Package ‘ezplot’

August 14, 2020

Type Package
Title Functions for Common Chart Types
Version 0.6.2
Author Wojtek Kostelecki
Maintainer Wojtek Kostelecki <wojtek.kostelecki@gmail.com>
Description Wrapper for the ‘ggplot2’ package that creates a variety of common charts (e.g. bar, line, area, ROC, waterfall, pie) while aiming to reduce typing.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 3.3)
RoxygenNote 7.1.1
Imports dplyr, forcats, ggplot2, lubridate, rlang, tsibble
Suggests covr, DT, e1071, knitr, methods, miniUI, rmarkdown, ROCR, shiny, stats, testthat, tibble, tidyr, tsibbledata
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2020-08-14 10:20:02 UTC

R topics documented:

agg_data ... 2
area_plot .. 3
bar_plot ... 5
calendar_plot .. 7
density_plot ... 7
distribution_plot ... 8
ez_app ... 9
Index

 agg_data Aggregates data

Description

Aggregates data
area_plot

Usage

```r
agg_data(
  data,
  cols = names(data),
  group_by = NULL,
  agg_fun = function(x) sum(x, na.rm = TRUE),
  group_by2 = NULL,
  env = parent.frame()
)
```

Arguments

data A data.frame.
cols Named character vector of column names.
group_by Vector of grouping columns.
agg_fun Function to use for aggregating.
group_by2 Vector of grouping column names to use for delayed (post aggregation) calculation.
env Environment for extra variables.

Value

An aggregated data.frame.

Examples

```r
library(tsibble)
library(tsibbledata)
agg_data(ansett, c("Passengers", count = "1"))
agg_data(ansett["Class"])
agg_data(ansett[c("Class", "Passengers")])
agg_data(ansett, "Passengers", "Class")
agg_data(ansett, "Passengers", c("Class", "Airports"))
agg_data(ansett, c(x = "Airports", y = "Passengers"), c(x = "Airports"))
agg_data(ansett, c(x = "Class", y = "1", group = "Airports"), c(x = "Class", group = "Airports"))
```

area_plot

Description

Aggregates a data.frame and creates a stacked area chart.
Usage

```r
area_plot(
  data,
  x,
  y = "1",
  group = NULL,
  facet_x = NULL,
  facet_y = NULL,
  size = 11,
  reorder = c("group", "facet_x", "facet_y"),
  palette = ez_col,
  labels_y = if (position == "fill") {
    function(x) ez_labels(100 * x, append = "%")
  } else {
    ez_labels
  },
  labels_x = NULL,
  use_theme = theme_ez,
  position = c("stack", "fill"),
  facet_scales = "fixed",
  facet_ncol = NULL,
  env = parent.frame()
)
```

Arguments

- `data`: A data.frame.
- `x`: A named character value. Evaluates to a column.
- `y`: A named character value. Evaluates to a column.
- `group`: A character value. Evaluates to a column.
- `facet_x`: A character value. Evaluates to a column.
- `facet_y`: A character. Evaluates to a column.
- `size`: theme size for `use_theme()`. Default is 14.
- `reorder`: A character vector specifying the group variables to reorder. Default is `c("group", "facet_x", "facet_y")`.
- `palette`: Colour function.
- `labels_y`: label formatting function.
- `labels_x`: label formatting function.
- `use_theme`: ggplot theme function.
- `position`: Either "stack" (default) or "fill".
- `facet_scales`: Option passed to scales argument in `facet_wrap` or `facet_grid`. Default is "fixed".
- `facet_ncol`: Option passed to ncol argument in `facet_wrap` or `facet_grid`. Default is `NULL`.
- `env`: environment for evaluating expressions.

Value

A ggplot object.
Examples

library(tsibble)
library(tsibbledata)
area_plot(ansett, x = "as.Date(Week)", y = "Passengers")
area_plot(ansett, x = "as.Date(Week)", y = c("Weekly Passengers" = "Passengers"), "Class")
area_plot(ansett, "as.Date(Week)", y = c("Weekly Passengers" = "Passengers"), group = "substr(Airports, 5, 7)", facet_x = "substr(Airports, 1, 3)", facet_y = "Class", facet_scales = "free_y")

Description

bar_plot

Usage

bar_plot(
data,
x,
y = "1",
group = NULL,
facet_x = NULL,
facet_y = NULL,
size = 11,
width = NULL,
reorder = c("group", "facet_x", "facet_y"),
palette = ez_col,
labels_y = if (position == "fill") {
 function(x) ez_labels(100 * x, append = "%")
} else {
 ez_labels
},
labels_x = identity,
label_pos = c("auto", "inside", "top", "both", "none"),
rescale_y = 1.1,
label_cutoff = 0.12,
use_theme = theme_ez,
position = "stack",
facet_scales = "fixed",
coord_flip = FALSE)
Arguments

