Package ‘faoutlier’

July 10, 2020

Version 0.7.4
Type Package
Title Influential Case Detection Methods for Factor Analysis and Structural Equation Models
Maintainer Phil Chalmers <rphilip.chalmers@gmail.com>
Depends R (>= 3.0.2), sem, mvtnorm, parallel
Imports methods, lattice, lavaan, mirt (>= 1.32.1), MASS, pbapply (>= 1.3-0)
ByteCompile yes
LazyLoad yes
LazyData yes
Repository CRAN
License GPL (>= 2)
URL https://github.com/philchalmers/faoutlier
RoxygenNote 7.1.0
NeedsCompilation no
Author Phil Chalmers [aut, cre]
Date/Publication 2020-07-10 10:20:09 UTC

R topics documented:

faoutlier ... 2
forward.search ... 2
gCD ... 5
GOF ... 8
holzinger ... 10
Influential case detection methods for FA and SEM

Details

Implements robust Mahalanobis methods, generalized Cook’s distances, likelihood ratio tests, model implied residuals, and various graphical methods to help detect and summarize influential cases that can affect exploratory and confirmatory factor analyses.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Description

The forward search algorithm begins by selecting a homogeneous subset of cases based on a maximum likelihood criteria and continues to add individual cases at each iteration given an acceptance criteria. By default the function will add cases that contribute most to the likelihood function and that have the closest robust Mahalanobis distance, however model implied residuals may be included as well.
forward.search

Usage

```r
forward.search(
  data,
  model,
  criteria = c("GOF", "mah"),
  n.subsets = 1000,
  p.base = 0.4,
  print.messages = TRUE,
  ...
)
```

```r
## S3 method for class 'forward.search'
print(x, ncases = 10, stat = "GOF", ...)
```

```r
## S3 method for class 'forward.search'
plot(
  x,
  y = NULL,
  stat = "GOF",
  main = "Forward Search",
  type = c("p", "h"),
  ylab = "obs.resid",
  ...
)
```

Arguments

- **data**: matrix or data.frame
- **model**: if a single numeric number declares number of factors to extract in exploratory factor analysis. If `class(model)` is a sem (semmod), or lavaan (character), then a confirmatory approach is performed instead
- **criteria**: character strings indicating the forward search method Can contain 'GOF' for goodness of fit distance, 'mah' for Mahalanobis distance, or 'res' for model implied residuals
- **n.subsets**: a scalar indicating how many samples to draw to find a homogeneous starting base group
- **p.base**: proportion of sample size to use as the base group
- **print.messages**: logical; print how many iterations are remaining?
- **...**: additional parameters to be passed
- **x**: an object of class `forward.search`
- **ncases**: number of final cases to print in the sequence
- **stat**: type of statistic to use. Could be 'GOF', 'RMR', or 'gCD' for the model chi squared value, root mean square residual, or generalized Cook's distance, respectively
- **y**: a null value ignored by `plot`
forward.search

main the main title of the plot
type type of plot to use, default displays points and lines
ylab the y label of the plot

Details

Note that forward.search is not limited to confirmatory factor analysis and can apply to nearly any model being studied where detection of influential observations is important.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

gCD, GOF, LD, robustMD, setCluster

Examples

```r
## Not run:

#run all internal gCD and GOF functions using multiple cores
setCluster()

#Exploratory
nfact <- 3
(FS <- forward.search(holzinger, nfact))
(FS.outlier <- forward.search(holzinger.outlier, nfact))
plot(FS)
plot(FS.outlier)

#Confirmatory with sem
model <- sem::specifyModel()
F1 -> Remndrs, lam11
F1 -> SntComp, lam21
F1 -> WrdMean, lam31
F2 -> MissNum, lam41
F2 -> MxdArit, lam52
F2 -> OddWrds, lam62
F3 -> Boots, lam73
F3 -> Gloves, lam83`
gCD

F3 <-> Hatchts, lam93
F1 <-> F1, NA, 1
F2 <-> F2, NA, 1
F3 <-> F3, NA, 1

(FS <- forward.search(holzinger, model))
(FS.outlier <- forward.search(holzinger.outlier, model))
plot(FS)
plot(FS.outlier)

# Confirmatory with lavaan
model <- 'F1 =~ Remndrs + SntComp + WrdMean
F2 =~ MissNum + MxdArit + OddWrd
F3 =~ Boots + Gloves + Hatchts'

(FS <- forward.search(holzinger, model))
(FS.outlier <- forward.search(holzinger.outlier, model))
plot(FS)
plot(FS.outlier)

## End(Not run)

gCD

Generalized Cook’s Distance

Description

Compute generalize Cook’s distances (gCD’s) for exploratory and confirmatory FA. Can return DFBETA matrix if requested. If mirt is used, then the values will be associated with the unique response patterns instead.

Usage

gCD(data, model, progress = TRUE, ...)

## S3 method for class 'gCD'
print(x, ncases = 10, DFBETAS = FALSE, ...)

## S3 method for class 'gCD'
plot(
  x,
  y = NULL,
  main = "Generalized Cook Distance",
  type = c("p", "h"),
  ylab = "gCD",
  ... )

Arguments

- **data**: matrix or data.frame
- **model**: if a single numeric number declares number of factors to extract in exploratory factor analysis (requires complete dataset, i.e., no missing). If `class(model)` is a sem (semmod), or lavaan (character), then a confirmatory approach is performed instead
- **progress**: logical; display the progress of the computations in the console?
- **x**: an object of class gCD
- **ncases**: number of extreme cases to display
- **DFBETAS**: logical; return DFBETA matrix in addition to gCD? If TRUE, a list is returned
- **y**: a NULL value ignored by the plotting function
- **main**: the main title of the plot
- **type**: type of plot to use, default displays points and lines
- **ylab**: the y label of the plot

Details

Note that gCD is not limited to confirmatory factor analysis and can apply to nearly any model being studied where detection of influential observations is important.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

LD, obs.resid, robustMD, setCluster

Examples

