Package ‘fasstr’

December 11, 2021

Title Analyze, Summarize, and Visualize Daily Streamflow Data

Version 0.4.1

Depends R (>= 3.3.0)

License Apache License 2.0

BugReports https://github.com/bcgov/fasstr/issues

Encoding UTF-8

Imports dplyr (>= 0.8.1), e1071 (>= 1.7.0.1), fitdistrplus (>= 1.0.14), ggplot2 (>= 3.1.0), grDevices, openxlsx (>= 4.1.0), PearsonDS (>= 1.1), plyr (>= 1.8.4), purrr (>= 0.3.2), RcppRoll (>= 0.3.0), scales (>= 1.0.0), tidyhydat (>= 0.4.0), tidyr (>= 0.8.3), zyp (>= 0.10.1.1)

Suggests knitr, rmarkdown, testthat

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation no

Author Jon Goetz [aut, cre] (<https://orcid.org/0000-0002-4993-1119>), Carl James Schwarz [aut], Sam Albers [ctb] (<https://orcid.org/0000-0002-9270-7884>), Robin Pike [ctb], Province of British Columbia [cph]
Maintainer Jon Goetz <jon.goetz@gov.bc.ca>
Repository CRAN
Date/Publication 2021-12-10 23:40:02 UTC

R topics documented:

add_basin_area .. 3
add_cumulative_volume ... 4
add_cumulative_yield ... 6
add_daily_volume .. 7
add_daily_yield .. 8
add_date_variables .. 10
add_rolling_means .. 11
add_seasons .. 13
calc_all_annual_stats ... 14
calc_annual_cumulative_stats 18
calc_annual_flow_timing 20
calc_annual_lowflows ... 23
calc_annual_outside_normal 25
calc_annual_peaks ... 28
calc_annual_stats .. 30
calc_daily_cumulative_stats 33
calc_daily_stats ... 36
calc_flow_percentile ... 39
calc_longterm_daily_stats 41
calc_longterm_mean .. 44
calc_longterm_monthly_stats 46
calc_longterm_percentile 49
calc_monthly_cumulative_stats 51
calc_monthly_stats .. 54
compute_annual_frequencies 56
compute_annual_trends 60
compute_frequency_analysis 64
compute_frequency_quantile 66
compute_full_analysis 68
compute_hydat_peak_frequencies 72
fill_missing_dates .. 74
plot_annual_cumulative_stats 75
plot_annual_flow_timing 78
plot_annual_lowflows ... 80
plot_annual_means ... 82
plot_annual_outside_normal 84
plot_annual_stats ... 87
plot_daily_cumulative_stats 90
plot_daily_stats ... 93
plot_data_screening 96
plot_flow_data .. 98
add_basin_area

Description

Add a column of basin areas to a daily streamflow data set, in units of square kilometres.

Usage

```r
add_basin_area(data, groups = STATION_NUMBER, station_number, basin_area)
```

Arguments

- **data**
 Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.

- **groups**
 Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

- **station_number**
 Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

- **basin_area**
 Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
 (1) Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
 (2) A single numeric value to apply to all observations.
 (3) List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795, "08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.
Value

A tibble data frame of the original source data with an additional column:

Baseline_Area_sqkm
area of upstream drainage basin area, in square kilometres

Examples

Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

Add the HYDAT basin area to a data frame with station numbers
flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
add_basin_area(data = flow_data)

Add the HYDAT basin area to data from HYDAT
add_basin_area(station_number = "08NM116")

Set a custom basin area
add_basin_area(station_number = "08NM116",
 basin_area = 800)

Set multiple custom basin areas for multiple stations
add_basin_area(station_number = c("08NM116", "08NM242"),
 basin_area = c("08NM116" = 800, "08NM242" = 10))
}

add_cumulative_volume Add a daily cumulative volumetric flows column to daily flows

Description

Add a column of rolling daily cumulative volumetric flows on an annual basis to a daily streamflow data set. Adds the volumetric discharge from each day with the previous day(s) for each year, in units of cubic metres. The cumulative flows restart every year and are only calculated in years with complete data.

Usage

add_cumulative_volume(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 water_year_start = 1,
 months = 1:12
)
Arguments

- **data**: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.

- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.

- **values**: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

- **groups**: Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

- **station_number**: Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

- **water_year_start**: Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

- **months**: Numeric vector of months to add cumulative flows (e.g. 6:8 for Jun-Aug). Default accumulates to full years using all months (1:12).

Value

A tibble data frame of the source data with an additional column:

- **Cumul_Volume_m3**: cumulative volumetric flows for each day for each year, in units of cubic metres

Examples

```r
# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Add a column based on water years starting in August
add_cumulative_volume(station_number = "08NM116",
                      water_year_start = 8)
}
```
add_cumulative_yield Add a daily cumulative water yield column to daily flows

Description

Add a column of rolling daily cumulative water yields on an annual basis to a daily streamflow data set. Adds the water yields from each day with the previous day(s) for each year, in units of millimetres. Converts cumulative discharge to a depth of water based on the upstream drainage basin area from basin_area argument. The cumulative flows restart every year and are only calculated in years with complete data.