- **data**: A data.frame.
- **x**: A named character value. Evaluates to a column.
- **y**: A named character value. Evaluates to a column.
- **group**: A character value. Evaluates to a column.
- **facet_x**: A character value. Evaluates to a column.
- **facet_y**: A character. Evaluates to a column.
- **size**: theme size for use_theme(). Default is 14.
- **width**: Width of bar.
- **reorder**: A character vector specifying the group variables to reorder. Default is c("group", "facet_x", "facet_y").
- **palette**: Colour function.
- **labels_y**: label formatting function
- **labels_x**: label formatting function
- **label_pos**: Position of labels. Can be "auto", "inside", "top", "both" or "none".
- **rescale_y**: Rescaling factor for y-axis limits
- **label_cutoff**: Cutoff size (proportion of y data range) for excluding labels
- **use_theme**: ggplot theme function
- **position**: Either "stack" (default) or "fill"
- **facet_scales**: Option passed to scales argument in facet_wrap or facet_grid. Default is "fixed".
- **coord_flip**: logical (default is FALSE). If TRUE, flips the x and y coordinate using ggplot2::coord_flip()

Value

A ggplot object.

Examples

```r
library(tsibble)
library(tsibbledata)
library(lubridate)

bar_plot(ansett, "year(Week)", "Passengers", size = 16)
bar_plot(ansett, "year(Week)", "Passengers", "Class")
bar_plot(ansett, "Airports", c("Share of Passengers" = "Passengers"), "Class", position = "fill")
bar_plot(ansett, "Airports", "Passengers", "Class", reorder = NULL, label_pos = "both")
bar_plot(ansett, "Airports",
          c(Passengers = "ifelse(Class == 'Economy', Passengers, -Passengers")",
            "Class", label_pos = "both")
bar_plot(ansett, "year(Week)", "Passengers", "Class", label_pos = "both", coord_flip = TRUE)
```
calendar_plot

Description
calendar_plot

Usage
calendar_plot(data, x, y, ...)

Arguments
data A data.frame.
x date column
y A named character value. Evaluates to a column.
... additional arguments for tile_plot

Examples
library(tsibbledata)
calendar_plot(vic_elec, "Time", "Demand", zlim = c(NA, NA))

density_plot

Description
creates a density plot

Usage
density_plot(
 data,
 x,
 group = NULL,
 facet_x = NULL,
 facet_y = NULL,
 palette = ez_col,
 adjust = 1,
 alpha = 0.5,
 facet_scales = "fixed",
 facet_ncol = NULL,
 env = parent.frame()
)

distribution_plot

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
group A character value. Evaluates to a column.
facet_x A character value. Evaluates to a column.
facet_y A character. Evaluates to a column.
palette Colour function.
adjust multiplicate bandwidth adjustment
alpha alpha
facet_scales Option passed to scales argument in facet_wrap or facet_grid. Default is "fixed".
facet_ncol Option passed to ncol argument in facet_wrap or facet_grid. Default is NULL.
env environment for evaluating expressions.

Examples

library(tsibbledata)
density_plot(mtcars, "wt", "cyl")
density_plot(subset(tsibbledata::olympic_running, Length == 100 & Year >= 1980),
"Time", "Year - Year %% 10", "Sex", facet_scales = "free", facet_ncol = 1, adjust = 2)

distribution_plot
distribution_plot

description
distribution_plot

Usage

distribution_plot(
data,
x,
facet_x = NULL,
nbins = 20,
use_theme = theme_ez,
size = 11,
env = parent.frame())
ez_app

Arguments

- **data**: A data frame.
- **x**: A named character value. Evaluates to a column.
- **facet_x**: A character value. Evaluates to a column.
- **nbins**: Number of bins for histogram. Default is 20.
- **use_theme**: ggplot theme function
- **size**: theme size for `use_theme()`. Default is 14.
- **env**: environment for evaluating expressions.

