Package ‘expstudy’

December 8, 2022

Title Experience Study Tools for Analytics and Communications

Version 1.0.3

Description Provides a data class of 'tbl_es' to help aid in the formation and analyses of recurrent or novel experience studies. A 'tbl_es' has attributes which identify the key variables used for calculating metrics under an actuarial perspective. Common metrics (such as actual-to-expected analysis) can be quickly generated in aggregate or according to different qualitative factors. If multiple factors are of interest, grouped metrics can be automatically computed for each factor individually as well as for all possible combinations. All resulting output can then be formatted for presentations or left unformatted for subsequent analyses. Ultimately, this package aims to reduce time spent completing repetitive code therefore increasing time for analysis and insight.

License MIT + file LICENSE

Imports assertthat (>= 0.2.1), checkmate, data.table (>= 1.14.2), dplyr (>= 1.0.7), dtplyr (>= 1.2.0), glue (>= 1.6.0), lifecycle (>= 1.0.1), magrittr (>= 2.0.1), methods, pillar (>= 1.6.4), purrr (>= 0.3.4), rlang (>= 0.4.11), stringr (>= 1.4.0), tibble (>= 3.1.6), tidyr (>= 1.1.4), tidyselect (>= 1.1.1), utils

Suggests covr (>= 3.5.1), roxygen2 (>= 7.1.2), testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.2

Depends R (>= 2.10)

LazyData true

NeedsCompilation no

Author Cody Buehler [aut, cre]
add_credibility

Maintainer Cody Buehler <cb12991@me.com>

Repository CRAN

Date/Publication 2022-12-08 19:20:02 UTC

R topics documented:

- add_credibility 2
- add_metrics 3
- add_proportions 4
- aggregate 6
- compile_results 7
- expstudy 8
- format_metrics 9
- is_expstudy 10
- mortexp 11
- tbl_es-class 12

Description

Add credibility factors for an expstudy's expecteds metric variable. The credibility calculation uses a classical credibility approach also known as limited fluctuation partial credibility. Under this approach, the credibility factor is calculated so that actuals are within $k \lambda$ of expecteds with probability p.

Credibility range parameter k and probability level p are set using the function arguments `.cred_k` and `.cred_p`, respectively.

Usage

```r
add_credibility(
  expstudy,
  .cred_k = 0.05,
  .cred_p = 0.95,
  .cred_nms = "CREDIBILITY"
)
```

Arguments

- `expstudy` an expstudy
- `cred_k` number within range (0, 1); range parameter of credibility equation
- `cred_p` number within range (0, 1); probability parameter of credibility equation
- `cred_nms` character vector of column names for the added credibility column. If more than one credibility column will be created, you can distinguish them here.
add_metrics

Value
An expstudy with added credibility factors.

Examples
```r
es <- expstudy(
  data = mortexp,
  actuals = ACTUAL_DEATHS,
  expecteds = EXPECTED_DEATHS,
  exposures = EXPOSURE,
  variances = VARIANCE_DEATHS
)

es %>%
  aggregate(ATAINED_AGE) %>%
  add_credibility

es %>%
  aggregate(
    UNDERWRITING_CLASS,
    GENDER,
    SMOKING_STATUS
  ) %>%
  add_credibility
```

add_metrics

Add Metrics

Description
Add commonly used metrics to an expstudy(). This typically would be after grouping by variables of interest, but doesn't have to be. The following metrics are available by default and use the expstudy's metric variables (actuals, expecteds, and exposures).

- `act2expec`: actuals to expecteds (i.e., A/E ratios)
- `act2expos`: actuals to exposures (i.e., average actually observed)
- `expec2expos`: expecteds to exposures (i.e., average expected)

You can also create custom metrics to add by providing (optionally named) metric formulae.