```r
Not run:

#run all gCD functions using multiple cores
setCluster()
```
```r
Exploratory
nfact <- 3
(gCDresult <- gCD(holzinger, nfact))
(gCDresult.outlier <- gCD(holzinger.outlier, nfact))
plot(gCDresult)
plot(gCDresult.outlier)

Confirmatory with sem
model <- sem::specifyModel()
F1 -> Remndrs, lam11
F1 -> SntComp, lam21
F1 -> WrdMean, lam31
F2 -> MissNum, lam41
F2 -> MxdArit, lam52
F2 -> OddWrds, lam62
F3 -> Boots, lam73
F3 -> Gloves, lam83
F3 -> Hatchts, lam93
F1 <-> F1, NA, 1
F2 <-> F2, NA, 1
F3 <-> F3, NA, 1
(gCDresult2 <- gCD(holzinger, model))
(gCDresult2.outlier <- gCD(holzinger.outlier, model))
plot(gCDresult2)
plot(gCDresult2.outlier)

Confirmatory with lavaan
model <- 'F1 =~ Remndrs + SntComp + WrdMean
F2 =~ MissNum + MxdArit + OddWrds
F3 =~ Boots + Gloves + Hatchts'
(gCDresult2 <- gCD(holzinger, model, orthogonal=TRUE))
(gCDresult2.outlier <- gCD(holzinger.outlier, model, orthogonal=TRUE))
plot(gCDresult2)
plot(gCDresult2.outlier)

Categorical data with mirt
library(mirt)
data(LSAT7)
dat <- expand.table(LSAT7)
model <- mirt.model('F = 1-5')
result <- gCD(dat, model)
plot(result)

mod <- mirt(dat, model)
res <- residuals(mod, type = 'exp')
cbind(res, gCD=round(result$gCD, 3))

End(Not run)
```
**Description**

Compute Goodness of Fit distances between models when removing the \(i\)th case. If mirt is used, then the values will be associated with the unique response patterns instead.

**Usage**

GOF(data, model, M2 = TRUE, progress = TRUE, ...)

## S3 method for class 'GOF'
print(x, ncases = 10, digits = 5, ...)

## S3 method for class 'GOF'
plot(
  x,
  y = NULL,
  main = "Goodness of Fit Distance",
  type = c("p", "h"),
  ylab = "GOF",
  absolute = FALSE,
  ...
)

**Arguments**

data
matrix or data.frame

model
if a single numeric number declares number of factors to extract in exploratory factor analysis (requires complete dataset, i.e., no missing). If `class(model)` is a sem (semmod), or lavaan (character), then a confirmatory approach is performed instead. Finally, if the model is defined with `mirt::mirt.model()` then distances will be computed for categorical data with the mirt package

M2
logical; use the M2 statistic for when using mirt objects instead of G2?

progress
logical; display the progress of the computations in the console?

... additional parameters to be passed

x an object of class GOF

ncases number of extreme cases to display

digits number of digits to round in the printed result

y a NULL value ignored by the plotting function

main the main title of the plot

type type of plot to use, default displays points and lines

ylab the y label of the plot

absolute logical; use absolute values instead of deviations?
Details

Note that GOF is not limited to confirmatory factor analysis and can apply to nearly any model being studied where detection of influential observations is important.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

gCD, LD, obs.resid, robustMD, setCluster

Examples

```r
Not run:
#run all GOF functions using multiple cores
setCluster()