Examples

```r
n = 100
df = data.frame(residuals = rnorm(n),
                 group1 = sample(c("a", "b"), n, replace = TRUE))
distribution_plot(df, "residuals")
distribution_plot(df, "residuals", "group1")
```

ez_app
ez_app

description
ez_app

Usage
ez_app(data = NULL)

Arguments
data: A data frame

Examples

```r
## Not run:
library(tsibble)
library(tsibbledata)
ez_app(ansett)

## End(Not run)
```
ez_col

Description

Color palette interpolation

Usage

ez_col(n = 50, palette = NULL)

Arguments

n number of colours
palette palette to interpolate from

Value

rgb

Examples

ez_col(15)
ez_col(2, c("blue", "red"))
ez_col(3, c("blue", "red"))

ez_jet

Description

color palette for

Usage

ez_jet(
 n = 100,
 palette = c("dodgerblue4", "steelblue2", "olivedrab3", "darkgoldenrod1", "brown")
)

Arguments

n Number of colours to return.
palette Vector of colours.
ez_labels

Function for formatting numeric labels

Description

Function for formatting numeric labels

Usage

```r
ez_labels(
  x,
  prepend = "",
  append = "",
  as_factor = FALSE,
  round = Inf,
  signif = Inf
)
```

Arguments

- `x`: numeric
- `prepend`: character
- `append`: character
- `as_factor`: logical
- `round`: numeric passed to `round()`
- `signif`: numeric passed to `signif()`

Value

- `y`

Examples

- `ez_labels(10^(0:10))`
- `ez_labels(2000, append = " apples")`
- `ez_labels(0:10, append = " apples", as_factor = TRUE)`
- `ez_labels(c(0, 0.1, 0.01, 0.001, 0.0001))`
Description

Saves ggplot or ezplot objects to png (with useful defaults).

Usage

```r
ez_png(
    g,
    file,
    width = 1200,
    height = 600,
    res = 72,
    resx = 1,
    ..., 
    vp = NULL,
    dir.create = FALSE,
    check = TRUE
)
```

Arguments

- `g`: A ggplot or ezplot object.
- `file`: A png file path.
- `width`: Image width (in pixels). Default is 1200.
- `height`: Image height (in pixels). Default is 600.
- `res`: Resolution (PPI) of output image. Default is 72.
- `resx`: Resolution multiplier. Default is 1.
- `...`: Further arguments to pass to `png()`.
- `vp`: A viewport object created with `grid::viewport`.
- `dir.create`: Logical. If TRUE, creates the directory to save into. Default is FALSE.
- `check`: Logical. If TRUE, opens png file after saving. Default is TRUE.
ez_server

Description

ez_server

Usage

ez_server(data)

Arguments

data A data frame

ez_ui

Description

ez_ui

Usage

ez_ui(data)

Arguments

data A data frame

get_incr

Description

returns the minimum increment between sorted unique values of a vector

Usage

get_incr(x)

Arguments

x A numeric or date vector
histogram_plot

Description

creates a histogram plot

Usage

```r
histogram_plot(
  data,
  x,
  y = "count",
  group = NULL,
  facet_x = NULL,
  facet_y = NULL,
  palette = ez_col,
  position = "stack",
  bins = 30,
  alpha = 0.5,
  facet_scales = "fixed",
  facet_ncol = NULL,
  env = parent.frame()
)
```

Arguments

- `data` A data.frame.
- `x` A named character value. Evaluates to a column.
- `y` A named character value. Evaluates to a column.
- `group` A character value. Evaluates to a column.
- `facet_x` A character value. Evaluates to a column.
- `facet_y` A character. Evaluates to a column.
- `palette` Colour function.
- `position` Either "stack" (default) or "fill"
- `bins` number of bins
- `alpha` fill alpha
- `facet_scales` Option passed to scales argument in facet_wrap or facet_grid. Default is "fixed".
- `facet_ncol` Option passed to ncol argument in facet_wrap or facet_grid. Default is NULL.
- `env` environment for evaluating expressions.
ks_plot

Examples

```r
histogram_plot(airquality, "Wind", group = "Month")
histogram_plot(airquality, "Wind", "density", facet_x = "Month")
```

Description

ks plot

Usage

```r
ks_plot(
  data, 
  fitted, 
  actual, 
  palette = ez_col, 
  size_line = 1, 
  size = 11, 
  env = parent.frame()
)
```

Arguments

- `data` A data.frame.
- `fitted` Vector of fitted values.
- `actual` Vector of actual values.
- `palette` Colour function.
- `size_line` width of line for `geom_line()`. Default is 1.
- `size` theme size for `use_theme()`. Default is 14.
- `env` environment for evaluating expressions.

