Package ‘expm’

Type Package

Title Matrix Exponential, Log, 'etc'

Version 0.999-4

Date 2019-03-20

Author Vincent Goulet, Christophe Dutang, Martin Maechler, David Firth, Marina Shapira, Michael Stadelmann

Contact expm-developers@lists.R-forge.R-project.org

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>

Description Computation of the matrix exponential, logarithm, sqrt, and related quantities.

Depends Matrix

Imports methods

Suggests RColorBrewer, sfsmisc, Rmpfr

BuildResaveData no

License GPL (>= 2)

URL http://R-Forge.R-project.org/projects/expm/

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-03-21 10:10:02 UTC

R topics documented:

balance .. 2
expAtv .. 3
expm .. 5
expm.Higham08 .. 9
expmCond ... 12
expmFrechet .. 14
logm .. 15
Balance a Square Matrix via LAPACK’s DGEBAL

Description

Balance a square matrix via LAPACK’s DGEBAL. This is an R interface, mainly used for experimentation.

This LAPACK routine is used internally for Eigenvalue decompositions, but also, in Ward(1977)’s algorithm for the matrix exponential.

The name balance() is preferred nowadays, where “dgebal” will probably become deprecated.

Usage

balance(A, job = c("B", "N", "P", "S"))
dgebal(A, job = c("B", "N", "P", "S"))

Arguments

A
 a square \((n \times n)\) numeric matrix.

job
 a one-letter string specifying the 'job' for DGEBAL.
 P Permutation
 S Scaling
 B Both permutation and scaling
 N None

Details

An excerpt of the LAPACK documentation about DGEBAL(), describing the result

i1 ("ILO") (output) integer
i2 ("IHI") (output) integer
 i1 and i2 are set to integers such that on exit \(z[i, j] = 0\) if \(i > j\) and \(j = 1, \ldots, i1 - 1\) or \(i = i2 + 1, \ldots, n\).
 If job = 'N' or 'S', \(i1 = 1\) and \(i2 = n\).

scale (output) numeric vector of length \(n\). Details of the permutations and scaling factors applied to A. If \(P[j]\) is the index of the row and column interchanged with row and column \(j\) and \(D[j]\) is the scaling factor applied to row and column \(j\), then \(scale[j] = P[j]\) for \(j = 1, \ldots, i1 - 1\) = \(D[j]\) for \(j = i1, \ldots, i2,\) = \(P[j]\) for \(j = i2 + 1, \ldots, n\).
 The order in which the interchanges are made is \(n\) to \(i2+1\), then \(1\) to \(i1-1\).

Look at the LAPACK documentation for more details.
Value

A list with components

- `z` the transformation of matrix `A`, after permutation and or scaling.
- `scale` numeric vector of length `n`, containing the permutation and/or scale vectors applied.
- `i1,i2` integers (length 1) in \{1, 2, \ldots, n\}, denoted by `ILO` and `IHI` respectively in the LAPACK documentation. Only relevant for "P" or "B", they describe where permutations and where scaling took place; see the Details section.

Author(s)

Martin Maechler

References

LAPACK Reference Manual

See Also

eigen, expm.

Examples

```r
m4 <- rbind(c(-1,-1, 0, 0),
            c( 0, 0,10,10),
            c( 0, 0,10, 0),
            c( 0,10, 0, 0))
(b4 <- balance(m4))
```

```r
demo(balanceTst) # also defines the balanceTst() function
# which in its tests `\`defines`' what
# the return value means, notably (i1,i2,scale)
```

expAtv

`Compute Matrix Exponential exp(A t) * v` directly

Description

Compute \(\exp(At) * v \) directly, without evaluating \(\exp(A) \).

