Package ‘extremevalues’

October 13, 2022

Description Detect outliers in one-dimensional data.

Version 2.3.3

Title Univariate Outlier Detection

Author Mark van der Loo <mark.vanderloo@gmail.com>

Maintainer Mark van der Loo <mark.vanderloo@gmail.com>

Depends R (>= 2.8.0)

Imports gWidgets2, gWidgets2tcltk, utils, stats, graphics

License GPL-2

URL https://www.github.com/markvanderloo/extremevalues

Repository CRAN

NeedsCompilation no

Date/Publication 2020-05-18 14:30:02 UTC

R topics documented:

 evGui ... 2
 extremevalues .. 3
 getOutliers ... 3
 invErf ... 5
 outlierPlot ... 6
 pareto ... 7

Index 9
evGui

GUI to explore options and results of the "extremevalues" package

Description

Opens a Graphical User Interface and plots results. Options of the extremevalue package functions can be set and results are updated instantly. Includes a code generator button.

Usage

```
evGui(y)
```

Arguments

- `y` A vector of type numeric

Note

The GUI is programmed in a very quick and pretty dirty way, but it works fine. It will be replaced by a gtk-version in the future.

Author(s)

Mark van der Loo

References

www.markvanderloo.eu

See Also

getOutliers

Examples

```
## Not run:
y <- rnorm(100)
evGui(y)

## End(Not run)
```
An R package for outlier detection

Description

This package offers outlier detection and plot functions for univariate data.

The package is the implementation of the outlier detection methods introduced in the reference below. Briefly, the methods work as follows. Using a subset of the data, the parameters for a model distribution are estimated using regression of the sorted data on their QQ-plot positions.

A value in the data is an outlier when it is unlikely to be drawn from the estimated distribution. There are two methods to determine the "unlikelyness". The first, called "Method I", determines the value above which less than ρ observations are expected, given the total number of observations in the data. Here ρ is a parameter which should have a value of 1 or less. The second notion of unlikelyness uses the fit residuals. Extremely large or small values are outliers when their residuals are above or below a confidence limit α, to be determined by the user.

References

See Also

getOutliers, outlierPlot

getOutliers

Detect outliers

Description

getOutliers is a wrapper function for getOutliersI and getOutliersII.

Usage

getOutliers(y, method="I", ...)
getOutliersI(y, rho=c(1,1), FLim=c(0.1,0.9), distribution="normal")
getOutliersII(y, alpha=c(0.05, 0.05), FLim=c(0.1, 0.9),
 distribution="normal", returnResiduals=TRUE)
Arguments

y
Vector of one-dimensional nonnegative data

method
"I" or "II"

...
Optional arguments to be passed to getOutliersI or getOutliersII

distribution
Model distribution used to estimate the limit. Choose from "lognormal", "exponential", "pareto", "weibull" or "normal" (default).

FLim
c(Fmin,Fmax) quantile limits indicating which data should be used to fit the model distribution. Must obey 0 < Fmin < Fmax < 1.

rho
(Method I) A value y_i is an outlier if it is below (above) the limit where less then rho[2] (rho[1]) observations are expected. Must be >0.

alpha
(Method II) A value y_i is an outlier if it has a residual below (above) the alpha[1] (alpha[2]) confidence limit for the residues. Must be between 0 and 1.

returnResiduals
(Method II) Whether or not to return a vector of residuals from the fit

Details

Both methods use the subset of y-values between the Fmin and Fmax quantiles to fit a model cumulative density distribution. **Method I** detects outliers by checking which are below (above) the limit where according to the model distribution less then rho[1] (rho[2]) observations are expected (given length(y) observations). **Method II** detects outliers by finding the observations (not used in the fit) who’s fit residuals are below (above) the estimated confidence limit alpha[1] (alpha[2]) while all lower (higher) observations are outliers too.

Value

nOut
Number of left and right outliers.

iLeft
Index vector indicating left outliers in y

iRight
Index vector indicating right outliers in y

limit
For **Method I**: y-values below (above) limit[1] (limit[2]) are outliers. For **Method II**: elements with residuals below (above) limit[1] (limit[2]) are outliers if all smaller (larger) elements are outliers as well.

method
The used method: "method I" or "method II"

distribution
The used model distribution

Fmin
FLim[1]

Fmax
FLim[2]

yMin
Smallest y-value used in fit

yMax
Largest y-value used in fit

Nfit
Number of values used in the fit

rho
Method I, the input rho-values for left and right outliers

alphaConf
Method II, the input confidence levels for left and right outliers
R-squared value for the fit. Note that this is the *ordinary least squares* value, defined by $R^2 = 1 - \frac{SS_{err}}{SS_y}$. Where SS_{err} is the squared sum of residuals. For the lognormal, Pareto and Weibull models, the y-variable is transformed before fitting. Since predicted values are transformed back before calculating SS_{err}, this R^2 can be negative.

