Package ‘far’

October 13, 2022

Version 0.6-6
Date 2022-08-12
Title Modelization for Functional AutoRegressive Processes
Author Damon Julien <julien.damon@gmail.com>
Guillas Serge
Maintainer Damon Julien <julien.damon@gmail.com>
Depends R (>= 2.10.0), nlme, graphics, stats
Description Modelizations and previsions functions for
Functional AutoRegressive processes using
nonparametric methods: functional kernel,
estimation of the covariance operator in
a subspace, ...
License LGPL-2.1
URL https://github.com/Looping027/far
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-08-13 19:30:02 UTC

R topics documented:

base.simul.far .. 2
BaseK2BaseC ... 3
coeff.far ... 4
date.fdata .. 5
fapply ... 7
far ... 8
far.cv .. 11
fdata .. 13
interpol.matrix ... 14
invgen ... 15
is.na.fdata ... 16
kerfon ... 17
Description

Computation of a particular basis in a functional space.

Usage

`base.simul.far(m=24, n=5)`

Arguments

- `m` Number of discretization points
- `n` Number of axis

Details

We consider a sinusoidal basis of the functional space $C[0;1]$ of the continuous functions from $[0;1]$ to \mathbb{R}. We compute here the values of the n first (functional) axis at m equi-repartited discretization points in $[0;1]$ (more precisely the point $0, \frac{1}{m}, ..., \frac{m-1}{m}$).

Value

A matrix of size $m \times n$ containing the m values of the n first axis of the basis.

Note

The chosen basis is orthogonal.

The aim of this function is to provide an internal tool for the function `simul.farx`.
Description

Given the coordinates in the Karhunen-Loève expansion base of the Wiener, compute the coordinates in the canonical basis.

Usage

BaseK2BaseC(x, nb)

Arguments

x A matrix containing the coordinates in the Karhunen-Loève basis. One observation per column.

nb The dimension of the canonical basis consider. By default, the dimension is the same as the Karhunen-Loève one (i.e. number of row of x).

Details

The Karhunen-Loève expansion is a sum of an infinity of terms, but here the expansion is truncated to a finite number of terms. Empirically, we remark that using twice the dimension of the canonical basis desired for the number of terms in the expansion is a good compromise.

Value

A object of class fdata with nb discretization points and the same number of observations as x.

Author(s)

J. Damon
References

See Also

`simul.wiener, simul.far.wiener`

Examples

```r
data1 <- BaseK2BaseC(x=matrix(rnorm(50),ncol=5,nrow=10), nb=5)
multiplot(data1,whole=TRUE)
```

coef.far
Extract Model Coefficients

Description

'coef' method to extract the linear operator of a FAR model.

Usage

```r
## S3 method for class 'far'
coef(object, ...)
```

Arguments

- `object`
 An object of type `far`.

- `...`
 Other arguments (not used in this case).

Details

Give the matricial representation of the linear operator express in the canonical basis. See `far` for more details about the meaning of this operator.

If the `far` model is used on a one dimensional variable or with the `joined=TRUE` option, then the matrix has a dimension equal to the subspace dimension.

In the other case, the dimension of the matrix is equal to the sum of the dimensions of the various subspaces. In such a case, the order of the variables in the matrix is the same as in the vector `c(y,x)`. For instance, if `kn=c(3,2)` with `y="Var1"` and `x="Var3"` then:

- The first 3x3 first bloc of the matrix is the autocorrelation of “Var1”.
- The 3x2 up right bloc of the matrix is the correlation of “Var3” on “Var1”.
- The 2x3 down left bloc of the matrix is the correlation of “Var1” on “Var3”.
- The 2x2 down right bloc of the matrix is the autocorrelation of “Var3”.

Value

A square matrix of size (raw and column) equal to the sum of the element of kn.

Author(s)

J. Damon, S. Guillas

See Also

far, coef

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),
 base.exo=base.simul.far(20,5),
 d.a=matrix(c(0.5,0),nrow=1,ncol=2),
 alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
 d.rho=diag(c(0.45,0.90,0.34,0.45)),
 alpha=diag(c(0.5,0.23,0.018)),
 d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
 cst1=0.0)

Modelization of the FARX process (joined and separate)
model1 <- far(data1, kn=4, joined=TRUE)
model2 <- far(data1, kn=c(3,1), joined=FALSE)

Calculation of the theoretical coefficients
coef.theo <- theoretical.coef(m=10, base=base.simul.far(20,5),
 base.exo=base.simul.far(20,5),
 d.a=matrix(c(0.5,0),nrow=1,ncol=2),
 alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
 d.rho=diag(c(0.45,0.90,0.34,0.45)),
 alpha=diag(c(0.5,0.23,0.018)),
 d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
 cst1=0.0)

Joined coefficient
round(coef(model1),2)
coef.theo$rho.T

Separate coefficient
round(coef(model2),2)
coef.theo$rho.X.Z

Extract the date of fdata
Description

Extract the date(s) of fdata objects

Usage

date.fdata(data)

Arguments

data A fdata object

Details

The dates are the labels of the functionals observations of the fdata object.
fdata are not constructed as ts object so a specific function to obtain the date is useful.

Value

A vector giving the dates (as character).

Author(s)

J. Damon

See Also

fdata

Examples

Reading the data
library(stats)
data(UKDriverDeaths)

Conversion of the data
fUKDriverDeaths <- as.fdata(UKDriverDeaths,col=1,p=12,dates=1969:1984,
name="UK Driver Deaths")
date.fdata(fUKDriverDeaths)
fapply

Apply functions over a fdata object

Description

fapply returns a fdata object of the same length as data. Each element of which is the result of applying FUN to the corresponding element of data.

Usage

fapply(data, FUN, row.names, ...)

Arguments

data A fdata object
FUN the function to be applied. In the case of functions like +, %*%, etc., the function name must be quoted.
row.names a vector giving the names describing the results of FUN
... optional arguments to FUN.

Details

This function has to be used only with fdata objects, unless it stop, returning no value.

Value

The returned value is a fdata object too.

Author(s)

J. Damon

See Also

apply, lapply.

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10, n=400, base=base.simul.far(20,5),
 base.exo=base.simul.far(20,5),
 d.a=matrix(c(0.5,0),nrow=1,ncol=2),
 alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
 d.rho=diag(c(0.45,0.90,0.34,0.45)),
 alpha=diag(c(0.5,0.23,0.018)),
 d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
 cst1=0.0)
fapply(data1,sum)
multplot(fapply(fapply(data1,abs),cumsum))

far
FARX(1) model estimation

Description

Estimates the parameters of FAR(1) and FARX(1) processes (mean and autocorrelation operator)

Usage

`far(data, y, x, kn, center=TRUE, na.rm=TRUE, joined=FALSE)`

Arguments

- `data`: A `fdata` object.
- `y`: A vector giving the name(s) of the endogenous variable(s) of the model.
- `x`: A vector giving the name(s) of the exogenous variable(s) of the model.
- `kn`: A vector giving the values of the various `kn` (dimension of plug-in in the algorithm). If it not supplied, the default value is one.
- `center`: Logical. Does the observation need to be centered.
- `na.rm`: Logical. Does the `n.a.` need to be removed.
- `joined`: Logical. If `TRUE`, the joined (whole) far model is computed, otherwise the model work with the separated variables.