Usage
```r
add_metrics(
  expstudy,
  ...
).metrics = c("act2expec", "act2expos", "expec2expos"),
.metric_nms = list(act2expec = "ACTUAL_TOEXPECTED", act2expos = "ACTUAL_TOEXPOSED",
            expec2expos = "EXPECTED_TOEXPOSED")
)```
Arguments

expstudy an expstudy()
... additional metrics to add. Can be name-value pairs or simply the metric’s formula.
.metrics default methods to add; if omitted, all metrics listed will be added
.metric_nms pairlist of .metric names; can be character vector for expstudy object with multiple columns per .metrics argument

Value

An expstudy object with added metrics. See expstudy() for additional detail on expstudy objects.

Examples

es <- expstudy(
data = mortexp,
actuals = ACTUAL_DEATHS,
expecteds = EXPECTED_DEATHS,
exposures = EXPOSURE,
variances = VARIANCE_DEATHS
)

# If no arguments are provided, all default metrics will be generated. This
# mostly makes sense for already aggregated expstudy objects, but can be
# used with unaggregated objects as well.
es %>%
  aggregate(ATAINED_AGE) %>%
  add_metrics

es %>%
  aggregate(
    UNDERWRITING_CLASS,
    GENDER,
    SMOKING_STATUS
  ) %>%
  add_metrics

---

add_proportions Add Proportions

Description

Add proportions of expstudy metric variables. Other variables can be provided via the <dynamic-dots> argument. Proportions will sum to 100% per group if .base_grp_nms are provided. If .base_grp_nms are omitted, proportions will sum to 100% in total.
add_proportions

Usage

add_proportions(expstudy, ..., .base_grp_nms = character(0), .min_ungrpd = 0L)

Arguments

expstudy an expstudy()
...
other columns other than the expstudy metric variables (actuals, expecteds, and exposures) to generate proportions of
.base_grp_nms character vector of column names to use as the base of added proportions
.min_ungrpd minimum number of non-grouping columns required before using .base_grp_nms as proportion base

Value

An expstudy with added proportions.

Examples

es <- expstudy(
data = mortexp,
actuals = ACTUAL_DEATHS,
expecteds = EXPECTED_DEATHS,
exposures = EXPOSURE,
variances = VARIANCE_DEATHS
)

# If no arguments are provided, proportions will be generated for expstudy
# metric variables only. This mostly makes sense for already aggregated
# expstudy objects, but can be used with unaggregated objects as well.
es %>%
aggregate(
  ATTAINED_AGE
)
%>%
add_proportions

# For grouped proportions, use `.base_grp_nms` to identify which variable
# to use as the base for proportions.
es %>%
aggregate(
  GENDER,
  SMOKING_STATUS
)
%>%
add_proportions(
  .base_grp_nms = 'GENDER'
)

# `.min_ungrpd` is useful only when generating multiple combinations of
# results with compile_results(); this prevents proportions all equaling
# 100% when all grouping columns are used.
aggregate

Aggregate an expstudy

Description

Often an expstudy needs to be aggregated according to different variables for analysis. This function provides easy aggregation of the expstudy metric variables exposures, expected, and actuals.

Grouping can be performed by passing variables as unnamed arguments. If no groups are specified, the grand total of the expstudy metric variables will be returned.

By default, only the metric variables are summed and returned. Other variables can also be totaled by using the .oth_sum_vars to specify.

Usage

```r
aggregate(expstudy, ..., .oth_sum_vars = NULL)
```

Arguments

- `expstudy`: an `expstudy()`
- `...`: variables to use as groups
- `.oth_sum_vars`: additional variable to total. Multiple variables can be provided using `c()`.

Value

- an aggregated expstudy.

Examples

```r
es <- expstudy(
 data = mortexp,
 actuals = ACTUAL_DEATHS,
 expecteds = EXPECTED_DEATHS,
 exposures = EXPOSURE,
 variances = VARIANCE_DEATHS
)

es %>%
 aggregate(ATAINED_AGE)

es %>%
 aggregate(
 GENDER,
 UNDERWRITING_CLASS,
 SMOKING_STATUS
)
```
Description

For a streamlined approach, this function combines multiple other expstudy-package functions to generate multiple analyses simultaneously. All grouping combinations will be generated from variables passed as `<dynamic-dots>`, then analytics will be created for each.

Resulting output can have the typical metrics via `add_metrics()`, or proportions via `add_proportions()`. Default parameters are used for each function, however, you can pass additional parameters in a list to the corresponding function element via the `output_args` argument.

Furthermore, you can choose to have the results return unformatted (for further calculations or analysis) or formatted (for presentation purposes).

This function was meant to provide quick results for routine analysis. Any additional in-depth analyses should make use of individual expstudy functions instead.

Usage

