memory` argument can be used to fine-tune the amount of memory made available to `exact_extract`.)

To summarize pixel values using a predefined summary option, `fun` should be set to a character vector of one or more operation names. If the input raster has a single layer and a single summary operation is specified, `exact_extract` will return a vector with the result of the summary operation for each feature in the input. If the input raster has multiple layers, or if multiple summary operations are specified, `exact_extract` will return a data frame with a row for each feature and a column for each summary operation / layer combination. (The `force_df` option can be used to always return a data frame instead of a vector.)

The following summary operations are supported:

- `min` - the minimum defined (non-NA) value in any raster cell wholly or partially covered by the polygon
- `max` - the maximum defined (non-NA) value in any raster cell wholly or partially covered by the polygon
- `count` - the sum of fractions of raster cells with defined non-NA values covered by the polygon
- `sum` - the sum of defined (non-NA) raster cell values, multiplied by the fraction of the cell that is covered by the polygon
- `mean` - the mean cell value, weighted by the fraction of each cell that is covered by the polygon
• median - the median cell value, weighted by the fraction of each cell that is covered by the polygon
• quantile - arbitrary quantile(s) of cell values, specified in quantiles, weighted by the fraction of each cell that is covered by the polygon
• mode - the most common cell value, weighted by the fraction of each cell that is covered by the polygon. Where multiple values occupy the same maximum number of weighted cells, the largest value will be returned.
• majority - synonym for mode
• minority - the least common cell value, weighted by the fraction of each cell that is covered by the polygon. Where multiple values occupy the same minimum number of weighted cells, the smallest value will be returned.
• variety - the number of distinct values in cells that are wholly or partially covered by the polygon.
• variance - the population variance of cell values, weighted by the fraction of each cell that is covered by the polygon.
• stdev - the population standard deviation of cell values, weighted by the fraction of each cell that is covered by the polygon.
• coefficient_of_variation - the population coefficient of variation of cell values, weighted by the fraction of each cell that is covered by the polygon.
• weighted_mean - the mean cell value, weighted by the product of the fraction of each cell covered by the polygon and the value of a second weighting raster provided as weights
• weighted_sum - the sum of defined raster cell values, multiplied by the fraction of each cell that is covered by the polygon and the value of a second weighting raster provided as weights

In all of the summary operations, NA values in the the primary raster (x) raster are ignored (i.e., na.rm = TRUE.) If NA values occur in the weighting raster, the result of the weighted operation will be NA. NA values in both x and weights can be replaced on-the-fly using the default_value and default_weight arguments.

User-defined summary functions:
If no predefined summary operation is suitable, a user-defined R function may be provided as fun. The function will be called once for each feature and must return either a single value or a data frame. The results of the function for each feature will be combined and returned by exact_extract.

The simplest way to write a summary function is to set argument summarize_df = TRUE. (For backwards compatibility, this is not the default.) In this mode, the summary function takes the signature function(df, ...) where df is the same data frame that would be returned by exact_extract with fun = NULL.

With summarize_df = FALSE, the function must have the signature function(values, coverage_fractions, ...) when weights are not used, and function(values, coverage_fractions, weights, ...) when weights are used. If the value and weight rasters are RasterLayers, the function arguments will be vectors; if either is a RasterStack, the function arguments will be data frames, with column names taken from the names of the value/weight rasters. Values brought in through the include_xy, include_area, include_cell, and include_cols arguments will be added to the values data frame. For most applications, it is simpler to set summarize_df = TRUE and work with all inputs in a single data frame.
exact_resample

Value

a vector, data frame, or list of data frames, depending on the type of x and the value of fun (see Details)

Examples

```r
rast <- raster::raster(matrix(1:100, ncol=10), xmn=0, ymn=0, xmx=10, ymx=10)
poly <- sf::st_as_sfc('POLYGON ((2 2, 7 6, 4 9, 2 2))')

# named summary operation on RasterLayer, returns vector
exact_extract(rast, poly, 'mean')

# two named summary operations on RasterLayer, returns data frame
exact_extract(rast, poly, c('min', 'max'))

# named summary operation on RasterStack, returns data frame
stk <- raster::stack(list(a=rast, b=sqrt(rast)))
exact_extract(stk, poly, 'mean')

# named weighted summary operation, returns vector
weights <- raster::raster(matrix(runif(100), ncol=10), xmn=0, ymn=0, xmx=10, ymx=10)
exact_extract(rast, poly, 'weighted_mean', weights=weights)

# custom summary function, returns vector
exact_extract(rast, poly, function(value, cov_frac) length(value[cov_frac > 0.9]))
```

exact_resample

Resample a raster to a new grid

Description

Resample a raster to a new grid

Usage

```r
## S4 method for signature 'RasterLayer,RasterLayer'
exact_resample(x, y, fun)
```

Arguments

```r
x      a RasterLayer to be resampled
y      a RasterLayer with a grid definition to which x should be resampled
fun    a named summary operation to be used for the resampling
```

Value

a resampled version of x
Index

coverage_fraction, 2
coverage_fraction, RasterLayer, sf-method
 (coverage_fraction), 2
coverage_fraction, RasterLayer, sfc_MULTIPOLYGON-method
 (coverage_fraction), 2
coverage_fraction, RasterLayer, sfc_POLYGON-method
 (coverage_fraction), 2
exact_extract, 3
exact_extract, Raster, sf-method
 (exact_extract), 3
exact_extract, Raster, sfc_GEOMETRY-method
 (exact_extract), 3
exact_extract, Raster, sfc_GEOMETRYCOLLECTION-method
 (exact_extract), 3
exact_extract, Raster, sfc_MULTIPOLYGON-method
 (exact_extract), 3
exact_extract, Raster, sfc_POLYGON-method
 (exact_extract), 3
exact_extract, Raster, SpatialPolygons-method
 (exact_extract), 3
exact_extract, Raster, SpatialPolygonsDataFrame-method
 (exact_extract), 3
exact_resample, 9
exact_resample, RasterLayer, RasterLayer-method
 (exact_resample), 9