Usage

```r
expAtv(A, v, t = 1,
       method = "Sidje98",
       rescaleBelow = 1e-6,
       tol = 1e-07, btol = 1e-07, m.max = 30, mxrej = 10,
       verbose = getOption("verbose"))
```
Arguments

- **A**: n x n matrix
- **v**: n - vector
- **t**: number (scalar);
- **method**: a string indicating the method to be used; there's only one currently; we would like to add newer ones.
- **rescaleBelow**: if $\|A, "I"\|$ is smaller than rescaleBelow, rescale A to norm 1 and t such that At remains unchanged. This step is in addition to Sidje's original algorithm and easily seen to be necessary even in simple cases (e.g., $n = 3$).
- **tol, btol**: tolerances; these are tuning constants of the "Sidje1998" method which the user should typically not change.
- **m.max, mxrej**: integer constants you should only change if you know what you’re doing
- **verbose**: flag indicating if the algorithm should be verbose..

Value

- a list with components
 - **eAtv**:fixme...

Author(s)

Ravi Varadhan, Johns Hopkins University; Martin Maechler (cosmetic, generalization to sparse matrices; rescaling (see rescaleBelow)).

References

((NOT yet available!))

See Also

- **expm**

Examples

```r
source(system.file("demo", "exact-fn.R", package = "expm"))
#-- rnilMat() ; xct10
set.seed(1)
(s5 <- Matrix(m5 <- rnilMat(5))); v <- c(1,6:9)
(em5 <- expm(m5))
r5 <- expAtv(m5, v)
r5. <- expAtv(s5, v)
stopifnot(all.equal(r5, r5., tolerance = 1e-14),
```
expm

all.equal(c(em5 %*% v), r5%eAtv))

v <- 10:1
with(xctl0, all.equal(expm(m), expm))
all.equal(c(xctl0%expm %*% v),
expAtv(xctl0%m, v)%eAtv)

expm

Matrix Exponential

Description

This function computes the exponential of a square matrix A, defined as the sum from r = 0 to infinity of A^r / r!. Several methods are provided. The Taylor series and Padé approximation are very importantly combined with scaling and squaring.

Usage

expm(x, method = c("Higham08.b", "Higham08",
 "A1Mohy-Hi09",
 "R_Eigen", "R_Pade", "R_Ward77", "hybrid_Eigen_Ward"),
order = 8, trySym = TRUE, tol = .Machine$double.eps, do.sparseMsg = TRUE,
preconditioning = c("2bal", "1bal", "buggy"))

Arguments

x

a square matrix.

method

"Higham08.b", "Ward77", "Pade" or "Taylor", etc; The default is now "Higham08.b" which uses Higham's 2008 algorithm with additional balancing preconditioning, see expm.Higham08.

The versions with "*O" call the original Fortran code, whereas the first ones call the BLAS-using and partly simplified newer code.

"R_Pade" uses an R-code version of "Pade" for didactical reasons, and "R_Ward77" uses an R version of "Ward77", still based on LAPACK's dgebal, see R interface dgebal. This has enabled us to diagnose and fix the bug in the original octave implementation of "Ward77". "R_Eigen" tries to diagonalise the matrix x, if not possible, "R_Eigen" raises an error. "hybrid_Eigen_Ward" method also tries to diagonalise the matrix x, if not possible, it uses "Ward77" algorithm.

order

an integer, the order of approximation to be used, for the "Pade" and "Taylor" methods. The best value for this depends on machine precision (and slightly on x) but for the current double precision arithmetic, one recommendation (and the Matlab implementations) uses order = 6 unconditionally; our default, 8, is from Ward(1977, p.606)'s recommendation, but also used for "A1Mohy-Hi09" where a high order order=12 may be more appropriate (and slightly more expensive).
trySym logical indicating if method = "R_Eigen" should use \texttt{isSymmetric}(x) and take advantage for (almost) symmetric matrices.
tol a given tolerance used to check if x is computationally singular when method = "hybrid_Eigen_Ward".
do.sparseMsg logical allowing a message about sparse to dense coercion; setting it FALSE suppresses that message.
preconditioning a string specifying which implementation of Ward(1977) should be used when method = "Ward77".

Details

The exponential of a matrix is defined as the infinite Taylor series

\[
e^M = \sum_{k=1}^{\infty} \frac{M^k}{k!}.
\]

For the "Pade" and "Taylor" methods, there is an "accuracy" attribute of the result. It is an upper bound for the L2 norm of the Cauchy error \texttt{expm}(x, *, order + 10) - \texttt{expm}(x, *, order).

