Title Algorithmic Fairness Metrics
Version 1.2.2
Maintainer Nikita Kozodoi <n.kozodoi@icloud.com>
Description Offers calculation, visualization and comparison of algorithmic fairness metrics. Fair machine learning is an emerging topic with the overarching aim to critically assess whether ML algorithms reinforce existing social biases. Unfair algorithms can propagate such biases and produce predictions with a disparate impact on various sensitive groups of individuals (defined by sex, gender, ethnicity, religion, income, socioeconomic status, physical or mental disabilities). Fair algorithms possess the underlying foundation that these groups should be treated similarly or have similar prediction outcomes. The fairness R package offers the calculation and comparisons of commonly and less commonly used fairness metrics in population subgroups. These methods are described by Calders and Verwer (2010) <doi:10.1007/s10618-010-0190-x>, Chouldechova (2017) <doi:10.1089/big.2016.0047>, Feldman et al. (2015) <doi:10.1145/2783258.2783311>, Friedler et al. (2018) <doi:10.1145/3287560.3287589> and Zafar et al. (2017) <doi:10.1145/3038912.3052660>. The package also offers convenient visualizations to help understand fairness metrics.
License MIT + file LICENSE
Language en-US
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
URL https://kozodoi.me/r/fairness/packages/2020/05/01/fairness-tutorial.html
BugReports https://github.com/kozodoi/fairness/issues
Depends R (>= 3.5.0)
Imports caret, devtools, e1071, ggplot2, pROC
Suggests testthat, knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Nikita Kozodoi [aut, cre],
 Tibor V. Varga [aut] (<https://orcid.org/0000-0002-2383-699X>)
Repository CRAN
Date/Publication 2021-04-14 15:00:02 UTC
Description

This function computes the Accuracy parity metric

Formula: \(\frac{TP + TN}{TP + FP + TN + FN} \)

Usage

```
acc_parity(
  data,
  outcome,
  group,
  probs = NULL,
  preds = NULL,
  outcome_base = NULL,
  cutoff = 0.5,
  base = NULL,
  group_breaks = NULL
)
```

Arguments

- **data**: Data.frame that contains the necessary columns.
- **outcome**: Column name indicating the binary outcome variable (character).
- **group**: Column name indicating the sensitive group (character).
Details

This function computes the Accuracy parity metric as described by Friedler et al., 2018. Accuracy metrics are calculated by the division of correctly predicted observations (the sum of all true positives and true negatives) with the number of all predictions. In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their accuracies are lower or higher compared to the reference group. Lower accuracies will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

Value

- **Metric**: Raw accuracy metrics for all groups and metrics standardized for the base group (accuracy parity metric). Lower values compared to the reference group mean lower accuracies in the selected subgroups.
- **Metric_plot**: Bar plot of Accuracy parity metric
- **Probability_plot**: Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined

Examples

```r
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
acc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
acc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```
Description

compas is a landmark dataset to study algorithmic (un)fairness. This data was used to predict recidivism (whether a criminal will reoffend or not) in the USA. The tool was meant to overcome human biases and offer an algorithmic, fair solution to predict recidivism in a diverse population. However, the algorithm ended up propagating existing social biases and thus, offered an unfair algorithmic solution to the problem. In this dataset, a model to predict recidivism has already been fit and predicted probabilities and predicted status (yes/no) for recidivism have been concatenated to the original data.

Usage

compas

Format

A data frame with 6172 rows and 9 variables:

- **Two_yr_Recidivism** factor, yes/no for recidivism or no recidivism. This is the outcome or target in this dataset
- **Number_of_Priors** numeric, number of priors, normalized to mean = 0 and standard deviation = 1
- **Age_Above_FourtyFive** factor, yes/no for age above 45 years or not
- **Age_Below_TwentyFive** factor, yes/no for age below 25 years or not
- **Female** factor, female/male for gender
- **Misdemeanor** factor, yes/no for having recorded misdemeanor(s) or not
- **ethnicity** factor, Caucasian, African American, Asian, Hispanic, Native American or Other
- **probability** numeric, predicted probabilities for recidivism, ranges from 0 to 1
- **predicted** numeric, predicted values for recidivism, 0/1 for no/yes

Source

The dataset is downloaded from Kaggle https://www.kaggle.com/danofer/compass and has undergone modifications (e.g. ethnicity was originally encoded using one-hot encoding, number or priors have been normalized, variables have been renamed, prediction model was fit and predicted probabilities and predicted status were concatenated to the original dataset).
dem_parity

Demographic parity

Description

This function computes the Demographic parity metric

Formula: (TP + FP)

Usage

dem_parity(
 data,
 outcome,
 group,
 probs = NULL,
 preds = NULL,
 outcome_base = NULL,
 cutoff = 0.5,
 base = NULL,
 group_breaks = NULL
)

Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs Column name or vector with the predicted probabilities (numeric between 0 - 1). Either probs or preds need to be supplied.
preds Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
outcome_base Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5.
base Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number >= 2 giving the number of intervals into which group feature is to be cut.
Details

This function computes the Demographic parity metric (also known as Statistical Parity, Equal Parity, Equal Acceptance Rate or Independence) as described by Calders and Verwer 2010. Demographic parity is calculated based on the comparison of the absolute number of all positively classified individuals in all subgroups of the data. In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their proportion of positively predicted observations are lower or higher compared to the reference group. Lower proportions will be reflected in numbers lower than 1 in the returned named vector.

Value

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute number of positive classifications for all groups and metrics standardized for the base group (demographic parity metric). Lower values compared to the reference group mean lower number of positively predicted observations in the selected subgroups</td>
<td></td>
</tr>
<tr>
<td>Metric_plot</td>
<td>Bar plot of Demographic parity metric</td>
</tr>
<tr>
<td>Probability_plot</td>
<td>Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined</td>
</tr>
</tbody>
</table>

Examples

data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
dem_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity', probs = 'probability', cutoff = 0.4, base = 'Caucasian')
dem_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity', preds = 'predicted', cutoff = 0.5, base = 'Hispanic')

Description

This function computes the Equalized Odds metric

Formula: TP / (TP + FN)

Usage

equal_odds(
 data,
 outcome,
 group,
 probs = NULL,
 preds = NULL,
 outcome_base = NULL,
equal_odds

cutoff = 0.5,
base = NULL,
group_breaks = NULL
)

Arguments

- **data**: Data.frame that contains the necessary columns.
- **outcome**: Column name indicating the binary outcome variable (character).
- **group**: Column name indicating the sensitive group (character).
- **probs**: Column name or vector with the predicted probabilities (numeric between 0 - 1). Either probs or preds need to be supplied.
- **preds**: Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
- **outcome_base**: Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
- **cutoff**: Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5.
- **base**: Base level of the sensitive group (character).
- **group_breaks**: If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number >= 2 giving the number of intervals into which group feature is to be cut.

Details

This function computes the Equalized Odds metric (also known as Equal Opportunity, Positive Rate Parity or Separation). Equalized Odds are calculated by the division of true positives with all positives (irrespective of predicted values). This metrics equals to what is traditionally known as sensitivity. In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their sensitivities are lower or higher compared to the reference group. Lower sensitivities will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

Value

- **Metric**: Raw sensitivities for all groups and metrics standardized for the base group (equalized odds parity metric). Lower values compared to the reference group mean lower sensitivities in the selected subgroups.
- **Metric_plot**: Bar plot of Equalized Odds metric
- **Probability_plot**: Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined.
Examples

data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
equal_odds(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
equal_odds(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')

fairness

fairness: Algorithmic Fairness Metrics

Description

The fairness package offers calculation, visualization and comparison of algorithmic fairness metrics. Fair machine learning is an emerging topic with the overarching aim to critically assess whether ML algorithms reinforce existing social biases. Unfair algorithms can propagate such biases and produce predictions with a disparate impact on various sensitive groups of individuals (defined by sex, gender, ethnicity, religion, income, socioeconomic status, physical or mental disabilities). Fair algorithms possess the underlying foundation that these groups should be treated similarly or have similar prediction outcomes. The fairness R package offers the calculation and comparisons of commonly and less commonly used fairness metrics in population subgroups. The package also offers convenient visualizations to help understand fairness metrics.

Details

Package: fairness
Depends: R (>= 3.5.0)
Type: Package
Version: 1.2.2
Date: 2021-04-14
License: MIT
LazyLoad: Yes

Author(s)

- Nikita Kozodoi <n.kozodoi@icloud.com>
- Tibor V. Varga <tirgit@hotmail.com>

See Also

https://github.com/kozodoi/fairness https://kozodoi.me/r/fairness/packages/2020/05/01/fairness-tutorial.html
Description

This function computes the False Negative Rate (FNR) parity metric

Formula: FN / (TP + FN)

Usage

fnr_parity(data, outcome, group, probs = NULL, preds = NULL, outcome_base = NULL, cutoff = 0.5, base = NULL, group_breaks = NULL)

Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs Column name or vector with the predicted probabilities (numeric between 0 - 1). Either probs or preds need to be supplied.
preds Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
outcome_base Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5.
base Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number >= 2 giving the number of intervals into which group feature is to be cut.
Details

This function computes the False Negative Rate (FNR) parity metric as described by Chouldechova 2017. False negative rates are calculated by the division of false negatives with all positives (irrespective of predicted values). In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their false negative rates are lower or higher compared to the reference group. Lower false negative error rates will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean BETTER prediction for the subgroup.

Value

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw false negative rates for all groups and metrics standardized for the base group (false negative rate parity metric). Lower values compared to the reference group mean lower false negative error rates in the selected subgroups</td>
<td></td>
</tr>
<tr>
<td>Bar plot of False Negative Rate parity metric</td>
<td></td>
</tr>
<tr>
<td>Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined</td>
<td></td>
</tr>
</tbody>
</table>

Examples