```
compile_results(
 expstudy, ...
 output = c("metrics", "proportions"),
 output_args = list(metrics = NULL, proportions = NULL),
 output_format = c("unformatted", "formatted")
)
```

Arguments

- **expstudy**: an expstudy()
- **...**: variables to generate grouped analyses. All combinations of variables provided will be generated and used as groups in results.
- **output**: type of result to output (i.e., with metrics or proportions). If omitted, both will be generated and returned in a list.
- **output_args**: additional arguments to pass to `add_metrics()` and `add_proportions()`. If omitted, default parameters will be used for both functions.
- **output_format**: resulting output format. If omitted, both will be generated and returned as a list.

Value

a (potentially nested) list with resulting analysis according to arguments passed to the function.

See Also

`aggregate()` `add_metrics()` `add_credibility()` `add_proportions()` `format_metrics()`
Examples

```r
es <- expstudy(
 data = mortexp,
 actuals = ACTUAL_DEATHS,
 expecteds = EXPECTED_DEATHS,
 exposures = EXPOSURE,
 variances = VARIANCE_DEATHS
)

Quickly generate multiple analyses by simply declaring variables of
interest within an experience study.
es %>%
 compile_results(
 GENDER,
 SMOKING_STATUS,
 UNDERWRITING_CLASS
)
```

expstudy

Create an expstudy object

Description

expstudy() creates a subclass, tbl_es, of a dplyr::lazy_dt(), that stores attributes relating to an experience study. These attributes provide other package functions arguments which reduce time needed to review an assumption.

Usage

```
expstudy(data, actuals, expecteds, exposures, variances = NULL, keys = NULL)
```

Arguments

data the dataset of an experience study. Can be any kind of organized data (e.g.,
  base::data.frame(), tibble::tibble(), etc.) but must be able to be con-
  verted to a data.table::data.table().
actuall the observed variable (or variables) within the experience study (e.g., actual
  lapse counts for a lapse study).
expecteds the expected variable (or variables) within the experience study (e.g., actual
  deaths for a mortality study).
exposures the exposure variable (or variables) within the experience study. This will be the
  time the records spans in years (or within (0, 1) for records covering less than a
  year).
variances the variance variable (or variables) within the experience study. This may not
  be available for all studies, thus can be omitted. Variance is used for credibility
  calculations.
keys variables that uniquely describe every record within the experience study. This typically is policy number and a measure of time, such as annual or monthly duration. Can be omitted, but providing enables quicker binary searches within the `dplyr::lazy_dt()`. For more information, refer to the `data.table` vignette: vignette('datatable-keys-fast-subset', package = 'data.table').

Value

an `expstudy`

Examples

```r
expstudy(
 data = mortexp,
 actuals = ACTUAL_DEATHS,
 expecteds = EXPECTED_DEATHS,
 exposures = EXPOSURE,
 variances = VARIANCE_DEATHS
)
```

---

format_metrics  |  Format expstudy metrics

**Description**

Easily format metrics and metric variables for better readability.

**Usage**

`format_metrics(expstudy)`

**Arguments**

`expstudy` an `expstudy` object

**Value**

the same `expstudy` with formatted metrics

**Examples**