Currently, only algorithms which are "\texttt{R-code only}" accept \texttt{sparse} matrices (see the \texttt{sparseMatrix} class in package \texttt{Matrix}), i.e., currently only "R_Eigen" and "Higham08".

Value

The matrix exponential of x.

Note

For a good general discussion of the matrix exponential problem, see Moler and van Loan (2003).

Author(s)

The "Ward77" method:
Vincent Goulet <vincent.goulet@act.ulaval.ca>, and Christophe Dutang, based on code translated by Doug Bates and Martin Maechler from the implementation of the corresponding Octave function contributed by A. Scannedward Hodel <A.S.Hodel@eng.auburn.edu>.

The "PadeR85" method:
Roger B. Sidje, see the EXPOKIT reference.

The "Pade0" and "Taylor0" methods:
Marina Shapira (U Oxford, UK) and David Firth (U Warwick, UK);
The "Pade" and "Taylor" methods are slight modifications of the "*O" ([O]riginal versions) methods, by Martin Maechler, using BLAS and LINPACK where possible.
The "hybrid_Eigen_Ward" method by Christophe Dutang is a C translation of "R_Eigen" method by Martin Maechler.
The "Higham08" and "Higham08.b" (current default) were written by Michael Stadelmann, see \texttt{expm.Higham08}.
The "AllMoly-Hi09" implementation (R code interfacing to stand-alone C) was provided and donated by Drew Schmidt, U. Tennesse.
References

See Also

The package vignette for details on the algorithms and calling the function from external packages.

expm.Higham08 for "Higham08".

expAtv(A, v, t) computes $e^{At}v$ (for scalar t and n-vector v) directly and more efficiently than computing e^{At}.

Examples

```r
x <- matrix(c(-49, -64, 24, 31), 2, 2)
expm(x)
expm(x, method = "AlMohy-Hi09")
## -----------------------------
## Test case 1 from Ward (1977)
## -----------------------------
test1 <- t(matrix(c(
4, 2, 0,
1, 4, 1,
1, 1, 4, 3, 3))
expm(test1, method="Pade")
## Results on Power Mac G3 under Mac OS 10.2.8
## [] [1] 147.8666224637000 183.76513864636857 71.79703239999643
## [2] 127.7810552318250 183.76513864636877 91.88256932318409
## [3] 127.7810552318204 163.6790017318847 111.96810624637124
## -- these agree with ward (1977, p608)

## Compare with the naive "R_Eigen" method:
try(
expm(test1, method="R_Eigen")
) ## platform dependly, sometimes gives an error from solve
## or is accurate or one older result was
## [] [1] 147.8666224637003 88.500223574029647 103.39983337000028
## [2] 127.7810552318220 117.345806155250600 90.70416537273444
## [3] 127.7810552318226 90.38473332156763 117.66579819582827
## -- hopelessly inaccurate in all but the first column.
##
```
expm