Details

The models

A Functional AutoRegressive of order 1 (FAR(1)) process is, in a general way, defined by the following equation:

\[T_n = \rho (T_{n-1}) + \epsilon_n, n \in \mathbb{Z} \]

where \(T_n \) and \(\epsilon_n \) take their values in a functional space (for instance an Hilbertian one), and \(\rho \) is a linear operator. \(\epsilon_n \) is a strong white noise.

Now, let us consider a vector of observations, for instance:

\[(T_{1,n}, \ldots, T_{i,n}, \ldots, T_{m,n}) \]

where each \(T_{i,n} \) lives in a one dimension functional space (not necessary the same). In the following, we will cut this list into two parts: the endogenous variables \(Y_n \) (the ones we are interested in), and the exogeneous variables \(X_n \) (which influence the endogeneous ones).
Then an order 1 Functional AutoRegressive process with eXogeneous variables (FARX(1)) is defined by the equation:

\[Y_n = \rho (Y_{n-1}) + a (X_n) + \epsilon_n, n \in Z \]

where \(\rho \) and \(a \) are linear operators in the adequate spaces.

Estimation

This function estimates the parameters of FAR and FARX models.

First, if the mean of the data is not zero (which is required by the model), you can substance this mean using the `center` option. Moreover, if the data contains `NA` values, you can work with it using the `na.rm` option.

FAR Estimation

The estimation is mainly about estimating the \(\rho \) operator. This estimation is done in a appropriate subspace (computed from the variance of the observations). What is important to know is that the best dimension \(k_n \) for this subspace is not determined by this function. So the user have to supply this dimension using the `kn` option. A way to chose this dimension is to first use the `far.cv` function on the history.

FARX Estimation

The FARX estimation can be realized by two methods: joined or not.

The `joined` estimation is done by “joining” the variables into one and estimating a FAR model on the resulting variable. For instance, with the previous notations, the transformation is:

\[T_n = (Y_n, X_{n+1}) \]

and \(T_n \) is then a peculiar FAR(1) process. In such a case, you have to use the `joined=TRUE` oto the interpretation of this operator and specify one value for `kn` (corresponding to the \(T_n \) variable).

Alternatively, you can choose not to estimate the FARX model by the joined procedure, then `kn` need to be a vector with a length equal to the number of variables involved in the FARX model (endogeneous and exogeneous).

In both procedures, the endogeneous and exogeneous variables are provided through the `y` and `x` options respectively.

Results

The function returns a `far` object. Use the `print`, `coef` and `predict` functions to get more informations about the model.

Value

A `far` object, see details for more informations.

Note

This function could be used to estimate FAR and FARX with order higher than 1 as a change of variables can transform the process to an order 1 FAR or FARX. For instance, if \(T_n \) is a FAR(2) process then \(Y_n = (T_n, T_{n-1}) \) is a FAR(1) process.

However, this is not a basic use of this function and may require a hard work of the user to get the result.
Author(s)

J. Damon

References

See Also

`predict.far`, `far.cv`

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10, n=400, base=base.simul.far(20,5),
 base.exo=base.simul.far(20,5),
 d.a=matrix(c(0.5,0),nrow=1,ncol=2),
 alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
 d.rho=diag(c(0.45,0.90,0.34,0.45)),
 alpha=diag(c(0.5,0.23,0.018)),
 d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
 cst1=0.0)

Cross validation (joined and separate)
model1.cv <- far.cv(data=data1, y="X", x="Z", kn=8, ncv=10, cvcrit="X",
 center=FALSE, na.rm=FALSE, joined=TRUE)
model2.cv <- far.cv(data=data1, y="X", x="Z", kn=c(4,4), ncv=10, cvcrit="X",
 center=FALSE, na.rm=FALSE, joined=FALSE)
print(model1.cv)
print(model2.cv)
k1 <- model1.cv$minL2[1]
k2 <- model2.cv$minL2[1:2]

Modelization of the FARX process (joined and separate)
model1 <- far(data=data1, y="X", x="Z", kn=k1,
 center=FALSE, na.rm=FALSE, joined=TRUE)
model2 <- far(data=data1, y="X", x="Z", kn=k2,
 center=FALSE, na.rm=FALSE, joined=FALSE)
print(model1)
print(model2)
Cross Validation for FARX(1) model

Description
Cross Validation for FAR(1) and FARX(1) models

Usage
far.cv(data, y, x, kn, ncv, cvcrit, center=TRUE, na.rm=TRUE, joined=FALSE)

Arguments
- data: A fdata object.
- y: A vector giving the name(s) of the endogenous variable(s) of the model.
- x: A vector giving the name(s) of the exogenous variable(s) of the model.
- kn: A vector giving the maximum values of the various kn (dimension of plug-in in the algorithm). If it not supplied, the number of discretization point is used.
- ncv: Number of observations used to the cross validation
- cvcrit: A vector of characters. Name of the variable used to measure the errors (y by default).
- center: Logical. Does the observation need to be centered.
- na.rm: Logical. Does the n.a. need to be removed.
- joined: Logical. If TRUE, the joined (whole) far model is computed, otherwise the model work with the separated variables.

Details
In order to perform good forecasting with a FAR or FARX model, you need to determine the dimensions kn of the subspace in which the linear operator is estimated (see far for more details).

This function helps the user to do this choice by performing a cross validation on a test sample. The usage is close of the far function, so we will discuss about the options which differ.

First, the kn option is used to restrict the values searched: this is a vector containing the maxima values. As in far, the dimension of this vector is function of the number of variables involved in the model and the type of estimation done (joined or not).

ncv is the number of observation used to test the models. If it is not provided, the function use the last fifth of the observations in data. In such a case, the four first fifth are used to estimates the models. This is in general a good compromise.

Finally, cvcrit list the variables used to test the models. If more than one variable is provided, the test is calculated as a mean of the errors over all the variables.

The criteria used to test the (functional) errors are the norms L1, L2, L infinite, L1 on the maxima, L2 on the maxima, and L infinite on the maxima.
Value

It is a LIST with the following elements

- cv: Matrix giving the various errors (L1, L2, L infinite, L1 on the maxima, L2 on the maxima, L infinite on the maxima) for the tested values of kn
- minL1: A vector corresponding to the row of cv where the L1 error minima is obtained
- minL2: A vector corresponding to the row of cv where the L2 error minima is obtained
- minLinf: A vector corresponding to the row of cv where the L infinite error minima is obtained
- minL1max: A vector corresponding to the row of cv where the L1 maxima’s error minima is obtained
- minL2max: A vector corresponding to the row of cv where the L2 maxima’s error minima is obtained
- minLinfmax: A vector corresponding to the row of cv where the L infinite maxima’s error minima is obtained

Author(s)

J. Damon

See Also

far, fdata

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10, n=400, base=base.simul.far(20,5),
 base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

Cross validation (joined and separate)
model1.cv <- far.cv(data=data1, y="X", x="Z", kn=8, ncv=10, cvcrit="X",
 center=FALSE, na.rm=FALSE, joined=TRUE)
model2.cv <- far.cv(data=data1, y="X", x="Z", kn=c(4,4), ncv=10, cvcrit="X",
 center=FALSE, na.rm=FALSE, joined=FALSE)
print(model1.cv)
print(model2.cv)
k1 <- model1.cv$minL2[1]
k2 <- model2.cv$minL2[1:2]

Modelization of the FARX process (joined and separate)
modell <- far(data=data1, y="X", x="Z", kn=k1,
 center=FALSE, na.rm=FALSE, joined=TRUE)
model2 <- far(data=data1, y="X", x="Z", kn=k2, center=FALSE, na.rm=FALSE, joined=FALSE)
print(model1)
print(model2)

fdata

Functional Data class

Description

Object of class 'fdata' and its methods.