```r
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
fnr_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
    probs = 'probability', cutoff = 0.4, base = 'Caucasian')
fnr_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
    preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```

fpr_parity

False Positive Rate parity

Description

This function computes the False Positive Rate (FPR) parity metric

Formula: FP / (TN + FP)

Usage

```r
fpr_parity(
    data,
    outcome,
    group,
    probs = NULL,
    preds = NULL,
    outcome_base = NULL,
    cutoff = 0.5,
)```
Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs Column name or vector with the predicted probabilities (numeric between 0 - 1). Either probs or preds need to be supplied.
preds Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
outcome_base Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5.
base Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number $\geq$ 2 giving the number of intervals into which group feature is to be cut.

Details

This function computes the False Positive Rate (FPR) parity metric as described by Chouldechova 2017. False positive rates are calculated by the division of false positives with all negatives (irrespective of predicted values). In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their false positive rates are lower or higher compared to the reference group. Lower false positives error rates will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean BETTER prediction for the subgroup.

Value

Metric Raw false positive rates for all groups and metrics standardized for the base group (false positive rate parity metric). Lower values compared to the reference group mean lower false positive error rates in the selected subgroups.
Metric_plot Bar plot of False Positives Rate metric
Probability_plot Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined.

Examples

data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
fpr_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity', base = NULL,
group_breaks = NULL)
germancredit

Probs = 'probability', cutoff = 0.4, base = 'Caucasian')

fpr_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
         preds = 'predicted', cutoff = 0.5, base = 'Hispanic')

germancredit

Description

germancredit is a credit scoring data set that can be used to study algorithmic (un)fairness. This
data was used to predict defaults on consumer loans in the German market. In this dataset, a model
to predict default has already been fit and predicted probabilities and predicted status (yes/no) for
default have been concatenated to the original data.

Usage

germancredit

Format

A data frame with 1000 rows and 23 variables:

Account_status factor, status of existing checking account
Duration numeric, loan duration in month
Credit_history factor, previous credit history
Purpose factor, loan purpose
Amount numeric, credit amount
Savings factor, savings account/bonds
Employment factor, present employment since
Installment_rate numeric, installment rate in percentage of disposable income
Guarantors factor, other debtors / guarantors
Resident_since factor, present residence since
Property factor, property
Age numeric, age in years
Other_plans factor, other installment plans
Housing factor, housing
Num_credits numeric, Number of existing credits at this bank
Job factor, job
People_maintenance numeric, number of people being liable to provide maintenance for
Phone factor, telephone
Foreign factor, foreign worker
**BAD** factor, GOOD/BAD for whether a customer has defaulted on a loan. This is the outcome or target in this dataset

**Female** factor, female/male for gender

**probability** numeric, predicted probabilities for default, ranges from 0 to 1

**predicted** numeric, predicted values for default, 0/1 for no/yes

**Source**

The dataset has undergone modifications (e.g. categorical variables were encoded, prediction model was fit and predicted probabilities and predicted status were concatenated to the original dataset).

---

**mcc_parity**

*Matthews Correlation Coefficient parity*

**Description**

This function computes the Matthews Correlation Coefficient (MCC) parity metric

Formula: \( \frac{(TP \times TN - FP \times FN)}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}} \)

**Usage**