#Exploratory
nfact <- 3
(GOFresult <- GOF(holzinger, nfact))
(GOFresult.outlier <- GOF(holzinger.outlier, nfact))
plot(GOFresult)
plot(GOFresult.outlier)

include a progress bar
GOFresult <- GOF(holzinger, nfact, progress = TRUE)

#-------------------------------------
#Confirmatory with sem
model <- sem::specifyModel()
F1 -> Remndrs, lam11
F1 -> SntComp, lam21
F1 -> WrdMean, lam31
F2 -> MissNum, lam42
F2 -> MxdArit, lam52
F2 -> OddWrds, lam62
F3 -> Boots, lam73
F3 -> Gloves, lam83
F3 -> Hatchts, lam93
```
holzinger

**Description**

A sample of 100 simulated cases from the infamous Holzinger dataset using 9 variables.

**Author(s)**

Phil Chalmers <rphilip.chalmers@gmail.com>

**References**


---

**holzinger.outlier**

*Description of holzinger data with 1 outlier*

**Description**

A sample of 100 simulated cases from the infamous Holzinger dataset using 9 variables, but with 1 outlier added to the dataset. The first row was replaced by adding 2 to five of the observed variables (odd-numbered items) and subtracting 2 from the other four observed variables (even-numbered items).

**Author(s)**

Phil Chalmers <rphilip.chalmers@gmail.com>

**References**


---

**LD**

*Likelihood Distance*

**Description**

Compute likelihood distances between models when removing the $i_{th}$ case. If there are no missing data then the GOF will often provide equivalent results. If mirt is used, then the values will be associated with the unique response patterns instead.

**Usage**

```r
LD(data, model, progress = TRUE, ...)
S3 method for class 'LD'
print(x, ncases = 10, digits = 5, ...)
S3 method for class 'LD'
plot(
```
Arguments

data: matrix or data.frame
model: if a single numeric number declares number of factors to extract in exploratory factor analysis (requires complete dataset, i.e., no missing). If class(model) is a sem (semmod), or lavaan (character), then a confirmatory approach is performed instead. Finally, if the model is defined with mirt::mirt.model() then distances will be computed for categorical data with the mirt package
progress: logical; display the progress of the computations in the console?
...: additional parameters to be passed
x: an object of class LD
ncases: number of extreme cases to display
digits: number of digits to round in the printed result
y: a NULL value ignored by the plotting function
main: the main title of the plot
type: type of plot to use, default displays points and lines
ylab: the y label of the plot
absolute: logical; use absolute values instead of deviations?

Details

Note that LD is not limited to confirmatory factor analysis and can apply to nearly any model being studied where detection of influential observations is important.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

gCD, GOF, obs.resid, robustMD, setCluster

Examples

## Not run:

#run all LD functions using multiple cores
setCluster()

#Exploratory
nfact <- 3
(LDresult <- LD(holzinger, nfact))
(LDresult.outlier <- LD(holzinger.outlier, nfact))
plot(LDresult)
plot(LDresult.outlier)

## add a progress meter
LDresult <- LD(holzinger, nfact, progress = TRUE)

#-------------------------------------------------------------
#Confirmatory with sem
model <- sem::specifyModel()
F1 -> Remndrs, lam11
F1 -> SntComp, lam21
F1 -> WrdMean, lam31
F2 -> MissNum, lam42
F2 -> MxdArit, lam52
F2 -> OddWrds, lam62
F3 -> Boots, lam73
F3 -> Gloves, lam83
F3 -> Hatchts, lam93
F1 <-> F1, NA, 1
F2 <-> F2, NA, 1
F3 <-> F3, NA, 1

(LDresult <- LD(holzinger, model))
(LDresult.outlier <- LD(holzinger.outlier, model))
plot(LDresult)
plot(LDresult.outlier)

#-------------------------------------------------------------
#Confirmatory with lavaan
model <- \textquote{F1 =~ Remndrs + SntComp + WrdMean}
F2 =~ MissNum + MxdArit + OddWrds
F3 =~ Boots + Gloves + Hatchts'

(LDresult <- LD(holzinger, model, orthogonal=TRUE))
(LDresult.outlier <- LD(holzinger.outlier, model, orthogonal=TRUE))
plot(LDresult)
plot(LDresult.outlier)
# categorical data with mirt
library(mirt)
data(LSAT7)
dat <- expand.table(LSAT7)
model <- mirt.model('F = 1-5')
LDresult <- LD(dat, model)
plot(LDresult)

## End(Not run)

---

**obs.resid**  
*Model predicted residual outliers*

---

**Description**

Compute model predicted residuals for each variable using regression estimated factor scores.

**Usage**

