Using \texttt{expm} in packages

Christophe Dutang
ENSIMAG, Grenoble INP

Vincent Goulet
École d’actuariat, Université Laval

Jan. 2008 (added note in June 2010)

1 Introduction

The \texttt{expm} package provides an \texttt{R} function \texttt{expm} to compute the matrix exponential of a real, square matrix. The matrix exponential of a matrix A is defined as

$$e^A = I + A + \frac{A^2}{2!} + \ldots = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

The actual computations are done in \texttt{C} by a function of the same name that is callable by other packages. Therefore, package authors can use these functions and avoid duplication of efforts.

2 Description of the functions

The \texttt{R} function \texttt{expm} takes as argument a real, square matrix and returns its exponential. Dimension names are preserved:

```r
> library(expm)
> m <- matrix(c(4, 1, 1, 2, 4, 1, 0, 1, 4), 3, 3)
> expm(m)

[,1] [,2] [,3]
[1,] 147.8666 183.7651  71.79703
[2,] 127.7811 183.7651  91.88257
[3,] 127.7811 163.6796 111.96811

> dimnames(m) <- list(letters[1:3], LETTERS[1:3])
> m
```
Note that the remainder of this text mainly relates to `expm(. , method = "Ward77"), i.e., the method of Ward (1977) which is no longer the default method, as e.g., `method = "Higham08" has found to be ("uniformly") superior, see Higham (2008).

The actual computational work is done in C by a routine defined as

```c
void expm(double *x, int n, double *z)
```

where `x` is the vector underlying the R matrix and `n` is the number of lines (or columns) of the matrix. The matrix exponential is returned in `z`. The routine uses the algorithm of Ward (1977) based on diagonal Padé table approximations in conjunction with three step preconditioning. The Padé approximation to e^A is

$$e^A \approx R(A),$$

with

$$R_{pq}(A) = (D_{pq}(A))^{-1}N_{pq}(A)$$

where

$$D_{pq}(A) = \sum_{j=1}^{p} \frac{(p+q-j)!p!}{(p+q)!j!(p-j)!} A^j$$

and

$$N_{pq}(A) = \sum_{j=1}^{q} \frac{(p+q-j)!q!}{(p+q)!j!(q-j)!} A^j.$$

See Moler and Van Loan (1978) for an exhaustive treatment of the subject.

The C routine is based on a translation made by ? of the implementation of the corresponding Octave function (Eaton, 2002).
3 Calling the functions from other packages

Package authors can use facilities from `expm` in two (possibly simultaneous) ways:

1. call the R level function `expm` in R code;
2. if matrix exponential calculations are needed in C, call the routine `expm`.

Using R level function `expm` in a package simply requires the following two import directives:

 Imports: expm
 in file DESCRIPTION and
 import(expm)
 in file NAMESPACE.

Accessing the C level routine further requires to prototype `expm` and to retrieve its pointer in the package initialization function `R_init_pkg`, where `pkg` is the name of the package:

```c
void (*expm)(double *x, int n, double *z);

void R_init_pkg(DllInfo *dll)
{
    expm = (void (*)(double, int, double))
     R_GetCCallable("expm", "expm");
}
```

The definitive reference for these matters remains the Writing R Extensions manual.

References