Examples

```r
ks_plot(mtcars, "-disp", "am")
```
lift_plot

Description

precision-recall plot

Usage

lift_plot(
 data,
 fitted,
 actual,
 group = NULL,
 facet_x = NULL,
 facet_y = NULL,
 size_line = 1,
 size = 11,
 env = parent.frame()
)

Arguments

data A data.frame.
fitted Vector of fitted values
actual Vector of actual values
group A character value. Evaluates to a column.
facet_x A character value. Evaluates to a column.
facet_y A character. Evaluates to a column.
size_line width of line for geom_line(). Default is 1.
size theme size for use_theme(). Default is 14.
env environment for evaluating expressions.

Examples

library(ggplot2)

n = 1000
df = data.frame(actual = sample(c(FALSE, TRUE), n, replace = TRUE),
 runif = runif(n))
df[["fitted"] = runif(n) * ifelse(df["actual"] == 1, 0.5, 2)
density_plot(df, "fitted", "actual")

lift_plot(df, "fitted", "actual")
lift_plot(df, "fitted", "actual") + scale_y_log10()
Description

Creates line plots.

Usage

```r
line_plot(
  data,
  x,
  y = "1",
  group = NULL,
  facet_x = NULL,
  facet_y = NULL,
  yoy = FALSE,
  size_line = 1,
  size = 11,
  palette = ez_col,
  labels_y = ez_labels,
  use_theme = theme_ez,
  facet_scales = "fixed"
)
```

Arguments

- `data` A data.frame.
- `x` A named character value. Evaluates to a column.
- `y` A named character value. Evaluates to a column.
- `group` A character value. Evaluates to a column.
model_plot

Description

model_plot

Usage

model_plot(model_plot(data,
 x,
 actual,
 fitted,
 facet_x = NULL,
 point_size = 2,
 res_bins = NA_real_,
 size = 11
)
Arguments

data A data.frame.
x A named character value. Evaluates to a column.
actual A character value. Evaluates to a logical or binary column.
fitted A character value. Evaluates to a numeric column.
facet_x A character value. Evaluates to a column.
point_size Numeric. Default is 2.
res_bins Number of bins in the residual distribution. Default value (NA) doesn’t show the distribution.
size theme size for use_theme(). Default is 14.

Value
A ggplot object.

Examples
y = rnorm(26)
df = data.frame(ID = 1:26, actual = y + rnorm(26), fitted = y, id = letters)
model_plot(df, "ID", "actual", "fitted")
model_plot(df, "id", "actual", "fitted")
model_plot(df, "ID", "actual", "fitted", res_bins = 10)
model_plot(df, "id", "actual", "fitted", res_bins = 10)

nameifnot

Description
Names unnamed elements of a character vector.

Usage
nameifnot(x, make.names = FALSE)

Arguments
x A character vector.
make.names Logical. Whether to force names of x to be valid variable names. Default is FALSE.

Value
A named vector.
Description
Visual representation of the NAs in a data.frame

Usage
na_plot(data, palette = ez_col)

Arguments
- data: A data.frame.
- palette: Colour function.

Value
A ggplot object.

Examples
na_plot(airquality)

Description
Returns names of non-numeric columns.

Usage
not_numeric(x)

Arguments
- x: A data.frame.

Value
A character vector.
`no_null` function:

Description
Converts "NULL" character to NULL.

Usage
```r
no_null(x)
```

Arguments
- `x`: A character vector.

Value
- `y`

Examples
```r
no_null(NULL)
no_null("NULL")
no_null("NOPE")
```

`perf` function:

Description
Precision recall calculation

Usage
```r
perf(fitted, actual, x_measure, y_measure)
```

Arguments
- `fitted`: Vector with values between 0 and 1
- `actual`: Vector with two levels
- `x_measure`: metric for ROCR::performance
- `y_measure`: metric for ROCR::performance
Examples

```r
explot:::perf(runif(1), sample(c(TRUE, FALSE), 1, replace = TRUE), "rpp", "lift")
explot:::perf(runif(10), sample(c(TRUE, FALSE), 10, replace = TRUE), "rpp", "lift")
explot:::perf(runif(5), sample(c(TRUE, FALSE), 5, replace = TRUE), "rec", "prec")
explot:::perf(runif(5), sample(c(TRUE, FALSE), 5, replace = TRUE), "fpr", "tpr")
explot:::perf(runif(5), sample(c(TRUE, FALSE), 5, replace = TRUE), "cutoff", "tpr")
```

Description

plots binary classification performance metrics

Usage

```r
performance_plot(
  data,
  fitted,
  actual,
  group = NULL,
  facet_x = NULL,
  facet_y = NULL,
  x = "fpr",
  y = "tpr",
  auc = c("title", "group"),
  size_line = 1,
  size = 11,
  env = parent.frame()
)
```