Usage

```r
as.fdata(object,...)
as.fdata.matrix(object,..., col, p, dates, name)
as.fdata.list(object,..., dates, name)
```

Arguments

- `object`: A matrix or a list.
- `col`: A vector giving the names of the variables to include in the 'fdata' object.
- `p`: A real value giving the number of discretization point chosen.
- `dates`: A vector of character containing the dates of the observations.
- `name`: A vector of character containing the names of the variables (generated if not provided).
- `...`: Additional arguments.

Details

Fdata objects are mainly used to modelize functional data in the purpose of computing functional autoregressive model by the `far` and `kerfon` functions.

An fdata is composed of one or several variables. Each ones is a functional time series.

To be more precise, every variable got a functional data by element of the dates (explicitly given or implicitly deduced). So the number of functional observations is a common data.

In the contrary, each variable can be expressed in a different functional space. For example, if you got two variables, Temperature and Wind, measured during 30 days. Choosing a daily representation, the fdata will contain a 30 elements long dates vector. Nevertheless, the variables measurement can be different. If Temperature is measured every hour and Wind every two hours, the fdata object can handle such a representation. The only constraint is to get a regular measurement: no changes in the methodology.

Basically, the fdata objects are discrete measurements but the modelization which can be used on it will make it functional. Indeed, The first methods implemented as far and kerfon use a linear approximation, but more sophisticate modelization, as splines or wavelets approximations may come.
Value

An object of class fdata.

Author(s)

J. Damon

See Also

far, multplot, maxfdata, kerfon.

Examples

Reading of the data
library(stats)
data(UKDriverDeaths)

Making the data of class 'fdata'
fUKDriverDeaths <- as.fdata(UKDriverDeaths,col=1,p=12,dates=1969:1984, name="UK Driver Deaths")
summary(fUKDriverDeaths)

plotting of the data : whole and 1 year
par(mfrow=c(2,1))
plot(fUKDriverDeaths,xval=1969+(1:192)/12,whole=TRUE, name="Whole Evolution : ")
plot(fUKDriverDeaths,date="1984",xval=1:12, name="Evolution during year 1984 : ")

Matrix conversion
print(as.fdata(matrix(rnorm(50),10,5)))
print(as.fdata(matrix(rnorm(500),100,5),col=1:2,p=5))

List Conversions
print(as.fdata(list("X"=matrix(rnorm(100),10,10), "Z"=matrix(rnorm(50),5,10))))

interpol.matrix

Interpolation matrix

Description

Calculate the matrix giving the linear interpolation of regularly spaced points.

Usage

interpol.matrix(n = 12, m = 24, tol = sqrt(.Machine$double.eps))
invgen

Arguments

\textit{n} \quad \text{Number (integer) of points in output space}

\textit{m} \quad \text{Number (integer) of points in the input function (or space)}

\textit{tol} \quad \text{A relative tolerance to detect zero singular values.}

Details

The general principle is, considering a function for which we know values at \(m \) equally spaced points (for instance \(1/m, 2/m, ..., 1 \)), to compute the matrix giving the linear approximation of \(n \) equally spaced points (for instance \(1/n, 2/n, ..., 1 \)).

The function works whether \(n \) or \(m \) is the largest.

The function is vectorized, so \(m \) and \(n \) can be vectors of integers. In this case, they have to be of the same size and the resulting matrix is block diagonal.

Value

A \(n \times m \) matrix if they are integer, else a \(\text{sum}(n) \times \text{sum}(m) \) matrix.

Author(s)

J. Damon

See Also

\text{theoretical.coef, simul.far} \text{ or } \text{simul.farx}.

Examples

\begin{verbatim}
mat1 <- interpol.matrix(12,24)
mat2 <- interpol.matrix(c(3,5),c(12,12))
print(mat1 %*% base.simul.far(24,5))
print(mat2 %*% base.simul.far(24,5))
\end{verbatim}

invgen \quad \textit{Generalized inverse of a Matrix}

Description

Calculates the Moore-Penrose generalized inverse of a matrix \(X \).

Usage

invgen(a, tol)
Arguments

- `a` Matrix for which the Moore-Penrose inverse is required.
- `tol` A relative tolerance to detect zero singular values.

Value

A Moore-Penrose generalized inverse matrix for X.

See Also

`solve`, `svd`, `eigen`

Examples

```r
mat1 <- matrix(rnorm(100), ncol=10)
print(invgen(mat1))
```

is.na.fdata Not Available / “Missing” Values

Description

The generic function `is.na` returns a logical vector of the same “form” as its argument x, containing TRUE for those elements marked NA or NaN (!) and FALSE otherwise. dim, dimnames and names attributes are preserved.

Usage

```r
## S3 method for class 'fdata'

is.na(x)
```

Arguments

- `x` A fdata object

Details

An observation is considered as NA if any of its values is NA.

Value

A matrix of Logical values giving as rows the variables of x and as columns the observation.

Author(s)

J. Damon
kerfon

See Also

NA

Examples

Reading of the data
library(stats)
data(UKDriverDeaths)
UKDriverDeaths[20]<-NA

Making the data of class 'fdata'
fUKDriverDeaths <- as.fdata(UKDriverDeaths,col=1,p=12,dates=1969:1984,
 name="UK Driver Deaths")

summary(fUKDriverDeaths)
is.na(fUKDriverDeaths)

kerfon Functional Kernel estimation

Description

Modelization of fdata using functional kernel.

Usage

kerfon(data, x, r, hmin, hmax, na.rm=TRUE)

Arguments

data A fdata object.
x The name of the studied variable.
r Number of observations used to cross validate the model.
hmin Minimal value of the bandwidth.
hmax Maximal value of the bandwidth.
na.rm Logical. Does the n.a. need to be removed.