Usage

add_cumulative_yield(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 basin_area,
 water_year_start = 1,
 months = 1:12
)

Arguments

data: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups: Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number: Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
add_daily_volume

basin_area Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
(1) Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
(2) A single numeric value to apply to all observations.
(3) List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795,"08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.

water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

months Numeric vector of months to add cumulative flows. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

Value

A tibble data frame of the source data with an additional column:
Cumul_Yield_mm cumulative yield flows for each day for each year, in units of millimetres

Examples

Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

 # Add a column based on water years starting in August
 add_cumulative_yield(station_number = "08NM116",
 water_year_start = 8)

 # Add a column based on water years starting in August with a custom basin area to calculate yield
 add_cumulative_yield(station_number = "08NM116",
 water_year_start = 8,
 basin_area = 800)

}

add_daily_volume

Add a daily volumetric flows column to daily flows

Description

Add a column of daily volumetric flows to a daily streamflow data set, in units of cubic metres. Converts the discharge to a volume.

Usage

add_daily_volume(data, values = Value, station_number)
Arguments

- `data`: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g., station numbers). Leave blank or set to NULL if using `station_number` argument.
- `values`: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using `station_number` argument.
- `station_number`: Character string vector of seven digit Water Survey of Canada station numbers (e.g., "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using `data` argument.

Value

A tibble data frame of the source data with an additional column:

- `Volume_m3`: Daily total volumetric flow, in units of cubic metres

Examples

```r
# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {
  # Add a column of daily flow volumes
  add_daily_volume(station_number = "08NM116")
}
```

Description

Add a column of daily water yields to a daily streamflow data set, in units of millimetres. Converts the discharge to a depth of water based on the upstream drainage basin area.

Usage

```r
add_daily_yield(
  data,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  basin_area
)
```
add_daily_yield

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.

values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

basin_area Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
 (1) Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
 (2) A single numeric value to apply to all observations.
 (3) List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795, "08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.

Value

A tibble data frame of the source data with an additional column:

Yield_mm daily water yield, in units of millimetres

Examples

Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

 # Add a column of yields based on HYDAT basin area
 add_daily_yield(station_number = "08NM116")

 # Add a column of yields based on a custom basin area
 add_daily_yield(station_number = "08NM116",
 basin_area = 800)

}
add_date_variables Add year, month, and day of year variable columns to daily flows

Description

Add columns of CalendarYear (YYYY), Month (MM), MonthName (e.g. 'Jan'), WaterYear (YYYY), and DayofYear (1-365 or 366; of WaterYear); to a data frame with a column of dates called 'Date'. Water years are designated by the year in which they end. For example, Water Year 1999 (starting Oct) is from 1 Oct 1998 (DayofYear 1) to 30 Sep 1999 (DayofYear 365)).

Usage

```r
add_date_variables(data, dates = Date, station_number, water_year_start = 1)
```

Arguments

- `data`: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
- `dates`: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
- `station_number`: Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
- `water_year_start`: Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

Value

A tibble data frame of the source data with additional columns:

- **CalendarYear**: calendar year
- **Month**: numeric month (1 to 12)
- **MonthName**: month abbreviation (Jan-Dec)
- **WaterYear**: year starting from the selected month start, water_year_start
- **DayofYear**: day of the year from the selected month start (1-365 or 366)

Examples

```r
# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Add date variables using calendar years
```
add_rolling_means

add_date_variables(station_number = "08NM116")

Add date variables using water years starting in August
add_date_variables(station_number = "08NM116",
 water_year_start = 8)

add_rolling_means Add rolling n-day average column(s) to daily flows

Description

Adds selected n-day rolling means to a daily streamflow data set. Based on selected n-days and alignment, the rolling mean for a given day is obtained by averaging the adjacent dates of daily mean values. For example, rolling days of '7' and 'right' alignment would obtain a mean of the given and previous 6 days of daily mean flow.