Arguments

data A data.frame.
fitted A character value. Evaluates to a numeric column.
actual A character value. Evaluates to a logical or binary column.
group A character value. Evaluates to a column.
facet_x A character value. Evaluates to a column.
facet_y A character. Evaluates to a column.
x ROCR::performance() measure
y ROCR::performance() measure
auc character vector indicating which AUC values should be displayed. Options are 'title' and 'group'
size_line width of line for geom_line(). Default is 1.
size theme size for use_theme(). Default is 14.
env environment for evaluating expressions.
Examples

```r
performance_plot(mtcars, "-disp", "am")
performance_plot(mtcars, "-disp", "am", "cyl")
performance_plot(mtcars, "-disp", "am", "cyl", x = "rec", y = "prec")
performance_plot(mtcars, "-disp", "am", x = "rpp", y = "gain")
performance_plot(mtcars, "-disp", "am", x = "rpp", y = "lift")
performance_plot(mtcars, "-disp", "am", x = "cutoff", y = "tpr")
```

perf_df

Description

`perf_df`

Usage

```r
perf_df(fitted, actual)
```

Arguments

- `fitted`: A character value. Evaluates to a numeric column.
- `actual`: A character value. Evaluates to a logical or binary column.

Examples

```r
perf_df(mtcars$mpg, mtcars$am)
perf_df(mtcars$wt, mtcars$am==0)
```

pie_plot

Description

Creates pie charts.

Usage

```r
pie_plot(
  data,
  x,
  y = "1",
  facet_x = NULL,
  facet_y = NULL,
  labels_y = function(x) ez_labels(x * 100, append = "%", round = round, signif = signif),
```
pie_plot

size = 11,
label_cutoff = 0.04,
round = Inf,
signif = 3,
palette = ez_col,
reorder = c("x", "facet_x", "facet_y"),
label_x = 0.8

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
y A named character value. Evaluates to a column.
facet_x A character value. Evaluates to a column.
facet_y A character. Evaluates to a column.
labels_y label formatting function
size theme size for use_theme(). Default is 14.
label_cutoff Cutoff size (proportion of y data range) for excluding labels
round Option for rounding label.
signif Option for retaining significant figures in label.
palette Colour function.
reorder A character vector specifying the group variables to reorder. Default is c("group", "facet_x", "facet_y",
label_x Position of label from centre of pie. 0 is the centre of the pie and 1 is the outer

Value
ggplot object

Examples

library(tsibble)
library(tsibbledata)
pie_plot(ansett, "Class", "Passengers")
pie_plot(ansett, "Class", "Passengers", reorder = NULL, label_x = 0.5)
pie_plot(ansett, "Class", "Passengers", "Airports", reorder = NULL, label_x = 0.5)
prec_rec

Description

Precision recall calculation

Usage

prec_rec(fitted, actual)

Arguments

fitted Vector with values between 0 and 1
actual Vector with two levels

Examples

ezplot:::prec_rec(runif(1), sample(c(TRUE, FALSE), 1, replace = TRUE))
ezplot:::prec_rec(runif(5), sample(c(TRUE, FALSE), 5, replace = TRUE))

pr_plot

Description

precision-recall plot

Usage

pr_plot(
 data,
fitted,
actual,
group = NULL,
facet_x = NULL,
facet_y = NULL,
palette = ez_col,
size_line = 1,
size = 11,
labs = "short",
env = parent.frame()
)
Arguments

data A data.frame.
fitted Vector of fitted values
actual Vector of actual values
group A character value. Evaluates to a column.
facet_x A character value. Evaluates to a column.
facet_y A character. Evaluates to a column.
palette Colour function.
size_line width of line for geom_line(). Default is 1.
size theme size for use_theme(). Default is 14.
labs 'short' or 'long'
env environment for evaluating expressions.

Examples

library(ggplot2)
n = 1000
df = data.frame(actual = sample(c(FALSE, TRUE), n, replace = TRUE),
 runif = runif(n))
df["fitted"] = runif(n) ^ ifelse(df["actual"] == 1, 0.5, 2)
density_plot(df, "fitted", "actual")
pr_plot(df, "fitted", "actual")
pr_plot(df, "runif", "actual", size_line = 0.5)

library(dplyr, warn.conflicts = FALSE)
pr_plot(df, "fitted", "actual", "sample(c(1, 2), n(), TRUE)"
 "sample(c(3, 4), n(), TRUE)"

pr_plot(df, "fitted", "actual",
 "sample(c(1, 2), n(), TRUE)
 "sample(c(3, 4), n(), TRUE)"

pr_plot(df, "fitted", "actual",
 "sample(c(1, 2), n(), TRUE)
 "sample(c(3, 4), n(), TRUE)
 "sample(c(5, 6), n(), TRUE)"

quick_facet Quick facet

Description

Applies faceting to ggplot objects when g["data"] has a facet_x or facet_y column.
reorder_levels

Usage

quick_facet(g, ncol = NULL, ...)