```r
mcc_parity(
 data,
 outcome,
 group,
 probs = NULL,
 preds = NULL,
 outcome_base = NULL,
 cutoff = 0.5,
 base = NULL,
 group_breaks = NULL
)
```

**Arguments**

- **data** Data.frame that contains the necessary columns.
- **outcome** Column name indicating the binary outcome variable (character).
- **group** Column name indicating the sensitive group (character).
- **probs** Column name or vector with the predicted probabilities (numeric between 0 - 1). Either probs or preds need to be supplied.
- **preds** Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
- **outcome_base** Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff  Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5.
base  Base level of the sensitive group (character).
group_breaks  If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number >= 2 giving the number of intervals into which group feature is to be cut.

Details

This function computes the Matthews Correlation Coefficient (MCC) parity metric. In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their Matthews Correlation Coefficients are lower or higher compared to the reference group. Lower Matthews Correlation Coefficients rates will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

Value

Metric  Raw Matthews Correlation Coefficient metrics for all groups and metrics standardized for the base group (parity metric). Lower values compared to the reference group mean Matthews Correlation Coefficients in the selected subgroups
Metric_plot  Bar plot of Matthews Correlation Coefficient metric
Probability_plot  Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined

Examples

data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
mcc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
mcc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')

npv_parity  Negative Predictive Value parity

Description

This function computes the Negative Predictive Value (NPV) parity metric

Formula: $\frac{TN}{TN + FN}$
npv_parity

Usage

npv_parity(
  data,
  outcome,
  group,
  probs = NULL,
  preds = NULL,
  outcome_base = NULL,
  cutoff = 0.5,
  base = NULL,
  group_breaks = NULL
)

Arguments

data Data.frame that contains the necessary columns.
outcome Column name indicating the binary outcome variable (character).
group Column name indicating the sensitive group (character).
probs Column name or vector with the predicted probabilities (numeric between 0 - 1). Either probs or preds need to be supplied.
preds Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
outcome_base Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5.
base Base level of the sensitive group (character).
group_breaks If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number >= 2 giving the number of intervals into which group feature is to be cut.

Details

This function computes the Negative Predictive Value (NPV) parity metric as described by the Aequitas bias toolkit. Negative Predictive Values are calculated by the division of true negatives with all predicted negatives. In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their negative predictive values are lower or higher compared to the reference group. Lower negative predictive values will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

Value

Metric Raw negative predictive values for all groups and metrics standardized for the base group (negative predictive value parity metric). Lower values compared to the reference group mean lower negative predictive values in the selected subgroups
pred_rate_parity

**Metric_plot**  Bar plot of Negative Predictive Value metric

**Probability_plot**  Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined

**Examples**

```r
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
npv_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
probs = 'probability', cutoff = 0.4, base = 'Caucasian')
npv_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```

---

**pred_rate_parity**  *Predictive Rate Parity*

**Description**

This function computes the Predictive Rate Parity metric.