Usage

add_rolling_means(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 roll_days = c(3, 7, 30),
 roll_align = "right"
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.

dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.

values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
add_rolling_means

station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

roll_days Numeric values of the number of days to apply a rolling mean. Default c(3, 7, 30).

roll_align Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

Value

A data frame of the source data with an additional column(s):

QnDay rolling means of the n-day flow values of the designated date and adjacent dates, direction of mean specified by roll_align

Default additional columns:

Q3Day rolling means of the 3-day flow values of the designated date and previous 2 days (roll_align = "right")

Q7Day rolling means of the 7-day flow values of the designated date and previous 6 days (roll_align = "right")

Q30Day rolling means of the 30-day flow values of the designated date and previous 29 days (roll_align = "right")

Examples

Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

Add default 3, 7, and 30-day rolling mean columns, with "right" alignment
add_rolling_means(station_number = "08NM116")

Add custom 5 and 10-day rolling mean columns
add_rolling_means(station_number = "08NM116",
 roll_days = c(5,10))

Add default 3, 7, and 30-day rolling mean columns, with "left" alignment
add_rolling_means(station_number = "08NM116",
 roll_align = "left")

}
add_seasons

Add a column of seasons

Description

Adds a column of seasons identifiers to a data frame with a column of dates called 'Date'. The length of seasons, in months, is provided using the seasons_length argument. As seasons are grouped by months the length of the seasons must be divisible into 12 with one of the following season lengths: 1, 2, 3, 4, 6, or 12 months. The start of the first season coincides with the start month of each year; 'Jan-Jun' for 6-month seasons starting with calendar years or 'Dec-Feb' for 3-month seasons starting with water year starting in December.

Usage

```r
add_seasons(
  data,
  dates = Date,
  station_number,
  water_year_start = 1,
  seasons_length
)
```

Arguments

- **data**: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
- **station_number**: Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
- **water_year_start**: Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
- **seasons_length**: Numeric value indicating the desired length of seasons in months, divisible into 12. Required.

Value

A tibble data frame of the source data with additional column:

- **Season**: season identifier labelled by the start and end month of the season
Examples

Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

Add a column with four annual seasons starting in January
add_seasons(station_number = "08NM116",
 seasons_length = 4)

Add a column with two annual seasons (of 6 months length) starting in October
add_seasons(station_number = "08NM116",
 water_year_start = 10,
 seasons_length = 6)
}

calc_all_annual_stats Calculate all fasstr annual statistics

Description

Calculates annual statistics from all annual fasstr functions from a daily streamflow data set. Data is ideally long-term and continuous with minimal missing/seasonal data as annual statistics are calculated. Calculates statistics from all values, unless specified. Returns a tibble with statistics.

Data calculated using the following functions:

• calc_annual_stats()
• calc_annual_lowflows()
• calc_annual_cumulative_stats()
• calc_annual_flow_timing()
• calc_annual_outside_normal()
• calc_monthly_stats()

Usage

calc_all_annual_stats(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 basin_area,
 water_year_start = 1,
 start_year,
 end_year,
 exclude_years,
 months = 1:12,
 annual_percentiles = c(10, 90),
 monthly_percentiles = c(10, 20),
 stats_days = 1,
 stats_align = "right",
 lowflow_days = c(1, 3, 7, 30),
 lowflow_align = "right",
 timing_percent = c(25, 33, 50, 75),
 normal_percentiles = c(25, 75),
 transpose = FALSE,
 ignore_missing = FALSE,
 allowed_missing_annual = ifelse(ignore_missing, 100, 0),
 allowed_missing_monthly = ifelse(ignore_missing, 100, 0)
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.

dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.

values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

basin_area Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
1. Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
2. A single numeric value to apply to all observations.
3. List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795,"08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.

water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
calc_all_annual_stats

- **end_year**: Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

- **exclude_years**: Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

- **months**: Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12). If not 1:12, seasonal total yield and volumetric flows will not be included.

- **annual_percentiles**: Numeric vector of percentiles to calculate annually. Set to NA if none required. Used for `calc_annual_stats()` function. Default `c(10,90)`.

- **monthly_percentiles**: Numeric vector of percentiles to calculate monthly for each year. Set to NA if none required. Used for `calc_monthly_stats()` function. Default `c(10,20)`.

- **stats_days**: Numeric vector of the number of days to apply a rolling mean on basic stats. Default `c(1)`. Used for `calc_annual_stats()` and `calc_monthly_stats()` functions.

- **stats_align**: Character string identifying the direction of the rolling mean on basic stats from the specified date, either by the first (`'left'`), last (`'right'`), or middle (`'center'`) day of the rolling n-day group of observations. Default `'right'`. Used for `calc_annual_stats()`, `calc_monthly_stats()`, and `calc_annual_outside_normal()` functions.

- **lowflow_days**: Numeric vector of the number of days to apply a rolling mean on low flow stats. Default `c(1,3,7,30)`. Used for `calc_lowflow_stats()` function.

- **lowflow_align**: Character string identifying the direction of the rolling mean on low flow stats from the specified date, either by the first (`'left'`), last (`'right'`), or middle (`'center'`) day of the rolling n-day group of observations. Default `'right'`. Used for `calc_lowflow_stats()` function.

- **timing_percent**: Numeric vector of percents of annual total flows to determine dates. Used for `calc_annual_flow_timing()` function. Default `c(25,33.3,50,75)`.