Arguments

g A ggplot object.
ncol Number of facet columns.
... Arguments to pass to facet_grid or facet_wrap.

reorder_levels Order levels of factor columns using fct_reorder

Description

Order levels of factor columns using fct_reorder

Usage

reorder_levels(
 data,
 cols = c("group", "facet_x", "facet_y"),
 y = "y",
 .desc = rep(TRUE, length(cols))
)

Arguments

data A data.frame.
cols Names of columns to reorder.
y Numeric column for order priority.
.desc A logical vector of length 1 or ncol(data). Default is TRUE for all columns in cols.

Value

A data.frame.

Examples

str(ezplot:::reorder_levels(mtcars, "cyl", "1"))
str(ezplot:::reorder_levels(mtcars, "cyl", "1", FALSE))
str(ezplot:::reorder_levels(mtcars, "cyl", "mpg"))
Description

Calculates ROC and AUC

Usage

roc(fitted, actual)

Arguments

fitted
Vector with values between 0 and 1
actual
Vector with two levels

Examples

ezplot::roc(runif(1), sample(c(TRUE, FALSE), 1, replace = TRUE))
ezplot::roc(runif(3), sample(c(TRUE, FALSE), 3, replace = TRUE))

roc_plot

Description

roc_plot

Usage

roc_plot(
 data,
 fitted,
 actual,
 group = NULL,
 facet_x = NULL,
 facet_y = NULL,
 palette = ez_col,
 size_line = 1,
 size = 11,
 env = parent.frame()
)

Arguments

- **data** A data.frame.
- **fitted** Vector of fitted values
- **actual** Vector of actual values
- **group** A character value. Evaluates to a column.
- **facet_x** A character value. Evaluates to a column.
- **facet_y** A character. Evaluates to a column.
- **palette** Colour function.
- **size_line** width of line for geom_line(). Default is 1.
- **size** theme size for use_theme(). Default is 14.
- **env** environment for evaluating expressions.

Examples

```r
library(ggplot2)
n = 1000
df = data.frame(actual = sample(c(FALSE, TRUE), n, replace = TRUE),
runif = runif(n))
df["fitted"] = runif(n) ^ ifelse(df["actual"] == 1, 0.5, 2)

ggplot(df) +
  geom_density(aes(fitted, fill = actual), alpha = 0.5)
  roc_plot(df, "actual", "actual")
  roc_plot(df, "fitted", "actual")
  roc_plot(df, "runif", "actual", size_line = 0.5)

library(dplyr, warn.conflicts = FALSE)
roc_plot(df, "fitted", "actual", "sample(c(1, 2), n(), TRUE)"

roc_plot(df, "fitted", "actual",
  "sample(c(1, 2), n(), TRUE)",
  "sample(c(3, 4), n(), TRUE)"

roc_plot(df, "fitted", "actual",
  "sample(c(1, 2), n(), TRUE)",
  "sample(c(3, 4), n(), TRUE)",
  "sample(c(5, 6), n(), TRUE)"
```

Description

Saves ggplot or ezplot objects to png.
Usage

```r
save_png(g, file, width, height, res, ..., vp = NULL)
```

Arguments

g	A ggplot or ezplot object.
file | A png file path.
width | Width of output image.
height | Height or output image.
res | Resolution of output image.
... | Further arguments to pass to `png()`.
vp | A viewport object created with `grid::viewport`.

scatter_plot

create a scatter plot

Usage

```r
scatter_plot(data, x, y, group = NULL, palette = ez_col, size = 11, point_size = 2.5, env = parent.frame())
```

Arguments

data	A data.frame.
x | A named character value. Evaluates to a column.
y | A named character value. Evaluates to a column.
group | A character value. Evaluates to a column.
palette | Colour function.
size | theme size for `use_theme()`. Default is 14.
point_size | Numeric. Default is 2.
env | environment for evaluating expressions.
Examples

```r
scatter_plot(mtcars, "wt", "hp")
scatter_plot(mtcars, "wt", "hp", "factor(cyl)")
scatter_plot(mtcars, "factor(cyl)", "hp")
```

secondary_plot

secondary_plot creates a plot with a secondary y-axis

Description

secondary_plot creates a plot with a secondary y-axis

Usage

```r
secondary_plot(
  data,
  x,
  y1 = "1",
  y2 = "1",
  facet_x = NULL,
  facet_y = NULL,
  palette = ez_col,
  size_line = 1,
  labels_y1 = ez_labels,
  labels_y2 = ez_labels,
  ylim1 = NULL,
  ylim2 = NULL,
  reorder = c("facet_x", "facet_y"),
  size = 11
)
```