```r
obs.resid(data, model, ...)
```

```r
S3 method for class 'obs.resid'
print(x, restype = "obs", ...)
```

```r
S3 method for class 'obs.resid'
plot(
 x,
 y = NULL,
 main = "Observed Residuals",
 type = c("p", "h"),
 restype = "obs",
 ...
)
```

**Arguments**

- **data**: matrix or data.frame
- **model**: if a single numeric number declares number of factors to extract in exploratory factor analysis. If class(model) is a sem (semmod), or lavaan (character), then a confirmatory approach is performed instead
- **...**: additional parameters to be passed
- **x**: an object of class obs.resid
- **restype**: type of residual used, either 'obs' for observation value (inner product), 'res' or 'std_res' for unstandardized and standardized for each variable, respectively
obs.resid

y  a NULL value ignored by the plotting function
main  the main title of the plot
type  type of plot to use, default displays points and lines

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

gCD, LD, robustMD

Examples

```r
Not run:
data(holzinger)
data(holzinger.outlier)

#Exploratory
nfact <- 3
(ORresult <- obs.resid(holzinger, nfact))
(ORresult.outlier <- obs.resid(holzinger.outlier, nfact))
plot(ORresult)
plot(ORresult.outlier)

#---
#Confirmatory with sem
model <- sem::specifyModel()
F1 -> Remnhrs, lam11
F1 -> SntComp, lam21
F1 -> WrdMean, lam31
F2 -> MissNum, lam41
F2 -> MxdArit, lam52
F2 -> OddWrds, lam62
F3 -> Boots, lam73
F3 -> Gloves, lam83
F3 -> Hatchts, lam93
F1 <-> F1, NA, 1
F2 <-> F2, NA, 1
F3 <-> F3, NA, 1
```
robustMD

Robust Mahalanobis

Description

Obtain Mahalanobis distances using the robust computing methods found in the MASS package. This function is generally only applicable to models with continuous variables.

Usage

robustMD(data, method = "mve", ...)  
## S3 method for class 'robmah'
print(x, ncases = 10, digits = 5, ...)

## S3 method for class 'robmah'
plot(x, y = NULL, type = "xyplot", main, ...)

Arguments

data matrix or data.frame  
method type of estimation for robust means and covariance (see cov.rob)
... additional arguments to pass to MASS::cov.rob()  
x an object of class robmah  
ncases number of extreme cases to print  
digits number of digits to round in the final result  
y empty parameter passed to plot  
type type of plot to display, can be either 'qqplot' or 'xyplot'  
main title for plot. If missing titles will be generated automatically
setCluster

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

gCD, obs.resid, LD

Examples

```r
Not run:
data(holzinger)
output <- robustMD(holzinger)
output
plot(output)
plot(output, type = 'qqplot')
End(Not run)
```

---

setCluster

*Define a parallel cluster object to be used in internal functions*

Description

This function defines a object that is placed in a relevant internal environment defined in faoutlier. Internal functions will utilize this object automatically to capitalize on parallel processing architecture. The object defined is a call from `parallel::makeCluster()`. Note that if you are defining other parallel objects (for simulation designs, for example) it is not recommended to define a cluster.

Usage

```r
setCluster(spec, ..., remove = FALSE)
```

Arguments

- `spec` input that is passed to `parallel::makeCluster()`. If no input is given the maximum number of available local cores will be used
- `...` additional arguments to pass to `parallel::makeCluster`
- `remove` logical: remove previously defined cluster object?
### Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

### References


### Examples

```r
Not run:

make 4 cores available for parallel computing
setCluster(4)

#' # stop and remove cores
setCluster(remove = TRUE)

use all available cores
setCluster()

End(Not run)
```
Index

* _cooks_
  gCD, 5
  GOF, 8
  LD, 11
* _covariance_
  obs.resid, 14
  robustMD, 16
* _data_
  holzinger, 10
  holzinger.outlier, 11
* _forward.search_
  forward.search, 2
* _package_
  faoutlier, 2
* _parallel_
  setCluster, 17

cov.rob, 16

faoutlier, 2
forward.search, 2

gCD, 4, 5, 9, 13, 15, 17
GOF, 4, 8, 11, 13

holzinger, 10
holzinger.outlier, 11

LD, 4, 6, 9, 11, 15, 17

obs.resid, 6, 9, 13, 14, 17

plot.forward.search (forward.search), 2
plot.gCD (gCD), 5
plot.GOF (GOF), 8
plot.LD (LD), 11
plot.obs.resid (obs.resid), 14
plot.robmah (robustMD), 16
print.forward.search (forward.search), 2
print.gCD (gCD), 5
print.GOF (GOF), 8

print.LD (LD), 11
print.obs.resid (obs.resid), 14
print.robmah (robustMD), 16

robustMD, 4, 6, 9, 13, 15, 16

setCluster, 4, 6, 9, 13, 17