Test case 2 from Ward (1977)
```
test2 <- t(matrix(c(29.87942128909879, .7815750847907159, -2.289519314033932, .7815750847907159, 25.72656945571064, 8.680737820540137, -2.289519314033932, 8.680737820540137, 34.39400925519054), 3, 3))
```
```
expm(test2, method="Pade")
```
```
# [1,] 5496313853692357 -18231880972009844 -3047577088580828
# [2,] -18231880972009852 60605228702227024 101291842930256144
# [3,] -3047577088580840 101291842930256144 169294411240859072
```
```
# -- which agrees with Ward (1977) to 13 significant figures
```
```
expm(test2, method="R_Eigen")
```
```
# [1,] 5496313853692405 -18231880972009100 -3047577088580196
# [2,] -18231880972009160 60605228702221760 101291842930249376
# [3,] -3047577088580244 101291842930249200 169294411240850880
```
```
# -- in this case a very similar degree of accuracy
```
```
## Test case 3 from Ward (1977)
```
test3 <- t(matrix(c(-131, 19, 18,
 -390, 56, 54,
 -387, 57, 52), 3, 3))
```
```
expm(test3, method="Pade")
```
```
[1,] -1.5069441587713636 0.36787943910439874 0.13533528117301735
[2,] -5.632579799790271 1.4715177587475725 0.40600584351567010
[3,] -4.9349383260294299 1.10363831731417195 0.5413411267565354
```
```
-- agrees to 10dp with Ward (1977), p608.
```
```
expm(test3, method="R_Eigen")
```
```
[1,] -1.5069441587796308 0.3678794391103086 0.13533528117576202
[2,] -5.632579799902948 1.4715177585023838 0.40600584352641989
[3,] -4.9349383260898410 1.1036383173309319 0.54134112676302582
```
```
-- in this case, a similar level of agreement with Ward (1977).
```
```
Test case 4 from Ward (1977)
```
test4 <-
structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-10,
            1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
            .Dim = c(3, 3))
```
```
expm.Higham08

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0),
.Dim = c(10, 10))
attributes(expm(test4, method="Pade"))
max(abs(expm(test4, method="Pade") - expm(test4, method="R_Eigen")))
##[1] 8.74682669418649e-08
## -- here mexp2 is accurate only to 7 d.p., whereas mexp
## is correct to at least 14 d.p.
##
## Note that these results are achieved with the default
## settings order=8, method="Pade" -- accuracy could
## presumably be improved still further by some tuning
## of these settings.

##
## example of computationally singular matrix
##
## m <- matrix(c(0,1,0,0), 2,2)
try(
  expm(m, m="R_Eigen")
)
## error since m is computationally singular
expm(m, m="hybrid")
## hybrid use the Ward77 method

expm.Higham08  Matrix Exponential [Higham 2008]

Description

Calculation of matrix exponential $e^A$ with the ‘Scaling & Squaring’ method with balancing.

Implementation of Higham’s Algorithm from his book (see references), Chapter 10, Algorithm 10.20.

The balancing option is an extra from Michael Stadelmann’s Masters thesis.

Usage

expm.Higham08(A, balancing = TRUE)

Arguments

A  square matrix, may be a "sparseMatrix", currently only if balancing is false.
balancing  logical indicating if balancing should happen (before and after scaling and squaring).
Details

The algorithm comprises the following steps:

1. Balancing
2. Scaling
3. Padé-Approximation
4. Squaring
5. Reverse Balancing

Value

A matrix of the same dimension as \(A\), the matrix exponential of \(A\).

Author(s)

Michael Stadelmann (final polish by Martin Maechler).

References


See Also

For now, the other algorithms `expm`. This will change there will be one function with optional arguments to chose the method!

`expmCond`, to compute the exponential-condition number.

Examples

```r
The *same* examples as in ../expm.Rd (FIXME) --
x <- matrix(c(-49, -64, 24, 31), 2, 2)
expm.Higham08(x)

Test case 1 from Ward (1977)

test1 <- t(matrix(c(
 4, 2, 0,
 1, 4, 1,
 1, 1, 4), 3, 3))
expm.Higham08(test1)
[,1] [,2] [,3]
[1,] 147.86662244637000 183.76513864636857 71.79703239999643
[2,] 127.78108552318250 183.76513864636877 91.88256932318409
```
expm.Higham08

## [3,] 127.78108552318204 163.67960172318047 111.96810624637124
## -- these agree with ward (1977, p608)

## ------------------------------
## Test case 2 from Ward (1977)
## ------------------------------
test2 <- t(matrix(c(
  29.87942128909879, .7815750847907159, -2.289519314033932,
  .7815750847907159, 25.72656945571664, 8.680737820540137,
  -2.289519314033932, 8.680737820540137, 34.39400925519054),
  3, 3))
expm.Higham08(test2)

expm.Higham08(test2, balancing = FALSE)

## [1] [2] [3]
##[1,] 5496313853692405 -1823188097209100 -30475770808580196
##[2,] -1823188097209100 6005228702221760 101291842930249376
##[3,] -30475770808580244 10129184293024920 169294411240850880
## -- in this case a very similar degree of accuracy.

## ------------------------------
## Test case 3 from Ward (1977)
## ------------------------------
test3 <- t(matrix(c(
  -131, 19, 18,
  -390, 56, 54,
  -387, 57, 52), 3, 3))
expm.Higham08(test3)

expm.Higham08(test3, balancing = FALSE)

## [1] [2] [3]
##[1,] -1.5096441587713636 0.36787943910439874 0.13533528117301735
##[2,] -5.6325707997970271 1.47151775847745725 0.40600584351567010
##[3,] -4.9349383260294299 1.10363831731417195 0.54134112675653534
## -- agrees to 10dp with Ward (1977), p608. ??? (FIXME)

## ------------------------------
## Test case 4 from Ward (1977)
## ------------------------------
test4 <-
  structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),
  Dim = c(10, 10))
E4 <- expm.Higham08(test4)
Matrix(zapsmall(E4))
expmCond

### Description

Compute the exponential condition number of a matrix, either with approximation methods, or exactly and very slowly.

### Usage