Details

This function constructs a functional kernel model and performs the estimation of its bandwidth. One nonparametric way to deal with the conditional expectation $\rho(x) = E[X_i | X_{i-1} = x]$, where (X_i) is a H-valued process, is to consider a predictor inspired by the classical kernel regression, as in Nadaraja and Watson. This estimator is defined by:

$$\hat{\rho}_{h_n}(x) = \frac{\sum_{i=1}^{n-1} X_{i+1} \cdot K \left(\frac{\|X_i - x\|_H}{h_n} \right)}{\sum_{i=1}^{n-1} K \left(\frac{\|X_i - x\|_H}{h_n} \right)}, x \in H$$
Where \(K \) is a kernel, \(\| \cdot \|_H \) is the norm in \(H \), and \(h_n \) is the bandwidth \((\in \mathbb{R}^+_\times) \).

The function \texttt{kerfon} use the cross validation to determine a value for \(h_n \). This method has been chosen because of the lack of theoretical results about this model. The parameters \(h_{\text{min}} \) and \(h_{\text{max}} \) are used, when provided, to control the permissible values of \(h_n \). By default, those parameters are respectively equal to \(\sigma/8 \) and \(4 \times \sigma \), where \(\sigma \) is the estimated squared root of the variance operator of \(X \). To choose the value of \(h_n \), you need to provide the same value for both \(h_{\text{min}} \) and \(h_{\text{max}} \).

During the cross-validation, considering that the \texttt{fdata} object \(x \) contains \(n \) observations, the function use the first \((n-r)\) observations as the past values, and compute the mean square norm of the errors on the last \(r \) observations.

Of course, if the model created is then used to compute prediction through \texttt{predict.kerfon}, the whole set of observations (the \(n \) observations) are used as the past values.

As \texttt{fdata} object may contain several variables, a way is provided to select the studied variable (the function only works with one variable for the moment).

Value

A \texttt{kerfon} object. A method for the \texttt{print} function is provided.

For information, the object is a list with the following elements:

- \texttt{call} the call of the function.
- \texttt{h} the bandwidth (three values: optimal, minimum, maximum)
- \texttt{x} the name of the chosen variable
- \texttt{xdata} the past values for \(x \)
- \texttt{ydata} the associated values for \(x \)

Author(s)

J. Damon

See Also

\texttt{predict.kerfon}

Examples

```r
# Simulation of a FARX process
data1 <- simul.farx(m=10, n=400, base=base.simul.far(20,5),
                    base.exo=base.simul.far(20,5),
                    d.a=matrix(c(0.5,0),nrow=1,ncol=2),
                    alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
                    d.rho=diag(c(0.45,0.90,0.34,0.45)),
                    alpha=diag(c(0.5,0.23,0.018)),
                    d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
                    cst1=0.0)

# Cross validation
model1 <- kerfon(data=data1, x="X", r=10, na.rm=TRUE)
print(model1)
```
maxfdata

Maxima of functional data

Description

Extract the maxima series from a functional data object.

Usage

```r
maxfdata(data)
```

Arguments

- `data` A `fdata` object

Value

A `fdata` object.

Author(s)

J. Damon

See Also

`fapply`

Examples

```r
# Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),
                     base.exo=base.simul.far(20,5),
                     d.a=matrix(c(0.5,0),nrow=1,ncol=2),
                     alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
                     d.rho=diag(c(0.45,0.90,0.34,0.45)),
                     alpha=diag(c(0.5,0.23,0.018)),
                     d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
                     cst1=0.0)

print(data2 <- maxfdata(data1))
print(unclass(data2))
```
Description

Multivariate plots of Functional Data (more precisely \texttt{fdata} objects).

Usage

\begin{verbatim}
multplot(object, ...)
S3 method for class 'fdata'
multplot(object, date = 1, xval = NULL, name = NULL, legend = FALSE,
yleg, xlab = NULL, ylab = NULL, main = NULL, whole = FALSE, ...)
\end{verbatim}

Arguments

- \texttt{object}: An \texttt{fdata} object for which a multplot is desired.
- \texttt{date}: String vector. List of the dates to work with.
- \texttt{xval}: Numerical vector. Values of the axis x.
- \texttt{name}: String vector. The set of variables to plot.
- \texttt{legend}: Boolean. Plot a legend ?
- \texttt{yleg}: Numeric. Where to put the legend box (y value).
- \texttt{xlab}: String. Title of the axis x.
- \texttt{ylab}: String. Title of the axis y.
- \texttt{main}: String. Title of the plot.
- \texttt{whole}: Boolean. A global plot (TRUE) or a plot by day (FALSE)
- \texttt{...}: Additional arguments.

Details

This function facilitate the plotting of \texttt{fdata} objects. It is dedicated to multivariate plots, please take a look at \texttt{plot.fdata} if you need univariate plots in one graphic.

The default behaviour is to produce one plot containing all the variables of the observation called "1".

If you want less variables, use the \texttt{name} argument. If you need more observations, use the \texttt{date} argument. When provided, the \texttt{xval} argument allow you to change the labels of the x-axis.

It is also possible to plot the complete series on the same plot using the \texttt{whole} argument.

Moreover a legend facility is provided using the \texttt{legend} and \texttt{yleg} arguments.

Author(s)

J. Damon
See Also

- fdata
- plot.fdata.

Examples

```r
# Simulation of a FARX process
data1 <- simul.farx(m=10,n=100,base=base.simul.far(20,5),
                    base.exo=base.simul.far(20,5),
                    d.a=matrix(c(0.5,0),nrow=1,ncol=2),
                    alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
                    d.rho=diag(c(0.45,0.90,0.34,0.45)),
                    alpha=diag(c(0.5,0.23,0.018)),
                    d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
                    cst1=0.0)

# 2 variables : X et Z
# number of points per curve : 10
# number of curves : 100
# corresponding dates
date.fdata(data1)

multplot(data1) # plot the date "1" of the variables "X" and "Z"
multplot(data1,legend=TRUE) # Same thing with a legend
multplot(data1,legend=TRUE,yleg=-0.5) # same thing with a legend misplaced
multplot(data1,main="day 1",legend=TRUE,xlab="hour",
        ylab="object of study")

par(mfrow=c(1,3))
multplot(data1,date=c("3","4","5")) # days "3", "4" and "5" are plotted
par(mfrow=c(1,1))

# to plot the whole series, we used whole = TRUE
# but we have to give the x values
multplot(data1,xval=seq(from=0,to=99.9,by=0.1),whole=TRUE)

# to plot a subset of the series,
# it is recommended to create a subset object with select.fdata
data2 <- select.fdata(data1,date=c("4","5","6"))
multplot(data2,xval=seq(from=4,to=6.9,by=0.1),whole=TRUE)
```

Orthonormalization

Orthonormalization of a set of a matrix

Description

Gram-Schmidt orthogonalization of a matrix considering its columns as vectors. Normalization is provided as will.
Usage

orthonormalization(u, basis=TRUE, norm=TRUE)

Arguments

u
a matrix (n x p) representing n different vectors in a n dimensional space

basis
does the returned matrix have to be a basis

norm
does the returned vectors have to be normed

Details

This is a simple application of the Gram-Schmidt algorithm of orthogonalization (please note that this process was presented first by Laplace).

The user provides a set of vector (structured in a matrix) and the function calculate a orthogonal basis of the same space. If desired, the returned basis can be normed, or/and completed to cover the hole space.