- **normal_percentiles**: Numeric vector of two values, lower and upper percentiles, respectively indicating the limits of the normal range. Default `c(25,75)`.

- **transpose**: Logical value indicating whether to transpose rows and columns of results. Default FALSE.

- **ignore_missing**: Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

- **allowed_missing_annual**: Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate an annual statistic (0 to 100 percent). If `'ignore_missing = FALSE'` then it defaults to 0 (zero missing dates allowed), if `'ignore_missing = TRUE'` then it defaults to 100 (any missing dates allowed); consistent with `ignore_missing` usage. Supersedes `ignore_missing` when used. Only for annual means, percentiles, minimums, and maximums.
allowed_missing_monthly

Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a monthly statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used. Only for monthly means, percentiles, minimums, and maximums.

Value

A tibble data frame with column "Year" and then 107 (default) variables from the fasstr annual functions. See listed functions above for default variables. Transposing data creates a column of "Statistics" and subsequent columns for each year selected.

See Also

calc_annual_stats, calc_annual_lowflows, calc_annual_cumulative_stats, calc_annual_flow_timing, calc_monthly_stats, calc_annual_outside_normal

Examples

Not run:

Working examples:

Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

Calculate all annual statistics from this package with default arguments
calc_all_annual_stats(station_number = "08NM116")

Calculate all annual statistics from this package with default arguments
with some default arguments shown to customize metrics
calc_all_annual_stats(station_number = "08NM116",
annual_percentiles = c(10,90),
monthly_percentiles = c(10,20),
stats_days = 1,
stats_align = "right",
lowflow_days = c(1,3,7,30),
lowflow_align = "right",
timing_percent = c(25,33,50,75),
normal_percentiles = c(25,75))

}

End(Not run)
calc_annual_cumulative_stats

Description

Calculates annual and seasonal total flows, as volumetric discharge or water yields, from a daily streamflow data set. For water year and seasonal data, the year is identified by the year in which the year or season ends. Two-seasons and four-seasons per year are calculated, with each 6 and 3-month seasons starting with the first month of the year (Jan for calendar year, specified for water year). Each season is designated by the calendar or water year in which it occurs. Calculates statistics from all values from complete years, unless specified. Returns a tibble with statistics.

Usage

calc_annual_cumulative_stats(
 data, # Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
 dates = Date, # Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
 values = Value, # Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
 groups = STATION_NUMBER, # Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER'
 station_number, # Leave blank or set to NULL if using station_number argument.
 use_yield = FALSE, # Leave blank if using station_number argument.
 basin_area, # Leave blank if using station_number argument.
 water_year_start = 1, # Leave blank if using station_number argument.
 start_year, # Leave blank if using station_number argument.
 end_year, # Leave blank if using station_number argument.
 exclude_years, # Leave blank if using station_number argument.
 months = 1:12, # Leave blank if using station_number argument.
 include_seasons = FALSE, # Leave blank if using station_number argument.
 transpose = FALSE
)

Arguments

data

dates

values

groups
if present. Remove the 'STATION_NUMBER' column beforehand to remove
this grouping. Leave blank if using station_number argument.

station_number Character string vector of seven digit Water Survey of Canada station numbers
(e.g. "08NM116") of which to extract daily streamflow data from a HYDAT
database. Requires tidyhydat package and a HYDAT database. Leave blank if
using data argument.

use_yield Logical value indicating whether to calculate area-based water yield, in mm,
instead of volumetric discharge. Default FALSE.

basin_area Upstream drainage basin area, in square kilometres, to apply to observations.
Three options:
(1) Leave blank if groups is STATION_NUMBER with HYDAT station num-
bers to extract basin areas from HYDAT.
(2) A single numeric value to apply to all observations.
(3) List each basin area for each group/station in groups (can override HYDAT
value if listed) as such c("08NM116" = 795, "08NM242" = 10). If group is not
listed the HYDAT area will be applied if it exists, otherwise it will be NA.

water_year_start Numeric value indicating the month (1 through 12) of the start of water year for
analysis. Default 1.

start_year Numeric value of the first year to consider for analysis. Leave blank or set well
before start date (i.e. 1800) to use from the first year of the source data.

end_year Numeric value of the last year to consider for analysis. Leave blank or set well
after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years Numeric vector of years to exclude from analysis. Leave blank or set to NULL to
include all years.

months Numeric vector of months to include in analysis (e.g. 6:8 for Jun-Aug). De-
fault summarizes all months (1:12). If not all months, seasonal total yield and
volumetric flows will not be included.

include_seasons Logical value indication whether to include seasonal yields or volumetric dis-
charges. Default TRUE.

transpose Logical value indicating whether to transpose rows and columns of results. De-
fault FALSE.