```r
expmCond(A, method = c("1.est", "F.est", "exact"),
 expm = TRUE, abstol = 0.1, reltol = 1e-6,
 give.exact = c("both", "1.norm", "F.norm"))
```

### Arguments

- `A` a square matrix
- `method` a string; either compute 1-norm or F-norm *approximations*, or compute these *exactly*.
- `expm` logical indicating if the matrix exponential itself, which is computed anyway, should be returned as well.
- `abstol`, `reltol` for `method = "F.est"`, numerical ≥ 0, as *absolute* and *relative* error tolerance.
- `give.exact` for `method = "exact"`, specify if only the 1-norm, the Frobenius norm, or both are to be computed.

### Details

- `method = "exact"`, aka Kronecker-Sylvester algorithm, computes a Kronecker matrix of dimension $n^2 \times n^2$ and hence, with $O(n^5)$ complexity, is prohibitely slow for non-small $n$. It computes the *exact* exponential-condition numbers for both the Frobenius and/or the 1-norm, depending on `give.exact`.
  
The two other methods compute approximations, to these norms, i.e., *estimate* them, using algorithms from Higham, chapt.-3.4, both with complexity $O(n^3)$.
expmCond

Value

when expm = TRUE, for method = "exact", a list with components

expm

containing the matrix exponential, expm.Higham08(A).

expmCond(F|1)

numeric scalar, (an approximation to) the (matrix exponential) condition number, for either the 1-norm (expmCond1) or the Frobenius-norm (expmCondF).

When expm is false and method one of the approximations ("*est"), the condition number is returned directly (i.e., numeric of length one).

Author(s)

Michael Stadelmann (final polish by Martin Maechler).

References


See Also

expm.Higham08 for the matrix exponential.

Examples

set.seed(101)
(A <- matrix(round(rnorm(3^2)), 1, 3, 3))

eA <- expm.Higham08(A)
stopifnot(all.equal(eA, expm::expm(A), tolerance = 1e-15))

C1 <- expmCond(A, "exact")
C2 <- expmCond(A, "1.est")
C3 <- expmCond(A, "F.est")
all.equal(C1expmCond1, C2expmCond, tolerance = 1e-15)# TRUE
all.equal(C1expmCondF, C3expmCond)# relative difference of 0.001...
Frechet Derivative of the Matrix Exponential

Description

Compute the Frechet (actually ‘Fréchet’) derivative of the matrix exponential operator.

Usage

expmFrechet(A, E, method = c(“SPS”, “blockEnlarge”), expm = TRUE)

Arguments

A square matrix (n × n).
E the “small Error” matrix, used in L(A, E) = f(A + E, A)
method string specifying the method / algorithm; the default ”SPS” is “Scaling + Padé + Squaring” as in the algorithm 6.4 below; otherwise see the ‘Details’ section.
expm logical indicating if the matrix exponential itself, which is computed anyway, should be returned as well.

Details

Calculation of eA and the Exponential Frechet-Derivative L(A, E).
When method = ”SPS” (by default), the with the Scaling - Padé - Squaring Method is used, in an R-Implementation of Al-Mohy and Higham (2009)’s Algorithm 6.4.

Step 1: Scaling (of A and E)
Step 2: Padé-Approximation of eA and L(A, E)
Step 3: Squaring (reversing step 1)
method = ”blockEnlarge” uses the matrix identity of

f([AE; 0A]) = [f(A)Df(A); 0f(A)]

for the 2n × 2n block matrices where f(A) := expm(A) and Df(A) := L(A, E). Note that “blockEnlarge” is much simpler to implement but slower (CPU time is doubled for n = 100).

Value

a list with components

expm if expm is true, the matrix exponential (n × n matrix).
Lexpm the Exponential-Frechet-Derivative L(A, E), a matrix of the same dimension.

Author(s)

Michael Stadelmann (final polish by Martin Maechler).
logm

Matrix Logarithm

Description

This function computes the (principal) matrix logarithm of a square matrix. A logarithm of a matrix $A$ is $L$ such that $A = e^L$ (meaning $A = \expm(L)$), see the documentation for the matrix exponential, \expm, which can be defined as

$$e^L := \sum_{r=0}^{\infty} L^r / r!.$$ 

Usage

\logm(x, method = c("Higham08", "Eigen"),

  tol = .Machine$double.eps)

Arguments

x
a square matrix.

method
a string specifying the algorithmic method to be used. The default uses the algorithm by Higham(2008). The simple "Eigen" method tries to diagonalise the matrix x; if that is not possible, it raises an error.

tol
a given tolerance used to check if x is computationally singular when method = "Eigen".

References

see \expmCond.

See Also

expm.\texttt{Higham08} for the matrix exponential. \expmCond for exponential condition number computations which are based on \expmFrechet.

Examples

(A <- cbind(1, 2:3, 5:8, c(9,1,5,3)))
E <- matrix(1e-3, 4,4)
(L.AE <- \expmFrechet(A, E))
all.equal(L.AE, \expmFrechet(A, E, "block"), tolerance = 1e-14) ## TRUE
Details

The exponential of a matrix is defined as the infinite Taylor series
\[ e^M = \sum_{k=1}^{\infty} \frac{M^k}{k!}. \]

The matrix logarithm of \( A \) is a matrix \( M \) such that \( \exp(M) = A \). Note that there typically are an infinite number of such matrices, and we compute the principal matrix logarithm, see the references.

Method "Higham08" works via "inverse scaling and squaring", and from the Schur decomposition, applying a matrix square root root computation. It is somewhat slow but also works for non-diagonalizable matrices.

Value

A matrix ‘as x’ with the matrix logarithm of \( x \), i.e., all.equal( expm(logm(x)), x, tol) is typically true for quite small tolerance \( \text{tol} \).

Author(s)

Method "Higham08" was implemented by Michael Stadelmann as part of his master thesis in mathematics, at ETH Zurich; the "Eigen" method by Christophe Dutang.

References


See Also

expm

Examples