Arguments

- **data**: A data.frame.
- **x**: A named character value. Evaluates to a column.
- **y1**: Variable to plot on the left-hand axis
- **y2**: Variable to plot on the right-hand axis
- **facet_x**: A character value. Evaluates to a column.
- **facet_y**: A character. Evaluates to a column.
- **palette**: Colour function.
- **size_line**: line size
- **labels_y1**: label formatting function
- **labels_y2**: label formatting function
- **ylim1**: (optional) left axis limits
- **ylim2**: (optional) right axis limits
- **reorder**: The order of the facets.
- **size**: The size of the plot.
side_plot

ylim2
(optional) right axis limits

reorder
A character vector specifying the group variables to reorder. Default is `c("group","facet_x","facet_y")`.

size
theme size for `use_theme()`. Default is 14.

Value

A ggplot object.

Examples

```r
library(tsibble)
library(tsibbledata)
secondary_plot(pelt, "Year", "Hare", "Lynx")
secondary_plot(pelt, "Year", c("Hare Population" = "Hare"), c("Lynx Population" = "Lynx"))
secondary_plot(aus_production, "Quarter", c("Quarterly Beer Production (megalitres)" = "Beer"),
    c("Quarterly Cement Production (tonnes)" = "Cement"),
    "lubridate::quarter(Quarter)",
    ylim1 = c(0, 600), ylim2 = c(0, 3000),
    size = 10)
```

Description

side_plot

Usage

```r
side_plot(
  data,
  x,
  y = "1",
  labels_y = ez_labels,
  size = 11,
  palette = ez_col,
  signif = 3,
  reorder = TRUE,
  rescale_y = 1.25
)
```

Arguments

- **data**
 A data.frame.

- **x**
 A named character value. Evaluates to a column.

- **y**
 A named character value. Evaluates to a column.
labels_y label formatting function
size theme size for use_theme(). Default is 14.
palette Colour function.
signif Number of significant digits.
reorder A character vector specifying the group variables to reorder. Default is c("group","facet_x","facet_y"
rescale_y Rescaling factor for y-axis limits

Examples

side_plot(mtcars, "gear", "1", rescale_y = 4/3)
side_plot(mtcars, "cyl", c("Cars with <120 HP" = "hp < 120")
side_plot(mtcars, "cyl", c(count = "ifelse(cyl == 4, 1, -1)", "hp <= 120")
side_plot(mtcars, "cyl", c(1, -1))
side_plot(mtcars, "cyl", c("hp <= 120", "- wt / cyl"), rescale_y = 1.5

Description

text_contrast

Usage

text_contrast(x)

Arguments

x Vector of colours.

Value

Vector indicating whether black or white should be used for text overlayed on x.

Examples

text_contrast("#000000")
text_contrast("black")

theme_ez

Default theme

Description

Default theme

Usage

```r
theme_ez(base_size = 11, base_family = "")
```

Arguments

- **base_size**: base font size
- **base_family**: base font family

Value

`theme`

Examples

```r
library(ggplot2)
ggplot(mtcars) + geom_point(aes(cyl, mpg)) + theme_ez()
```

tile_plot

Description

Creates tile plots.