If the number of vectors in u is greater than the dimension of the space (that is if n > p), only the first p columns are taken into account to computed the result. A warning is also provided.

The only assumption made on u is that the span space is of size min(n,p). In other words, there must be no colinearities in the initial set of vector.

Value

The orthogonalized matrix obtained from u where the vector are arranged in columns.

If basis is set to TRUE, the returned matrix is squared.

Author(s)

J. Damon

Examples

mat1 <- matrix(c(1,0,1,1,1,0),nrow=3,ncol=2)
orth1 <- orthonormalization(mat1, basis=FALSE, norm=FALSE)
orth2 <- orthonormalization(mat1, basis=FALSE, norm=TRUE)
orth3 <- orthonormalization(mat1, basis=TRUE, norm=TRUE)
crossprod(orth1)
crossprod(orth2)
crossprod(orth3)
Description

Plot Functional Data (more precisely \texttt{fdata} objects).

Usage

S3 method for class 'fdata'
plot(x,...,date, xval, name, main, whole, separator)

Arguments

- \texttt{x} A \texttt{fdata} object.
- \texttt{date} A vector of character giving the chosen dates.
- \texttt{xval} A numerical vector giving the values to appear on the x axis.
- \texttt{name} A vector of character giving the plotted variables.
- \texttt{main} an overall title for the plot.
- \texttt{whole} Logical. If \texttt{TRUE} all the observations are plot on the same graphic.
- \texttt{separator} Logical. It will be used when \texttt{whole=TRUE}. If \texttt{TRUE} then dashed lines are plotted to separated the observations.
- ... Additional arguments to the plot.

Details

This function facilitate the plotting of \texttt{fdata} objects. It is dedicated to univariate plots, please take a look at \texttt{multplot} if you need multivariate plots in one graphic.

The default behaviour is to plot the observation called "1" of all the variables available in \texttt{x} (so it will produce as many plots as the number of variables).

If you want less variables, use the \texttt{name} argument. If you need more observations, use the \texttt{date} argument. When provided, the \texttt{xval} argument allow you to change the labels of the x-axis.

It is also possible to plot the complete series on the same plot using the \texttt{whole} argument. In this case, the \texttt{separator} allow you to draw line to distinguish the different observations of the functional data.

Author(s)

J. Damon

See Also

\texttt{fdata, multplot}.
Examples

Reading of the data
library(stats)
data(UKDriverDeaths)

Making the data of class 'fdata'
fUKDriverDeaths <- as.fdata(UKDriverDeaths, col=1, p=12,
dates=1969:1984,
name="UK Driver Deaths")

summary(fUKDriverDeaths)

plotting of the data : whole and 1 year
par(mfrow=c(2,1))
plot(fUKDriverDeaths, xval=1969+(1:192)/12,
whole=TRUE, name="Whole Evolution : ", separator=TRUE)
plot(fUKDriverDeaths, date="1984", xval=1:12,
name="Evolution during year 1984 : ")

desc

Pred. persist

Forecasting using functional persistence

Description

Compute prediction of functional data using the persistence.

Usage

pred.persist(data, x, na.rm=TRUE, label, positive=FALSE)

Arguments

data A fdata object.
x A vector of character giving the names of the variables predicted.
na.rm Logical. Does the n.a. need to be removed.
label A vector of character giving the dates to associate to the predicted observations.
positive Logical. Does the result must be forced to positive values.

Details

The persistence model is a beautiful way to name the simplest model ever. This model just suppose
that the next observation will be equal to the previous one, that is to say, noting \hat{X}_n the prediction
for X_n that we "compute":

$$\hat{X}_{n+1} = X_n$$

Of course, the intrinsic purpose of this model is to be a comparison for more complicated models.
The `x` option is provided to select the variable to predict, using the `label` option value as the labels for the new observations. Notices that the output as the same length as the input as it is only a shift in time.

In some special context, the user may need to suppress the `na.rm` observations with the `na.rm` option, or force the prediction to be positive with the `positive` option (in this case the maximum of 0 and the past value is computed).

Value

A `fdata` object.

Note

This has been more instinctive to call this function `predict.persist` but, due to the naming mechanism introduced by the object oriented programming, this would have refer to the predict method for the `persist` objects. As it isn’t the meaning of this function, we preferred the name `pred.persist`.

Author(s)

J. Damon

See Also

`predict.far`, `predict.kerfon`.

Examples

```r
# Simulation of a FARX process
data1 <- simul.farx(m=10,n=40,base=base.simul.far(20,5),
                    base.exo=base.simul.far(20,5),
                    d.a=matrix(c(0.5,0),nrow=1,ncol=2),
                    alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
                    d.rho=diag(c(0.45,0.90,0.34,0.45)),
                    alpha=diag(c(0.5,0.23,0.018)),
                    d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
                    cst1=0.0)
print(data2 <- pred.persist(data1,x="X",label="41"))
predict.unclass(select.fdata(data1,date=paste(38:40)))$X
print(unclass(select.fdata(data2,date=paste(39:41))))
```

predict.far

Forecasting of FARX(1) model

Description

Forecasting using FAR(1) or FARX(1) model
predict.far

Usage

S3 method for class 'far'
predict(object, ..., newdata=NULL, label, na.rm=TRUE, positive=FALSE)

Arguments

object A far object result of the far function.
newdata A data matrix (one column for each observation) used to predict the FAR(1) model from the values in newdata, or NULL to predict one step forward with the data in object.
label A vector of character giving the dates to associate to the predicted observations.
na.rm Logical. Does the n.a. need to be removed.
positive Logical. Does the result must be forced to positive values.
... Additional arguments.

Details

This function computes one step forward prediction for a far model.

Use the newdata option to input the past values, and the label option value to define the labels for the new observations. Notices that the output as the same length as newdata in the case of a FAR model, and the length of newdata minus one in the case of a FARX model. This is due to the time shift of the exogeneous variable: X_{t+1} and Y_t are used in the computation of \hat{Y}_{t+1}.

In some special context, the user may need to suppress the na.rm observations with the na.rm option, or force the prediction to be positive with the positive option (in this case the result will be maximum of 0 and the predicted value).

Value

A fdata object.

Author(s)

J. Damon

See Also

far, pred.persist, predict.kerfon.

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),
 base.exo=base.simul.far(20,5),
 d.a=matrix(c(0.5,0),nrow=1,ncol=2),
 alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
 d.rho=diag(c(0.45,0.90,0.34,0.45)),
 alpha=diag(c(0.5,0.23,0.018)),
 d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),

predict.kerfon

Forecasting of functional kernel model

Description

Computation of the prediction based on a functional kernel model

Usage

S3 method for class 'kerfon'
predict(object, ..., newdata=NULL, label, na.rm=TRUE, positive=FALSE)
predict.kerfon

Arguments

- **object**: A kerfon object result of the kerfon function.
- **newdata**: A fdata object used in the kerfon model to compute the prediction, or NULL to predict one step forward with the data in object.
- **label**: A vector of character giving the dates to associate to the predicted observations.
- **na.rm**: Logical. Does the n.a. need to be removed.
- **positive**: Logical. Does the result must be forced to positive values.
- **...**: Additional arguments.