lambda (exponential distribution) Estimated location (and spread) parameter for $f(y) = \lambda \exp(-\lambda y)$

mu (lognormal distribution) Estimated $E(\ln(y))$ for lognormal distribution

sigma (lognormal distribution) Estimated $Var(\ln(y))$ for lognormal distribution

ym (pareto distribution) Estimated location parameter (mode) for pareto distribution

alpha (pareto distribution) Estimated spread parameter for pareto distribution

k (weibull distribution) Estimated shape parameter k for weibull distribution

lambda (weibull distribution) Estimated scale parameter λ for weibull distribution

mu (normal distribution) Estimated $E(y)$ for normal distribution

sigma (normal distribution) Estimated $Var(y)$ for normal distribution

Author(s)

Mark van der Loo, see www.markvanderloo.eu

References

The file <your R directory>/R-<version>/library/extremevalues/extremevalues.pdf contains a worked example. It can also be downloaded from my website.

Examples

```r
y <- rlnorm(100)
y <- c(0.1*min(y), y, 10*max(y))
K <- getOutliers(y, method="I", distribution="lognormal")
L <- getOutliers(y, method="II", distribution="lognormal")
par(mfrow=c(1,2))
outlierPlot(y,K, mode="qq")
outlierPlot(y,L, mode="residual")
```

invErf

Inverse error function

Description

Inverse error function
Usage

invErf(x)

Arguments

x (Vector of) real value(s) in the range (-1,1)

Value

(vector of) value(s) of the inverse error function

Author(s)

Mark van der Loo, www.markvanderloo.eu

Examples

x <- seq(-0.99, 0.99, 0.01);
plot(x, invErf(x), 'l');

outlierPlot

Plot results of outlier detection

Description

This is a wrapper for two plot functions which can be used to analyse the results of outlier detection with the extremevalues package.

Usage

outlierPlot(y, L, mode="qq", ...)
qqFitPlot(y, L, title=NA, xlab=NA, ylab=NA, fat=FALSE)
plotMethodII(y, L, title=NA, xlab=NA, ylab=NA, fat=FALSE)

Arguments

y A vector of values
L The result of L <- getOutliers(y,...)
mode Plot type. "qq" for Quantile-quantile plot with indicated outliers, "residual" for plot of fit residuals with indicated outliers (Method II only)
... Optional arguments, to be transferred to qqFitPlot or plotMethodII (see below)
title A custom title (must be a string)
xlab A custom label for the x-axis (must be a string)
ylab A custom label for the y-axis (must be a string)
fat If TRUE, axis, fonts, labels, points and lines are thicker for export and publication
Details

Outliers are marked with a color or special symbol. If `mode="qq"`: observed against predicted y-values are plotted. Points between vertical lines were used in the fit. If L\$method="Method I", horizontal lines indicate the limits below (above) which observations are outliers. `mode="residuals"` only works when L\$Method="Method II". It generates a residual plot where points between two vertical lines were used in the fit. Horizontal lines indicate the computed confidence limits. The outermost points in the gray areas are outliers.

Author(s)

Mark van der Loo, www.markvanderloo.eu

References

The file <your R directory>/R-<version>/library/extremevalues/extremevalues.pdf contains a worked example. It can also be downloaded from my website.

Examples

```r
y <- rlnorm(100)
y <- c(0.1*min(y),y,10*max(y))
K <- getOutliers(y,method="I",distribution="lognormal")
L <- getOutliers(y,method="II",distribution="lognormal")
par(mfrow=c(1,2))
outlierPlot(y,K,mode="qq")
outlierPlot(y,L,mode="residual")
```

pareto
Pareto distribution

Description

Pareto density distribution, quantile function and random generator.

Usage

```r
dpareto(x, xm=1, alpha=1)
qpareto(p, xm=1, alpha=1)
rpareto(n, xm=1, alpha=1)
```

Arguments

- `xm`
 location parameter (mode of distribution)
- `alpha`
 spread parameter
- `x`
 Vector of realizations
- `p`
 Vector of probabilities
- `n`
 number of samples to draw
Value

dpareto Probability density
qpareto Quantile at probability p (inverse cdf)
rpareto Random value

Author(s)

Mark van der Loo www.markvanderloo.eu

Examples

q <- qpareto(0.5);
Index

* outliers
 evGui, 2

dpareto (pareto), 7

evGui, 2
extremevalues, 3
extremevalues-package (extremevalues), 3

getOutliers, 2, 3, 3
getOutliersI (getOutliers), 3
getOutliersII (getOutliers), 3

invErf, 5

outlierPlot, 3, 6

pareto, 7
plotMethodII (outlierPlot), 6

qpareto (pareto), 7
qqFitPlot (outlierPlot), 6

rpareto (pareto), 7