Value

A tibble data frame with the following columns, ending with '_Volume_m3' or '_Yield_mm' based
on selection:

Year calendar or water year selected
Total_* annual (or selected months) total flow, in m3 or mm

Default seasonal columns:

MMM-MMM_* first of two season total flows, in m3 or mm
MMM-MMM_* second of two season total flows, in m3 or mm
calc_annual_flow_timing

Description

Calculates the timing (day of year and date) of portions of total annual flow of daily flow values from a daily streamflow data set. Calculates statistics from all values from complete years, unless specified. Returns a tibble with statistics.

Usage

```r
calc_annual_flow_timing(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number, 
  percent_total = c(25, 33.3, 50, 75),
  water_year_start = 1,
  start_year,
  end_year,
)```

### Examples

```r
Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

 # Calculate annual total volumetric flow statistics
 calc_annual_cumulative_stats(station_number = "08NM116")

 # Calculate annual total yield statistics with default HYDAT basin area
 calc_annual_cumulative_stats(station_number = "08NM116",
 use_yield = TRUE)

 # Calculate annual total yield statistics with a custom basin area
 calc_annual_cumulative_stats(station_number = "08NM116",
 use_yield = TRUE,
 basin_area = 800)
}
```
calc_annual_flow_timing

eclude_years, months = 1:12, transpose = FALSE

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
percent_total Numeric vector of percents of total annual flows to determine dates. Default c(25,33.3,50,75).
water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
start_year Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
end_year Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.
exclude_years Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.
months Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).
transpose Logical value indicating whether to transpose rows and columns of results. Default FALSE.

Value

A tibble data frame with the following columns:
calc_annual_flow_timing

Year         calendar or water year selected
DoY_'n'pct_TotalQ   day of year for each n-percent of total volumetric discharge
Date_'n'pct_TotalQ   date (YYYY-MM-DD) for each n-percent of total volumetric discharge

Default columns:
DoY_25pct_TotalQ   day of year of 25-percent of total volumetric discharge
Date_25pct_TotalQ   date (YYYY-MM-DD) of 25-percent of total volumetric discharge
DoY_33.3pct_TotalQ   day of year of 33.3-percent of total volumetric discharge
Date_33.3pct_TotalQ   date (YYYY-MM-DD) of 33.3-percent of total volumetric discharge
DoY_50pct_TotalQ   day of year of 50-percent of total volumetric discharge
Date_50pct_TotalQ   date (YYYY-MM-DD) of 50-percent of total volumetric discharge
DoY_75pct_TotalQ   day of year of 75-percent of total volumetric discharge
Date_75pct_TotalQ   date (YYYY-MM-DD) of 75-percent of total volumetric discharge

Transposing data creates a column of `Statistics` (just DoY, not Date values) and subsequent columns for each year selected.

References


Examples

```r
Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

 # Calculate annual flow timings with default percent of annual totals
 calc_annual_flow_timing(station_number = "08NM116")

 # Calculate annual flow timings with custom percent of annual totals
 calc_annual_flow_timing(station_number = "08NM116",
 percent_total = 50)
}
```
**Description**

Calculates annual n-day minimum values, and the day of year and date of occurrence of daily flow values from a daily streamflow data set. Calculates statistics from all values, unless specified. Returns a tibble with statistics.

**Usage**