Details

This function computes one step forward prediction for a kerfon model.

Use the newdata option to input the past values, and the label option value to define the labels for the new observations. Notices that the output as the same length as newdata.

In some special context, the user may need to suppress the na.rm observations with the na.rm option, or force the prediction to be positive with the positive option (in this case the result will be maximum of 0 and the predicted value).

Value

A fdata object.

Author(s)

J. Damon

See Also

kerfon

Examples

```r
# Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),
                     base.exo=base.simul.far(20,5),
                     d.a=matrix(c(0.5,0),nrow=1,ncol=2),
                     alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
                     d.rho=diag(c(0.45,0.90,0.34,0.45)),
                     alpha=diag(c(0.5,0.23,0.018)),
                     d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
                     cst1=0.0)

# Cross validation
model1 <- kerfon(data=data1, x="X", r=10, na.rm=TRUE)
print(model1)

# Predicting values
pred1 <- predict(model1,newdata=select.fdata(data1,date=1:399))
```
Persistence

```r
persist1 <- pred.persist(select.fdata(data1,date=1:399),x="X")
```

Real values

```r
real1 <- select.fdata(data1,date=2:400)
```

```r
errors0 <- persist1[[1]]-real1[[1]]
errors1 <- pred1[[1]]-real1[[1]]
```

Norm of observations

```r
summary(real1)
```

Persistence

```r
summary(as.fdata(errors0))
```

kerfon model

```r
summary(as.fdata(errors1))
```

select.fdata
Subscript of fdata

Description

Use this function to subscript some functional observations of a functional data.

Usage

```r
select.fdata(data, date, name)
```

Arguments

- `data`
 A fdata object.

- `date`
 A vector of character containing the chosen dates (could be NULL).

- `name`
 A vector giving the chosen name (could be NULL).

Details

This function select one or several variables from data and can also subset the dates. This is useful in order to study the endogenous variables of a FARX process.

Value

A fdata object.

Author(s)

J. Damon

See Also

`fdata`
Examples

```r
# Simulation of a FARX process
data1 <- simul.farx(m=10, n=400, base=base.simul.far(20,5),
                   base.exo=base.simul.far(20,5),
                   d.a=matrix(c(0.5, 0), nrow=1, ncol=2),
                   alpha.conj=matrix(c(0.2, 0), nrow=1, ncol=2),
                   d.rho=diag(c(0.45, 0.9, 0.34, 0.45)),
                   alpha=diag(c(0.5, 0.23, 0.018)),
                   d.rho.exo=diag(c(0.45, 0.9, 0.34, 0.45)),
                   cst1=0.0)

print(data1)
print(data1.X <- select.fdata(data1, name="X"))
print(data2 <- select.fdata(data1, date=paste((1:5)*5)))
date.fdata(data2)
```

simul.far
FAR(1) process simulation

Description

Simulation of a FAR process using a Gram-Schmidt basis.

Usage

```r
simul.far(m=12,  
          n=100,  
          base=base.simul.far(24, 5),  
          d.rho=diag(c(0.45, 0.9, 0.34, 0.45)),  
          alpha=diag(c(0.5, 0.23, 0.018)),  
          cst1=0.05)
```

Arguments

- `m`: Integer. Number of discretization points.
- `n`: Integer. Number of observations.
- `base`: A functional basis expressed as a matrix, as the matrix created by `base.simul.far` or with `orthonormalization`.
- `d.rho`: Numerical matrix. Expression of the first bloc of the linear operator in the Gram-Schmidt basis.
Details

This function simulates a FAR(1) process with a strong white noise.

The simulation is realized in two steps.

First step, the function computes a FAR(1) process \(T_n \) in a functional space (that we call in the sequel \(H \)) using a simple equation and the \(d.rho \), \(alpha \) and \(cst \) parameters.

Second step, the process \(T_n \) is projected in the canonical basis using the \texttt{base linear projector}.

The base basis need to be an orthonormal basis wide enough. In the contrary, the function uses the \texttt{orthonormalization} function to make it so. Notice that the size of this matrix corresponds to the dimension of the "modelization space" \(H \) (let's call it \(m_2 \)). Of course, the larger \(m_2 \) the better the functional approximation is. Whatever, keep in mind that \(m_2=2m \) is a good compromise, in order to avoid the memory limits.

In \(H \), the linear operator \(\rho \) is expressed as:

\[
\begin{pmatrix}
 d.rho & 0 \\
 0 & eps.rho
\end{pmatrix}
\]

Where \(d.rho \) is the matrix provided in the call, the two 0 are in fact two blocks of 0, and \(eps.rho \) is a diagonal matrix having on its diagonal the terms:

\[
(\epsilon_{k+1}, \epsilon_{k+2}, \ldots, \epsilon_{m2})
\]

where

\[
\epsilon_i = \frac{cst1}{i^2} + \frac{1 - cst1}{e^3}
\]

and \(k \) is the length of the \(d.rho \) diagonal.

The \(d.rho \) matrix can be viewed as the information and the \(eps.rho \) matrix as a perturbation. In this logic, the norm of \(eps.rho \) need to be smaller than the one of \(d.rho \).

In \(H \), \(C^T \), the covariance operator of \(T_n \), is defined by:

\[
\begin{pmatrix}
 m_2 * alpha & 0 \\
 0 & eps.alpha
\end{pmatrix}
\]

Where \(alpha \) is the matrix provided in the call, the two 0 are in fact two blocks of 0, and \(eps.alpha \) is a diagonal matrix having on its diagonal the terms:

\[
(\epsilon_{k+1}, \epsilon_{k+2}, \ldots, \epsilon_{m2})
\]

where

\[
\epsilon_i = \frac{cst1}{i}
\]

Value

A \texttt{fdata} object containing one variable ("var") which is a FAR(1) process of length \(n \) with \(p \) discretization points.
Note
To simulate \(T_n \), the function creates a white noise \(E_n \) having the following covariance operator:

\[
C^T - \rho * C^T * t(\rho)
\]

where \(t(.) \) is the transposition operator. \(T_n \) is the computed using the equation:

\[
T_{n+1} = \rho * T_n + E_n
\]

Author(s)
J. Damon, S. Guillas

See Also

\texttt{simul.far.sde, simul.far.wiener, simul.farx, simul.wiener, base.simul.far.}

Examples

```r
far1 <- simul.far(m=64, n=100)
summary(far1)
print(far(far1, kn=4))
par(mfrow=c(2,1))
plot(far1, date=1)
plot(select.fdata(far1, date=1:5), whole=TRUE, separator=TRUE)
```

simul.far.sde \hspace{1cm} \textit{FAR-SDE process simulation}

Description
Simulation of a FAR process following an Stochastic Differential Equation

Usage

\[
simul.far.sde(coef=c(0.4, 0.8), n=80, p=32, sigma=1)
\]

Arguments

- \texttt{coef} \hspace{1cm} Numerical vector. It contains the two values of the coefficients \((a_1 \text{ and } a_2)\), see details for more informations.
- \texttt{n} \hspace{1cm} Integer. The number of observations generated.
- \texttt{p} \hspace{1cm} Integer. The number of discretization points.
- \texttt{sigma} \hspace{1cm} Numeric. The standard deviation (see details for more informations).
Details

This function implements the simulation proposed by Besse and Cardot (1996) to simulate a FAR process following the Stochastic Differential Equation:

\[dX^{(2)} + a_2 dX + a_1 X = \sigma \, dW \]

Where \(dX^{(2)} \) and \(dX \) stand respectively for the second and first derivative of the process \(X \), and \(W \) is a brownian process.

