Package ‘ezCutoffs’

December 4, 2019

Date 2019-11-09
Type Package
Title Fit Measure Cutoffs in SEM
Version 1.0.1
Depends R (>= 2.15.1)
Description Calculate cutoff values for model fit measures used in structural equation modeling (SEM) by simulating and testing data sets (cf. Hu & Bentler, 1999 <doi:10.1080/10705519909540118>) with the same parameters (population model, number of observations, etc.) as the model under consideration.
License GPL-3
Imports doSNOW, foreach, ggplot2, lavaan, moments, parallel, progress, stats, utils
Suggests boot
Maintainer Bjarne Schmalbach <bjarne.schmalbach@gmail.com>
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Author Bjarne Schmalbach [aut, cre] (<https://orcid.org/0000-0001-6853-412X>), Julien Patrick Irmer [aut], Martin Schultze [aut]
NeedsCompilation no
Repository CRAN
Date/Publication 2019-12-04 16:00:05 UTC

R topics documented:

compareFit ... 2
ezCutoffs ... 3

Index ... 6
compareFit

Compare two Fit Measure Distributions Using the Wilcoxon-test

Description
Significance test of the difference between two randomly generated fit index distributions using the Wilcoxon rank sum test.

Usage

```r
compareFit(x, y, ...)```

Arguments

- `x`: An object of the class `ezCutoffs` to use in comparison.
- `y`: A second `ezCutoffs` object to compare `x` to.
- `...`: Additional arguments to pass to `wilcox.test`.

Details
Non-overlapping fit measures will be disregarded by the function.

Value
An object of the class `wilc_result`, inspectable via `summary`.

See Also

`ezCutoffs`

Examples

```r
model specification examples

simple uni-factorial model
model <- "F1 =~ a1 + a2 + a3 + a4 + a5"

two function calls
a <- ezCutoffs(model = model, n_obs = 1000, n_rep = 10, n_cores = 1, normality = "assumed")
b <- ezCutoffs(model = model, n_obs = 1000, n_rep = 10, n_cores = 1, normality = "empirical")

comparison of the fit measure distributions yielded by the simulations
w <- compareFit(a, b)
summary(w)
```
ezCutoffs  
Fit Measure Cutoffs in SEM

Description

Calculate cutoff values for model fit measures used in structural equation modeling (SEM) by simulating and testing data sets (cf. Hu & Bentler, 1999 <doi:10.1080/10705519909540118>) with the same parameters (population model, number of observations, etc.) as the model under consideration.

Usage

ezCutoffs(model = NULL, data = NULL, n_obs = NULL, n_rep = 1000, fit_indices = c("chisq", "cfi", "tli", "rmsea", "srmr"), alpha_level = 0.05, normality = "assumed", missing_data = FALSE, bootstrapped_ci = FALSE, n_boot = 1000, boot_alpha = 0.05, boot_internal = FALSE, n_cores = NULL, ...)

Arguments

model  
lavaan-style Syntax of a user-specified model.
data  
A data frame containing the variables specified in model.
n_obs  
Specifies the number of observations. Only needed if no data frame is given. Can be given as a numeric vector representing the exact group sizes in multi-group analyses. In this case, the grouping variable needs to be called "group".
n_rep  
Number of replications.
fit_indices  
Character vector, containing a selection of fit indices for which to calculate cutoff values. Only measures produced by fitMeasures can be chosen.
alpha_level  
Type I-error rate for the generated cutoff values: Between 0 and 1; 0.05 per default.
normality  
Specify distributional assumptions for the simulated data: Either "assumed" for normal distribution, or "empirical" for distributions based on the skewness and kurtosis values of the empirical data.
missing_data  
Specify handling of missing values: Either FALSE to generate complete data sets, or TRUE to generate data with the same number of missing values on the observed variables as in the empirical data.
bootstrapped_ci  
Specify whether a bootstrapped confidence interval for the empirical model fit statistics should be drawn; default = FALSE.
n_boot  
Number of replications in bootstrap for confidence intervals for empirical model fit statistics.
boot_alpha  
Type I-error rate choosen for the bootstrap-confidence interval: Between 0 and 1; 0.05 per default.
boot_internal  Whether to use the internal bootstrap implemented in bootstrapLavaan or a standard implementation in the boot package. Defaults to FALSE

n_cores  The number of cores to use. If NULL (the default) all available cores will be used.

...  Additional arguments to pass to lavaan.

Details

model is expected in standard lavaan nomenclature. The typical pre-multiplication mechanism is supported, with the exception of vectors (see Examples). Multigroup models should instead be specified using the group argument.

If data is not specified, the program will generate data based on the given model and n_obs. A numeric vector would signify multiple groups and group needs to be set to "group" in this case. Otherwise, n_obs is disregarded.

missing_data = TRUE assumes that the data is missing completely at random. That, is missings should not be distributed unevenly in multigroup models, for instance.

bootstrapped_ci = "TRUE" Returns a nonparametric bootstrap confidence interval that quantifies the uncertainty within a data set with regard to the empirical fit indices. Larger sample sizes should, under ideal circumstances, have smaller confidence intervals. For more information see, e.g., Efron (1981; 1987). Bootstrapping uses the library(boot) and (if available) several CPUs to compute the confidence intervals via snow.

... allows the user to pass lavaan arguments to the model fitting procedure. Options include multigroup, repeated measures, growth curve, and multilevel models.

Value

An object of the class ezCutoffs, inspectable via print, summary, plot, and compareFit

References


See Also

core, data, model, missing_data, bootstrapped_ci, ...

compareFit
Examples

## model specification examples

# simple uni-factorial model
model1 <- "F1 =~ a1 + a2 + a3 + a4 + a5"

# path model
model2 <- "m ~ 0.6*x1
m ~ 0.5*x2
m ~ 0.4*x3
y ~ 0.7*m"

# two-factorial model with some exemplary pre-multiplications
model3 <- "F1 =~ NA*a1 + a2 + a3 + 0.8*a4 + a5
F2 =~ b1 + start(0.8)*b2 + b3 + equal('F2 =~ b2')*b4 + b5
F1 ~~ 0*F2"

## function call
out <- ezCutoffs(model = model1, n_obs = 1000, n_rep = 10, n_cores = 1)

out <- ezCutoffs(model = model1, n_obs = c(300, 400), n_rep = 9999, fit_indices = c("cfi.robust"), estimator = "MLM", group = "group", group.equal = c("loadings", "intercepts"), n_cores = 1)

## retrieve output
summary(out)
plot(out)
Index

boot, 4
compareFit, 2, 4
ezCutoffs, 2, 3
fitMeasures, 3
lavaan, 3, 4
wilcox.test, 2