```r
calc_annual_lowflows(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 roll_days = c(1, 3, 7, 30),
 roll_align = "right",
 water_year_start = 1,
 start_year,
 end_year,
 exclude_years,
 months = 1:12,
 transpose = FALSE,
 ignore_missing = FALSE,
 allowed_missing = ifelse(ignore_missing, 100, 0)
)
```

**Arguments**

- **data**
  - Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using `station_number` argument.

- **dates**
  - Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using `station_number` argument.

- **values**
  - Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using `station_number` argument.

- **groups**
  - Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using `station_number` argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

roll_days Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12, 1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

transpose Logical value indicating whether to transpose rows and columns of results. Default FALSE.

ignore_missing Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

allowed_missing Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used.

Value

A tibble data frame with the following columns:

Year calendar or water year selected

Min_'n'_Day annual minimum for each n-day rolling mean, direction of mean specified by roll_align

Min_'n'_Day_DoY day of year for each annual minimum of n-day rolling mean

Min_'n'_Day_Date date (YYYY-MM-DD) for each annual minimum of n-day rolling mean

Default columns:
calc_annual_outside_normal

Min_1_Day  annual 1-day mean minimum (roll_align = right)
Min_1_Day_DoY  day of year of annual 1-day mean minimum
Min_1_Day_Date  date (YYYY-MM-DD) of annual 1-day mean minimum
Min_3_Day  annual 3-day mean minimum (roll_align = right)
Min_3_Day_DoY  day of year of annual 3-day mean minimum
Min_3_Day_Date  date (YYYY-MM-DD) of annual 3-day mean minimum
Min_7_Day  annual 7-day mean minimum (roll_align = right)
Min_7_Day_DoY  day of year of annual 7-day mean minimum
Min_7_Day_Date  date (YYYY-MM-DD) of annual 7-day mean minimum
Min_30_Day  annual 30-day mean minimum (roll_align = right)
Min_30_Day_DoY  day of year of annual 30-day mean minimum
Min_30_Day_Date  date (YYYY-MM-DD) of annual 30-day mean minimum

Transposing data creates a column of 'Statistics' and subsequent columns for each year selected. 'Date' statistics not transposed.

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {
  # Calculate annual 1, 3, 7, and 30-day (default) low flows with
  # default alignment ('right')
  calc_annual_lowflows(station_number = "08NM116")

  # Calculate custom 3 and 7-day annual low flows with 'center' alignment
  calc_annual_lowflows(station_number = "08NM116",
                       roll_days = c(3,7),
                       roll_align = "center")
}

calc_annual_outside_normal

*Calculate annual days above and below normal*

**Description**

Calculates the number of days per year outside of the 'normal' range (typically between 25 and 75th percentiles) for each day of the year. Upper and lower-range percentiles are calculated for each day of the year of from all years, and then each daily flow value for each year is compared. All days above or below the normal range are included. Analysis methodology is based on Environment and Climate Change Canada’s [Water Quantity indicator](#) from the Canadian Environmental Sustainability Indicators. Calculates statistics from all values from complete years, unless specified. Returns a tibble with statistics.
Usage

calc_annual_outside_normal(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  normal_percentiles = c(25, 75),
  roll_days = 1,
  roll_align = "right",
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  months = 1:12,
  transpose = FALSE
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
normal_percentiles Numeric vector of two values, lower and upper percentiles, respectively indicating the limits of the normal range. Default c(25, 75).
roll_days Numeric value of the number of days to apply a rolling mean. Default 1.
roll_align Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.
### `calc_annual_outside_normal`

**water_year_start**
- Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

**start_year**
- Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

**end_year**
- Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

**exclude_years**
- Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

**months**
- Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when `water_year_start` = 10 (Oct). Default summarizes all months (1:12).

**transpose**
- Logical value indicating whether to transpose rows and columns of results. Default FALSE.

### Value

A tibble data frame with the following columns:

- **Year**
  - calendar or water year selected
- **Days_Below_Normal**
  - number of days per year below the daily normal (default 25th percentile)
- **Days_Above_Normal**
  - number of days per year above the daily normal (default 75th percentile)
- **Days_Outside_Normal**
  - number of days per year below and above the daily normal (default 25/75th percentile)

Transposing data creates a column of "Statistics" and subsequent columns for each year selected.

### Examples

```r
Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

 # Calculate statistics with default limits of normal (25 and 75th percentiles)
 calc_annual_outside_normal(station_number = "08NM116")

 # Calculate statistics with custom limits of normal
 calc_annual_outside_normal(station_number = "08NM116",
 normal_percentiles = c(10,90))
}
```
**Description**

Calculates annual n-day minimum and maximum values, and the day of year and date of occurrence of daily flow values from a daily streamflow data set. Calculates statistics from all values, unless specified. Returns a tibble with statistics.

**Usage**