```r
m <- diag(2)
logm(m)
expm(logm(m))
```

Here, logm() is barely defined, and Higham08 has needed an amendment in order for not to loop forever:
```r
D0 <- diag(x=c(1, 0.))
(L. <- logm(D0))
stopifnot(all.equal(D0, expm(L.)))
```

A matrix for which clearly no logm(.) exists:
```r
(m <- cbind(1:2, 1))
(l.m <- try(logm(m)))
```

```
all NA or even error {on Solaris}
```
## matpow

### Matrix Power

#### Description

Compute the $k$-th power of a matrix. Whereas $x^k$ computes element wise powers, $x^{\%\%} k$ corresponds to $k - 1$ matrix multiplications, $x^{\%\%} x^{\%\%} \ldots x^{\%\%} x$.

#### Usage

$x^{\%\%} k$

#### Arguments

- **x**: a square matrix.
- **k**: an integer, $k \geq 0$.

#### Details

Argument $k$ is coerced to integer using `as.integer`. The algorithm uses $O(\log_2(k))$ matrix multiplications.

#### Value

A matrix of the same dimension as $x$.

#### Note

If you think you need $x^k$ for $k < 0$, then consider instead `solve(x^{\%\%} (-k))`.

#### Author(s)

Based on an R-help posting of Vicente Canto Casasola, and Vincent Goulet’s C implementation in `actuar`.

#### See Also

`%\%` for matrix multiplication.

#### Examples