Formula: \( \frac{TP}{TP + FP} \)

**Usage**

```r
pred_rate_parity(
data,
outcome,
group,
probs = NULL,
preds = NULL,
outcome_base = NULL,
cutoff = 0.5,
base = NULL,
group_breaks = NULL
)
```

**Arguments**

- **data**: Data.frame that contains the necessary columns.
- **outcome**: Column name indicating the binary outcome variable (character).
- **group**: Column name indicating the sensitive group (character).
- **probs**: Column name or vector with the predicted probabilities (numeric between 0 - 1). Either probs or preds need to be supplied.
- **preds**: Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
prop_parity

outcome_base  Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff        Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5.
base          Base level of the sensitive group (character).
group_breaks  If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number >= 2 giving the number of intervals into which group feature is to be cut.

Details
This function computes the Predictive Rate Parity metric (also known as Sufficiency) as described by Zafar et al., 2017. Predictive rate parity is calculated by the division of true positives with all observations predicted positives. This metrics equals to what is traditionally known as precision or positive predictive value. In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their precisions are lower or higher compared to the reference group. Lower precisions will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

Value
Metric        Raw precision metrics for all groups and metrics standardized for the base group (predictive rate parity metric). Lower values compared to the reference group mean lower precisions in the selected subgroups
Metric_plot   Bar plot of Predictive Rate Parity metric
Probability_plot Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined

Examples
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
pred_rate_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity', probs = 'probability', cutoff = 0.4, base = 'Caucasian')
pred_rate_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity', preds = 'predicted', cutoff = 0.5, base = 'Hispanic')

prop_parity  Proportional parity

Description
This function computes the Proportional parity metric
Formula: (TP + FP) / (TP + FP + TN + FN)
Usage

prop_parity(
  data,
  outcome,
  group,
  probs = NULL,
  preds = NULL,
  outcome_base = NULL,
  cutoff = 0.5,
  base = NULL,
  group_breaks = NULL
)

Arguments

data               Data.frame that contains the necessary columns.
outcome             Column name indicating the binary outcome variable (character).
group               Column name indicating the sensitive group (character).
probs               Column name or vector with the predicted probabilities (numeric between 0 - 1). Either probs or preds need to be supplied.
preds               Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.
outcome_base        Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.
cutoff              Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5.
base                Base level of the sensitive group (character).
group_breaks        If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number >= 2 giving the number of intervals into which group feature is to be cut.

Details

This function computes the Proportional parity metric (also known as Impact Parity or Minimizing Disparate Impact) as described by Calders and Verwer 2010. Proportional parity is calculated based on the comparison of the proportion of all positively classified individuals in all subgroups of the data. In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their proportion of positively predicted observations are lower or higher compared to the reference group. Lower proportions will be reflected in numbers lower than 1 in the returned named vector.

Value

Metric               Raw proportions for all groups and metrics standardized for the base group (proportional parity metric). Lower values compared to the reference group mean lower proportion of positively predicted observations in the selected subgroups.
roc_parity

Metric_plot  Bar plot of Proportional parity metric
Probability_plot  Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined

Examples

data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
prop_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
            probs = 'probability', cutoff = 0.4, base = 'Caucasian')
prop_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
            preds = 'predicted', cutoff = 0.5, base = 'Hispanic')

roc_parity  ROC AUC parity

Description

This function computes the ROC AUC parity metric

Usage

roc_parity(data, outcome, group, probs, base = NULL, group_breaks = NULL)

Arguments

data  Data.frame that contains the necessary columns.
outcome  Column name indicating the binary outcome variable (character).
group  Column name indicating the sensitive group (character).
probs  Column name or vector with the predicted probabilities (numeric between 0 - 1).
base  Base level of the sensitive group (character).
group_breaks  If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number >= 2 giving the number of intervals into which group feature is to be cut.