```r
calc_annual_peaks(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 roll_days = 1,
 roll_align = "right",
 water_year_start = 1,
 start_year,
 end_year,
 exclude_years,
 months = 1:12,
 transpose = FALSE,
 ignore_missing = FALSE,
 allowed_missing = ifelse(ignore_missing, 100, 0)
)
```

**Arguments**

- **data**: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.

- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.

- **values**: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

- **groups**: Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
calc_annual_peaks

station_number  Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

roll_days  Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align  Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year  Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years  Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

transpose  Logical value indicating whether to transpose rows and columns of results. Default FALSE.

ignore_missing  Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

allowed_missing  Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used.

Value

A tibble data frame with the following columns:

Year  calendar or water year selected
Min_'n'_Day  annual minimum for selected n-day rolling mean, direction of mean specified by roll_align
Min_'n'_Day_DoY  day of year for selected annual minimum of n-day rolling mean
Min_'n'_Day_Date  date (YYYY-MM-DD) for selected annual minimum of n-day rolling mean
Max_'n'_Day  annual maximum for selected n-day rolling mean, direction of mean specified by roll_align
calc_annual_stats

Max_'n'_Day_DoY
day of year for selected annual maximum of n-day rolling mean

Max_'n'_Day_Date
date (YYYY-MM-DD) for selected annual maximum of n-day rolling mean

Default columns:

Min_1_Day annual 1-day mean minimum (roll_align = right)
Min_1_Day_DoY day of year of annual 1-day mean minimum
Min_1_Day_Date date (YYYY-MM-DD) of annual 1-day mean minimum
Max_1_Day annual 1-day mean maximum (roll_align = right)
Max_1_Day_DoY day of year of annual 1-day mean maximum
Max_1_Day_Date date (YYYY-MM-DD) of annual 1-day mean maximum

Transposing data creates a column of 'Statistics' and subsequent columns for each year selected. 'Date' statistics not transposed.

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

  # Calculate annual 1-day (default) peak flow data with
  # default alignment ('right')
  calc_annual_peaks(station_number = "08NM116")

  # Calculate custom 3-day peak flow data with 'center' alignment
  calc_annual_peaks(station_number = "08NM116",
                    roll_days = 3,
                    roll_align = "center")

}

calc_annual_stats Calculate annual summary statistics

Description

Calculates means, medians, maximums, minimums, and percentiles for each year from all years of a daily streamflow data set. Calculates statistics from all values, unless specified. Returns a tibble with statistics.
Usage

calc_annual_stats(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  roll_days = 1,
  roll_align = "right",
  percentiles = c(10, 90),
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  months = 1:12,
  transpose = FALSE,
  ignore_missing = FALSE,
  allowed_missing = ifelse(ignore_missing, 100, 0)
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
roll_days Numeric value of the number of days to apply a rolling mean. Default 1.
roll_align Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.
percentiles Numeric vector of percentiles to calculate. Set to NA if none required. Default c(10, 90).
**calc_annual_stats**

**water_year_start**
Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

**start_year**
Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

**end_year**
Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

**exclude_years**
Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

**months**
Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

**transpose**
Logical value indicating whether to transpose rows and columns of results. Default FALSE.

**ignore_missing**
Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

**allowed_missing**
Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used.

**Value**
A tibble data frame with the following columns:

<table>
<thead>
<tr>
<th>Year</th>
<th>calendar or water year selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>annual mean of all daily flows for a given year</td>
</tr>
<tr>
<td>Median</td>
<td>annual median of all daily flows for a given year</td>
</tr>
<tr>
<td>Maximum</td>
<td>annual maximum of all daily flows for a given year</td>
</tr>
<tr>
<td>Minimum</td>
<td>annual minimum of all daily flows for a given year</td>
</tr>
<tr>
<td>P’n’</td>
<td>each annual n-th percentile selected of all daily flows</td>
</tr>
</tbody>
</table>

Default percentile columns:

| P10       | annual 10th percentile of all daily flows for a given year |
| P90       | annual 90th percentile of all daily flows for a given year |

Transposing data creates a column of "Statistics" and subsequent columns for each year selected.
Examples

```r
Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

 # Calculate annual statistics from a data frame using the data argument
 flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
 calc_annual_stats(data = flow_data)

 # Calculate annual statistics using station_number argument
 calc_annual_stats(station_number = "08NM116")

 # Calculate annual statistics regardless if there
 # is missing data for a given year
 calc_annual_stats(station_number = "08NM116",
 ignore_missing = TRUE)

 # Calculate annual statistics for water years starting in October
 calc_annual_stats(station_number = "08NM116",
 water_year_start = 10)

 # Calculate annual statistics filtered for custom years
 calc_annual_stats(station_number = "08NM116",
 start_year = 1981,
 end_year = 2010,

 # Calculate annual statistics for 7-day flows for July-September
 # months only, with 25 and 75th percentiles
 calc_annual_stats(station_number = "08NM116",
 roll_days = 7,
 months = 7:9,
 percentiles = c(25,75))
}
```

calc_daily_cumulative_stats

*Calculate cumulative daily flow statistics*

Description

Calculate cumulative daily flow statistics for each day of the year of daily flow values from a daily streamflow data set. Defaults to volumetric cumulative flows, can use `use_yield` and `basin_area` to convert to area-based water yield. Calculates statistics from all values from all complete years, unless specified. Returns a tibble with statistics.

Usage