```r
A <- cbind(1, 2 * diag(3)[,-1])
A
A^{\%\%} 2
stopifnot(identical(A, A^{\%\%} 1),
 A^{\%\%} 2 == A^{\%\%} A)
```
**Stig's "infamous" Example Matrix**

**Description**

Stig Mortensen wrote on Oct 22, 2007 to the authors of the *Matrix* package with subject “Strange result from expm”. There, he presented the following $8 \times 8$ matrix for which the Matrix `expm()` gave a “strange” result. As we later researched, the result indeed was wrong: the correct entries were wrongly permuted. The reason has been in the underlying source code in Octave from which it had been ported to *Matrix*.

**Usage**

data(matStig)

**Author(s)**

Martin Maechler

**Examples**

data(matStig)

as(matStig, "sparseMatrix") # since that prints more nicely.

## For more compact printing:
op <- options(digits = 4)

E1 <- expm(matStig, "Ward77", preconditioning=" buggy") # the wrong result
as(E1, "sparseMatrix")
str(E2 <- expm(matStig, "Pade")) # the correct one (has "accuracy" attribute)
as(E2, "sparseMatrix")
attr(E2,"accuracy") <- NULL # don't want it below
E3 <- expm(matStig, "R_Eigen") # even that is fine here
all.equal(E1,E2) # not at all equal (rel.difference >= 1.)
stopifnot(all.equal(E3,E2)) # ==

### The "proof" that "Ward77" is wrong

M <- matStig
Et1 <- expm(t(M), "Ward77", precond = " buggy")
Et2 <- expm(t(M), "Pade"); attr(Et2,"accuracy") <- NULL
all.equal(Et1, t(Et1)) # completely different (rel.diff ~ 1.7 (platform dep.))
stopifnot(all.equal(Et2, t(Et2))) # the same (up to tolerance)

options(op)
**Description**

This function computes the matrix square root of a square matrix. The sqrt of a matrix \( A \) is \( S \) such that \( A = SS \).

**Usage**

\[
sqrtm(x)
\]

**Arguments**

- \( x \) a square matrix.

**Details**

The matrix square root \( S \) of \( M \), \( S = sqrtm(M) \) is defined as one (the “principal”) \( S \) such that \( SS = S^2 = M \), (in \( \mathbb{R} \), all.equal( \( S \ %% \ S \ , \ M \ )). 

The method works from the Schur decomposition.

**Value**

A matrix ‘as \( x \)’ with the matrix sqrt of \( x \).

**Author(s)**

Michael Stadelmann wrote the first version.

**References**


**See Also**

expm, logm

**Examples**

\[
m <- diag(2)
sqrtm(m) == m # TRUE
\]

\[
(m <- rbind(cbind(1, diag(1:3)),2))
sm <- sqrtm(m)
sm
zapsmall(sm %% sm) # Zap entries == 2e-16
stopifnot(all.equal(m, sm %% sm))
\]
Index

+Topic algebra
  expAtv, 3
  expm, 5
  expm.Higham08, 9
  expmCond, 12
  expmFrechet, 14
  logm, 15
  sqrtm, 19
+Topic arith
  balance, 2
  matpow, 17
+Topic array
  balance, 2
  matpow, 17
  matStig, 18
+Topic datasets
  matStig, 18
+Topic math
  expAtv, 3
  expm, 5
  expm.Higham08, 9
  expmCond, 12
  expmFrechet, 14
  logm, 15
  sqrtm, 19
  E⋅E, 17
  E(E), 17
  as.integer, 17
  balance, 2
  dgebal, 5
dgebal (balance), 2
eigen, 3
  expAtv, 3, 7
  expm, 3, 4, 5, 10, 15, 16, 19
  expm.Higham08, 5–7, 9, 13, 15
  expmCond, 10, 12, 15
  expmFrechet, 14
  expmv(expAtv), 3
  isSymmetric, 6
  list, 13
  logm, 15, 19
  matpow, 17
  matrix, 17
  matStig, 18
  mexp(expm), 5
  norm, 4
  numeric, 13
  sparseMatrix, 6, 9
  sqrtm, 19