The coefficients \(a_1 \) and \(a_2 \) are the two first elements of \(\text{coef} \).

The simulation use a order one approximation inspired by the work of Milstein, as described in Besse and Cardot (1996).

Value

A \(\text{fdata} \) object containing one variable ("var") which is a FAR(1) process of length \(n \) with \(p \) discretization points.

Author(s)

J. Damon

References

See Also

\(\text{simul.far}, \text{simul.far.wiener}, \text{simul.farx}, \text{simul.wiener} \).

Examples

\begin{verbatim}
far1 <- simul.far.sde()
summary(far1)
print(far(far1,kn=2))
par(mfrow=c(2,1))
plot(far1,date=1)
plot(select.fdata(far1,date=1:5),whole=TRUE,separator=TRUE)
\end{verbatim}
simul.far.wiener
FAR(1) process simulation with Wiener noise

Description

Simulation of a FAR(1) process using a Wiener noise.

Usage

```r
simul.far.wiener(m=64, n=128,
                 d.rho=diag(c(0.45, 0.9, 0.34, 0.45)),
                 cst1=0.05, m2=NULL)
```

Arguments

- `m`: Integer. Number of discretization points.
- `n`: Integer. Number of observations.
- `d.rho`: Numerical matrix. Expression of the first bloc of the linear operator in the Karhunen-Loève basis.
- `m2`: Integer. Length of the Karhunen-Loève expansion (2m by default).

Details

This function simulates a FAR(1) process with a Wiener noise. As for the `simul.wiener`, the function uses the Karhunen-Loève expansion of the noise. The FAR(1) process, defined by its linear operator (see `far` for more details), is computed in the Karhunen-Loève basis then projected in the natural basis. The parameters given in input (`d.rho` and `cst1`) are expressed in the Karhunen-Loève basis.

The linear operator, expressed in the Karhunen-Loève basis, is of the form:

\[
\begin{pmatrix}
d.rho & 0 \\
0 & eps.rho
\end{pmatrix}
\]

Where `d.rho` is the matrix provided in the call, the two 0 are in fact two blocks of 0, and `eps.rho` is a diagonal matrix having on its diagonal the terms:

\[\left(\varepsilon_{k+1}, \varepsilon_{k+2}, \ldots, \varepsilon_{m2}\right)\]

where

\[\varepsilon_i = \frac{\text{cst1}}{\xi^2} + \frac{1 - \text{cst1}}{e^i}\]

and `k` is the length of the `d.rho` diagonal.

The `d.rho` matrix can be viewed as the information and the `eps.rho` matrix as a perturbation. In this logic, the norm of `eps.rho` need to be smaller than the one of `d.rho`.
simul.farx

Value

A fdata object containing one variable ("var") which is a FAR(1) process of length n with m discretization points.

Author(s)

J. Damon

References

See Also

fdata, far, simul.far.wiener.

Examples

far1 <- simul.far.wiener(m=64,n=100)
summary(far1)
print(far(far1,kn=4))
par(mfrow=c(2,1))
plot(far1,date=1)
plot(select.fdata(far1,date=1:5),whole=TRUE,separator=TRUE)

simul.farx FARX(1) process simulation

Description

Simulation of functional data with exogenous variables using a Gram-Schmidt basis.

Usage

simul.farx(m=12,n=100,base=base.simul.far(24,5),
base.exo=base.simul.far(24,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.05)
theoretical.coef(m=12,base=base.simul.far(24,5),
base.exo=NULL,
d.rho=diag(c(0.45,0.90,0.34,0.45)),
da=NULL,
d.rho.exo=NULL,
\[\text{alpha} = \text{diag(c(0.5, 0.23, 0.018))}, \]
\[\text{alpha.conj} = \text{NULL}, \]
\[\text{cst1} = 0.05 \]

Arguments

- **m**
 Integer. Number of discretization points.

- **n**
 Integer. Number of observations.

- **base**
 A functional basis expressed as a matrix, as the matrix created by `base.simul.far` or with `orthonormalization`.

- **base.exo**
 A functional basis expressed as a matrix, as the matrix created by `base.simul.far` or with `orthonormalization`.

- **d.rho**
 Numerical matrix. Part of the linear operator in the Gram-Schmidt basis (see details for more informations).

- **d.a**
 Numerical matrix. Part of the linear operator in the Gram-Schmidt basis (see details for more informations).

- **d.rho.exo**
 Numerical matrix. Part of the linear operator in the Gram-Schmidt basis (see details for more informations).

- **alpha**
 Numerical matrix. Part of the linear operator in the Gram-Schmidt basis (see details for more informations).

- **alpha.conj**
 Numerical matrix. Part of the linear operator in the Gram-Schmidt basis (see details for more informations).

- **cst1**
 Numeric. Perturbation coefficient on the linear operator.

Details

The `simul.farx` function simulates a FARX(1) process with one endogenic variable, one exogeneous variable and a strong white noise. To do so, the function uses the fact that a FARX(1) model can be seen as a FAR(1) model in a wider space. Therefore, the method is very similar to the one used by the function `simul.far`.

The simulation is realized in two steps.

First step, the function compute a FAR(1) process \(T_n \) in a functional space (that we call in the sequel \(H \)) using a simple equation and the given parameters. \(T_n \) is of the form \((T_{1n}, T_{2n})\) where \(T_{1n} \) and \(T_{2n} \) are respectively the endogeneous and the exogeneous parts of the process.

Second step, the process \(T_n \) is projected in the canonical basis using the `base` and `base.exo` linear projectors to give the endogeneous \((X_n)\) and the exogeneous \((Z_n)\) variables respectively.

Those two basis need to be orthonormal and wide enought. In the contrary, the function use the `orthonormalization` function to make it so. Notice that the size of this matrix corresponds to the dimension of the "modelization space" \(H \) (let’s call it \(m_2 = m_1^2 + m_2^2 \)). Of course, the larger \(m_2 \) the better the functionnal approximation is. Whatever, keep in mind that \(m_2=2m \) is a good compromise, in order to avoid the memory limits.

In \(H \), the linear operator \(\rho \) is expressed as:

\[
\begin{pmatrix}
 d.rho.mod & d.a \\
 0 & d.rho.exo.mod
\end{pmatrix}
\]
Where \(d.rho.mod\) and \(d.rho.exo.mod\) are modified version of the provided \(d.rho\) and \(d.rho.exo\) respectively to avoid 0 on their diagonal. More precisely, the 0 on their diagonals are replaced by:

\[
(\epsilon_{k+1}, \epsilon_{k+2}, \ldots, \epsilon_{m2})
\]

where

\[
\epsilon_i = \frac{\text{cst}1}{\epsilon^2} + 1 - \frac{\text{cst}1}{\epsilon^2}
\]

and \(k\) is the position in the \(d.rho\) or \(d.rho.exo\) diagonal.