Details

This function computes the ROC AUC values for each subgroup. In the returned table, the reference group will be assigned 1, while all other groups will be assigned values according to whether their ROC AUC values are lower or higher compared to the reference group. Lower ROC AUC will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.
Value

<table>
<thead>
<tr>
<th>Metric</th>
<th>Spec_parity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC AUC</td>
<td>Spec_parity</td>
<td>Raw ROC AUC metrics for all groups and metrics standardized for the base group (parity metric). Lower values compared to the reference group mean lower ROC AUC values in the selected subgroups</td>
</tr>
<tr>
<td>Metric_plot</td>
<td>Bar plot of ROC AUC metric</td>
<td></td>
</tr>
<tr>
<td>Probability_plot</td>
<td>Density plot of predicted probabilities per subgroup</td>
<td></td>
</tr>
<tr>
<td>ROCAUC_plot</td>
<td>ROC plots for all subgroups</td>
<td></td>
</tr>
</tbody>
</table>

Examples

```r
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
roc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity', probs = 'probability', base = 'Caucasian')
roc_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity', probs = 'probability', base = 'African_American')
```

Description

This function computes the Specificity parity metric

Formula: TN / (TN + FP)

Usage

```r
spec_parity(
 data,
 outcome,
 group,
 probs = NULL,
 preds = NULL,
 outcome_base = NULL,
 cutoff = 0.5,
 base = NULL,
 group_breaks = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Data.frame that contains the necessary columns.</td>
</tr>
<tr>
<td>outcome</td>
<td>Column name indicating the binary outcome variable (character).</td>
</tr>
<tr>
<td>group</td>
<td>Column name indicating the sensitive group (character).</td>
</tr>
</tbody>
</table>
probs
Column name or vector with the predicted probabilities (numeric between 0 - 1). Either probs or preds need to be supplied.

preds
Column name or vector with the predicted binary outcome (0 or 1). Either probs or preds need to be supplied.

outcome_base
Base level of the outcome variable (i.e., negative class). Default is the first level of the outcome variable.

cutoff
Cutoff to generate predicted outcomes from predicted probabilities. Default set to 0.5.

base
Base level of the sensitive group (character).

group_breaks
If group is continuous (e.g., age): either a numeric vector of two or more unique cut points or a single number >= 2 giving the number of intervals into which group feature is to be cut.

Details
This function computes the Specificity parity metric. Specificities are calculated by the division of true negatives with all negatives (irrespective of predicted values). In the returned named vector, the reference group will be assigned 1, while all other groups will be assigned values according to whether their specificities are lower or higher compared to the reference group. Lower specificities will be reflected in numbers lower than 1 in the returned named vector, thus numbers lower than 1 mean WORSE prediction for the subgroup.

Value
Metric
Raw specificity metrics for all groups and metrics standardized for the base group (specificity parity metric). Lower values compared to the reference group mean lower specificities in the selected subgroups

Metric_plot
Bar plot of Specificity parity metric

Probability_plot
Density plot of predicted probabilities per subgroup. Only plotted if probabilities are defined

Examples
```r
data(compas)
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
spec_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
 probs = 'probability', cutoff = 0.4, base = 'Caucasian')
spec_parity(data = compas, outcome = 'Two_yr_Recidivism_01', group = 'ethnicity',
 preds = 'predicted', cutoff = 0.5, base = 'Hispanic')
```
Index

* datasets
  compas, 4
  germancredit, 12

acc_parity, 2

compas, 4, 4

dem_parity, 5

equal_odds, 6

fairness, 8
fnr_parity, 9
fpr_parity, 10

germancredit, 12, 12

mcc_parity, 13

npv_parity, 14

pred_rate_parity, 16
prop_parity, 17

roc_parity, 19

spec_parity, 20