```r
es <- expstudy(
 data = mortexp,
 actuals = ACTUAL_DEATHS,
 expecteds = EXPECTED_DEATHS,
 exposures = EXPOSURE,
 variances = VARIANCE_DEATHS
)
```
is_expstudy

Test if the object is an expstudy

Description
This function returns TRUE for expstudies or subclasses thereof, and FALSE for all other objects.

Usage

is_expstudy(x)

Arguments

x An object

Value
TRUE if the object inherits from the tbl_es class.
Sample mortality experience

Description
A dataset containing an example of a mortality experience study for 1000 fictional whole life insurance policyholders.

Usage
mortexp

Format
A tibble with over 175,000 rows and 18 variables:

AS_OF_DATE  This indicates which point in time a record encompasses.
POLICY_HOLDER  An index used to distinguish policyholders. In this example the policyholder is also the (only) insured.
GENDER, SMOKING_STATUS, UNDERWRITING_CLASS, INSURED_DOB, ISSUE_DATE, ISSUE_AGE Various characteristics of insured at time of issue.
ATTAINED_AGE  The age of the insured at the record’s AS_OF_DATE.
DURATION_MONTH, DURATION_YEAR An index describing how long a policy has been in-force at the AS_OF_DATE. For example, when a policy is first issued (i.e., \( t = 0 \)), it is in duration year one, duration month one (i.e., from \( t = 0 \) months to \( t = 1 \) months).
POLICY_STATUS  The current status of the policy, either in-force, surrendered, or death. The value will be listed for each policy record even though a decrement only occurs at the end of the policy’s duration (for policies which are no longer in-force).
TERMINATION_DATE  If terminated, the effective date of termination. An NA value will be listed for policies that are still in-force.
EXPOSURE  A measure that reflects how many persons or contracts were exposed to the possibility or risk of the event under study, and for how long. This is calculated by dividing the number of days exposed by the number of days in the calendar year.
ACTUAL_DEATHS  The number of actual deaths reported. This will only be 0 or 1 for any given record and it’s main purpose is for aggregation.
EXPECTED_MORTALITY_RT  An expected mortality rate for an insured. The rate is calculated according to De Moivre’s Law (also known as uniform distribution of deaths, or UDD) with \( \omega = 120 \).
EXPECTED_DEATHS  The number of deaths expected for a given record. This is calculated by multiplying exposure by the expected mortality rate, and it provides insight on the expected mortality rate’s performance upon aggregation.
VARIANCE_DEATHS  The variance of the number of expected deaths, used primarily for assessing the credibility of a subsample’s analyses.
Source

All policy record detail is randomly generated. See [https://www.soa.org/globalassets/assets/Files/Research/2016-10-experience-study-calculations.pdf](https://www.soa.org/globalassets/assets/Files/Research/2016-10-experience-study-calculations.pdf) for additional information regarding experience study calculations.

---

### Description

The `tbl_es` class is a subclass of `dplyr::lazy_dt()` created in order to store attributes for experience studies. The colloquial term 'expstudy' refers to a `lazy_dt()` that has the `tbl_es` subclass.

#### Properties of `tbl_es`

- Attributes that store variable names used for key metric calculations:
  - `actuals`: the observed variable (or variables) within the experience study (e.g., actual lapse counts for a lapse study).
  - `expecteds`: the expected variable (or variables) within the experience study (e.g., expected number of deaths for a mortality study).
  - `exposures`: the exposure variable (or variables) within the experience study. This will be the time the records spans in years (or within (0, 1) for records covering less than a year).
  - `variances`: optional, the variance variable (or variables) within the experience study. This may not be available for all studies, thus can be omitted. Variance is used for the credibility metric.

- An additional (optional) `keys` attribute that can uniquely describe every record within the experience study. This typically is policy number and a measure of time, such as annual or monthly duration. Can be omitted, but providing enables quicker binary searches within the `dplyr::lazy_dt()`. For more information, refer to the `data.table` vignette: `vignette('datatable-keys-fast-subset', package = 'data.table')`.

#### Behavior of `tbl_es`

A `tbl_es` behaves the same as a `dplyr::lazy_dt()` only differing by retaining the attributes listed above. This saves time in routine, repetitive coding, leading to increased time for analysis.

#### See Also

- `dplyr::lazy_dt`
Index

* datasets
  - mortexp, 11

add_credibility, 2
add_credibility(), 7
add_metrics, 3
add_metrics(), 7
add_proportions, 4
add_proportions(), 7
aggregate, 6
aggregate(), 7

base::data.frame(), 8
c(), 6
compile_results, 7
data.table, 9, 12
data.table::data.table(), 8
dplyr::lazy_dt, 12
dplyr::lazy_dt(), 8, 9, 12

expstudy, 2, 8
expstudy(), 3–7
expstudy-package, 7

format_metrics, 9
format_metrics(), 7

is_expstudy, 10

lazy_dt(), 12

mortexp, 11

tbl_es, 8
tbl_es (tbl_es-class), 12
tbl_es-class, 12
tibble, 11
tibble::tibble(), 8