In \(H\), \(C^T\), the covariance operator of \(T_n\), is defined by:

\[
\begin{pmatrix}
alpha.mod & alpha.conj.mod \\
t(alpha.conj.mod) & alpha.exo
\end{pmatrix}
\]

Where \(alpha.mod\) and \(alpha.exo.mod\) are modified versions of \(m1_2*alpha\) and \(m2_2*alpha.conj\) respectively to avoid 0 on their diagonal. More precisely, the 0 on their diagonals are replaced by:

\[
(\epsilon_{k+1}, \epsilon_{k+2}, \ldots, \epsilon_{m2b})
\]

where

\[
\epsilon_i = \frac{\text{cst}1}{i}
\]

\(alpha.exo\) is a matrix representation of the covariance operator of \(T_{2n}\) and is obtained by inverting the following relation:

\[
alpha.conj.mod = d.rho.exo.mod*alpha.conj.mod*t(d.rho.mod)+d.rho.exo.mod*mod.alpha*t(d.a)
\]

The theoretical coef function is provided to help the user making comparison. Calling this function with the same parameters that where used in a simulation (realized with simul.farx or simul.far), we obtain the parameters used internally by the function to make the simulation. Those values can therefore be compared to those obtained with the estimation function far (examples are provided below).

Value

A fdata object containing two variables ("X" the endogeous variable, and "Z" the exogeneous variable) which is a FARX(1) process of length \(n\) with \(p\) discretization points.

Note

To simulate \(T_n\), the function creates a white noise \(E_n\) having the following covariance operator:

\[
C^T - \rho * C^T * t(\rho)
\]

where \(t(.)\) is the transposition operator. \(T_n\) is the computed using the equation:

\[
T_{n+1} = \rho * T_n + E_n
\]
Author(s)

J. Damon, S. Guillas

See Also

simul.far.sde, simul.far.wiener, simul.far, simul.wiener.

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),
 base.exo=base.simul.far(20,5),
 d.a=matrix(c(0.5,0),nrow=1,ncol=2),
 alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
 d.rho=diag(c(0.45,0.90,0.34,0.45)),
 alpha=diag(c(0.5,0.23,0.018)),
 d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
 cst1=0.0)

Modelisation of the FARX process (joined and separate)
model1 <- far(data1,k=4,joined=TRUE)
model2 <- far(data1,k=c(3,1),joined=FALSE)

Calculation of the theoretical coefficients
coef.theo <- theoretical.coef(m=10,base=base.simul.far(20,5),
 base.exo=base.simul.far(20,5),
 d.a=matrix(c(0.5,0),nrow=1,ncol=2),
 alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
 d.rho=diag(c(0.45,0.90,0.34,0.45)),
 alpha=diag(c(0.5,0.23,0.018)),
 d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
 cst1=0.0)

Joined coefficient
round(coef(model1),2)
coef.theo$rho.T

Separate coefficient
round(coef(model2),2)
coef.theo$rho.X.Z

Description

Simulation of Wiener processes.
Usage

```r
simul.wiener(m=64, n=1, m2=NULL)
```

Arguments

- `m` Integer. Number of discretization points.
- `n` Integer. Number of observations.
- `m2` Integer. Length of the Karhunen-Loève expansion (2m by default).

Details

This function uses the known Karhunen-Loève expansion of Wiener processes to simulate observations of such a process.

The option `m2` is internally used to set the length of the expansion. This expansion need to be larger than the number of discretization points, but a too important value may slow down the generation. The default value has been chosen as a compromise.

Value

A `fdata` object containing one variable ("var") which is a Wiener process of length `n` with `m` discretization points.

Author(s)

J. Damon

References

See Also

- `simul.far.sde`, `simul.far.wiener`, `simul.farx`, `simul.far`

Examples

```r
noise <- simul.wiener(m=64, n=100, m2=512)
summary(noise)
par(mfrow=c(2,1))
plot(noise, date=1)
plot(select.fdata(noise, date=1:5), whole=TRUE, separator=TRUE)
```
Index

* NA
 is.na.fdata, 16
* algebra
 base.simul.far, 2
 BaseK2BaseC, 3
 coef.far, 4
 interpol.matrix, 14
 invgen, 15
 orthonormalization, 21
* aplot
 plot.fdata, 23
* hplot
 multplot, 20
* manip
 select.fdata, 29
* methods
 predict.far, 25
* misc
 date.fdata, 5
 fdata, 13
 pred.persist, 24
 simul.far, 30
 simul.far.sde, 32
 simul.far.wiener, 34
 simul.farx, 35
 simul.wiener, 38
* univar
 fapply, 7
 maxfdata, 19
 apply, 7
 as.fdata(fdata), 13
* models
 far, 8
 far.cv, 11
 predict.kerfon, 27
* nonlinear
 kerfon, 17
* ts
 date.fdata, 5
 far, 8
 far.cv, 11
 fdata, 13
 kerfon, 17
 maxfdata, 19
 plot.fdata, 23
 pred.persist, 24
 predict.far, 25
 predict.kerfon, 27
 simul.far, 30
 simul.far.sde, 32
 simul.far.wiener, 34
 simul.farx, 35
 simul.wiener, 38
 univar
 fapply, 7, 19
 apply, 7
 as.fdata(fdata), 13
 base.simul.far, 2, 30, 32, 36
 BaseK2BaseC, 3
 coef, 5
 coef.far, 4
 date.fdata, 5
 eigen, 16
 fapply, 7, 19
 far, 4, 5, 8, 11–14, 26, 34, 35
 far.cv, 9, 10, 11
 fdata, 3, 6, 12, 13, 21, 23, 28, 29, 35
 interpol.matrix, 14
 invgen, 15
 is.na.fdata, 16
 kerfon, 13, 14, 17, 28
 lapply, 7
 maxfdata, 14, 19
 multplot, 14, 20, 23
 NA, 17
INDEX

orthonormalization, 21, 30, 31, 36

plot.far (far), 8
plot.fdata, 20, 21, 23
pred.persist, 24, 26
predict.far, 10, 25, 25
predict.kerfon, 18, 25, 26, 27
print, 18
print.far (far), 8
print.fdata (fdata), 13
print.kerfon (kerfon), 17
print.summary.fdata (fdata), 13

select.fdata, 29
simul.far, 15, 30, 33, 36, 38, 39
simul.far.sde, 32, 32, 38, 39
simul.far.wiener, 4, 32, 33, 34, 35, 38, 39
simul.farx, 2, 3, 15, 32, 33, 35, 39
simul.wiener, 4, 32–34, 38, 38
solve, 16
summary.fdata (fdata), 13
svd, 16

theoretical.coef, 15
theoretical.coef (simul.farx), 35