Usage

```r
tile_plot(
  data,
  x,
  y,
  z = c(Count = "1"),
  facet_x = NULL,
  facet_y = NULL,
  size = 11,
  facet_ncol = NULL,
  labels_x = NULL,
  labels_y = NULL,
  labels_z = ez_labels,
)```

---
unpack_cols

zlim = function(x) c(pmin(0, x[1]), pmax(0, x[2])),
    palette = ez_jet,
    reorder = c("facet_x", "facet_y")
)

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
y A named character value. Evaluates to a column.
z A named character. Evaluates to a column and is mapped to the fill colour of the
tiles.
facet_x A character value. Evaluates to a column.
facet_y A character. Evaluates to a column.
size theme size for use_theme(). Default is 14.
facet_ncol Option passed to ncol argument in facet_wrap or facet_grid. Default is NULL.
labels_x label formatting function
labels_y label formatting function
labels_z label formatting function
zlim argument for scale_fill_gradientn(limits = zlim)
palette Colour function.
reorder A character vector specifying the group variables to reorder. Default is c("group","facet_x","facet_y")

Examples

## Not run:
library(tsibbledata)
library(dplyr)
nyc_bikes %>%
    mutate(duration = as.numeric(stop_time - start_time)) %>%
    filter(between(duration, 0, 16)) %>%
    tile_plot(c("Hour of Day" = "lubridate::hour(start_time) + 0.5"),
        c("Ride Duration (min)" = "duration - duration %% 2 + 1"))

## End(Not run)

unpack_cols Unpack cols argument to agg_data

Description

Unpack cols argument to agg_data
Usage

unpack_cols(x)

Arguments

x
cols

Value

list

Examples

ezplot:::unpack_cols("x")
ezplot:::unpack_cols(c(x = "x", y = "x + y", expr = "- x + y"))

variable_plot

variable_plot

Description

Plots variables (multiple "y" values) broken out as vertical facets.

Usage

variable_plot(
  data,
  x,
  y,
  group = NULL,
  facet_x = NULL,
  palette = ez_col,
  size = 14,
  labels_y = ez_labels,
  geom = "line",
  size_line = 1,
  ylab = NULL,
  yoy = FALSE,
  switch = "y",
  rescale_y = 1
)
variable_plot

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
y A named character value. Evaluates to a column.
group A character value. Evaluates to a column.
facet_x A character value. Evaluates to a column.
palette Colour function.
size theme size for use_theme(). Default is 14.
labels_y label formatting function
geom Either "line", "col" or "bar". Default is "line"
size_line width of line for geom_line(). Default is 1.
ylab y label text
yoy Logical used to indicate whether a YOY grouping should be created. Default is FALSE.
switch Option to switch location of variable (facet) labels. Default is 'y' (yes) which shows facet strips on left side of panels.
rescale_y Rescaling factor for y-axis limits

Examples

library(tsibble)
library(tsibbledata)
variable_plot(ansett, "Week", "Passengers", facet_x = "Class")
variable_plot(ansett, "Week", "Passengers", facet_x = "Class", yoy = TRUE)
variable_plot(pelt, "Year", c("Lynx", "Hare"), "round(Year, -1)")
variable_plot(hh_budget, "Year", c("Debt", "Expenditure"), "Country")
variable_plot(PBS, "Type", "Scripts", "Concession", switch = "y", geom = "col")
variable_plot(subset(hh_budget, Year > 2013), "Year",
  c("Debt\n(% of disposable income)" = "Debt",
  "Expenditure\nGrowth (%)" = "Expenditure",
  "Unemployment (%)" = "Unemployment"),
  facet_x = "Country", geom = "bar")
variable_plot(subset(hh_budget, Year > 2013), "Year",
  c("Debt\n(% of disposable income)" = "Debt",
  "Expenditure\nGrowth (%)" = "Expenditure",
  "Unemployment (%)" = "Unemployment"),
  group = "Country", geom = "bar")
Description

function for creating waterfall charts

Usage

```r
waterfall_plot(
 data,
 x,
 y,
 group,
 size = 11,
 labels = ez_labels,
 label_rescale = 1,
 y_min = "auto",
 rescale_y = 1.1,
 n_signif = 3,
 rotate_xlabel = FALSE,
 bottom_label = TRUE,
 ingroup_label = FALSE,
 n_x = 2,
 env = parent.frame()
)
```

Arguments

data A data.frame.
x A named character value. Evaluates to a column.
y A named character value. Evaluates to a column.
group A character value. Evaluates to a column.
size theme size for use_theme(). Default is 14.
labels Function for formatting labels.
label_rescale Scaling factor for chart labels (relative to axis labels).
y_min Minimum limit of y axis.
rescale_y Rescaling factor for y-axis limits
n_signif Number of significant figures in labels.
rotate_xlabel Logical.
bottom_label Logical.
ingroup_label Logical. Shows in-group percentage change.
n_x Number of x levels to show in chart.
env environment for evaluating expressions.
Examples

```r
library(tsibbledata)
waterfall_plot(aus_retail,
"lubridate::year(Month)",
"Turnover",
"sub(' Territory', '\nTerritory', State)",
rotate_xlabel = TRUE)
waterfall_plot(aus_retail,
"lubridate::year(Month)",
"Turnover",
"sub(' Territory', '\nTerritory', State)",
rotate_xlabel = TRUE,
label_rescale = 0.5,
ingroup_label = TRUE,
bottom_label = FALSE,
n_x = 3,
size = 20,
y_min = 0)
```