```r
calc_daily_cumulative_stats(
```
calc_daily_cumulative_stats

data, 
dates = Date, 
values = Value, 
groups = STATION_NUMBER, 
station_number, 
percentiles = c(5, 25, 75, 95), 
use_yield = FALSE, 
basin_area, 
water_year_start = 1,  
start_year, 
end_year,  
extclude_years, 
months = 1:12,  
transpose = FALSE)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
percentiles Numeric vector of percentiles to calculate. Set to NA if none required. Default c(5, 25, 75, 95).
use_yield Logical value indicating whether to calculate area-based water yield, in mm, instead of volumetric discharge. Default FALSE.
basin_area Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
(1) Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
(2) A single numeric value to apply to all observations.
(3) List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795,"08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.

**water_year_start**
Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

**start_year**
Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

**end_year**
Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

**exclude_years**
Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

**months**
Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12). Need to be consecutive months for given year/water year to work properly.

**transpose**
Logical value indicating whether to transpose rows and columns of results. Default FALSE.

**Value**
A data frame with the following columns, default units in cubic metres, millimetres if use_yield and basin_area provided:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>date (MMM-DD) of daily cumulative statistics</td>
</tr>
<tr>
<td>DayofYear</td>
<td>day of year of daily cumulative statistics</td>
</tr>
<tr>
<td>Mean</td>
<td>daily mean of all cumulative flows for a given day of the year</td>
</tr>
<tr>
<td>Median</td>
<td>daily mean of all cumulative flows for a given day of the year</td>
</tr>
<tr>
<td>Maximum</td>
<td>daily mean of all cumulative flows for a given day of the year</td>
</tr>
<tr>
<td>Minimum</td>
<td>daily mean of all cumulative flows for a given day of the year</td>
</tr>
<tr>
<td>P’n’</td>
<td>each daily n-th percentile selected of all cumulative flows for a given day of the year</td>
</tr>
</tbody>
</table>

Default percentile columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5</td>
<td>daily 5th percentile of all cumulative flows for a given day of the year</td>
</tr>
<tr>
<td>P25</td>
<td>daily 25th percentile of all cumulative flows for a given day of the year</td>
</tr>
<tr>
<td>P75</td>
<td>daily 75th percentile of all cumulative flows for a given day of the year</td>
</tr>
<tr>
<td>P95</td>
<td>daily 95th percentile of all cumulative flows for a given day of the year</td>
</tr>
</tbody>
</table>

Transposing data creates a column of "Statistics" and subsequent columns for each year selected.
Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Calculate annual daily cumulative yield statistics
# with default HYDAT basin area
calc_daily_cumulative_stats(station_number = "08NM116",
    use_yield = TRUE)

# Calculate annual daily cumulative yield statistics
# with custom basin area
calc_daily_cumulative_stats(station_number = "08NM116",
    use_yield = TRUE,
    basin_area = 800)
}

---

**calc_daily_stats**  
*Calculate daily summary statistics*

**Description**

Calculates means, medians, maximums, minimums, and percentiles for each day of the year of flow values from a daily streamflow data set. Can determine statistics of rolling mean days (e.g. 7-day flows) using the `roll_days` argument. Note that statistics are based on the numeric days of year (1-365) and not the date of year (Jan 1 - Dec 31). Calculates statistics from all values, unless specified. Returns a tibble with statistics.

**Usage**

```r
calc_daily_stats(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 percentiles = c(5, 25, 75, 95),
 roll_days = 1,
 roll_align = "right",
 water_year_start = 1,
 start_year,
 end_year,
 exclude_years,
 complete_years = FALSE,
 months = 1:12,
 transpose = FALSE,
 ignore_missing = FALSE
)
```
Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.

dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.

values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

percentiles Numeric vector of percentiles to calculate. Set to NA if none required. Default c(5,25,75,95).

roll_days Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1880) to use from the first year of the source data.

end_year Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

complete_years Logical values indicating whether to include only years with complete data in analysis. Default FALSE.

months Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

transpose Logical value indicating whether to transpose rows and columns of results. Default FALSE.

ignore_missing Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.
Value

A tibble data frame with the following columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>date (MMM-DD) of daily statistics</td>
</tr>
<tr>
<td>DayofYear</td>
<td>day of year of daily statistics</td>
</tr>
<tr>
<td>Mean</td>
<td>daily mean of all flows for a given day of the year</td>
</tr>
<tr>
<td>Median</td>
<td>daily mean of all flows for a given day of the year</td>
</tr>
<tr>
<td>Maximum</td>
<td>daily mean of all flows for a given day of the year</td>
</tr>
<tr>
<td>Minimum</td>
<td>daily mean of all flows for a given day of the year</td>
</tr>
<tr>
<td>P’n’</td>
<td>each daily n-th percentile selected of all flows for a given day of the year</td>
</tr>
</tbody>
</table>

Default percentile columns:

- **P5**: daily 5th percentile of all flows for a given day of the year
- **P25**: daily 25th percentile of all flows for a given day of the year
- **P75**: daily 75th percentile of all flows for a given day of the year
- **P95**: daily 95th percentile of all flows for a given day of the year

Transposing data creates a column of "Statistics" and subsequent columns for each year selected.

Examples

```r
Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

Calculate daily statistics using station_number argument with defaults
calc_daily_stats(station_number = "08NM116",
 start_year = 1980)

Calculate daily statistics regardless if there is missing data for a given day of year
calc_daily_stats(station_number = "08NM116",
 ignore_missing = TRUE)

Calculate daily statistics using only years with no missing data
calc_daily_stats(station_number = "08NM116",
 complete_years = TRUE)

Calculate daily statistics for water years starting in October between 1980 and 2010
calc_daily_stats(station_number = "08NM116",
 start_year = 1980,
 end_year = 2010,
 water_year_start = 10)
}
```
**calc_flow_percentile**  
*Calculate the percentile rank of a flow value*

**Description**
Calculates the percentile rank of a discharge value compared to all flow values of a streamflow data set. Looks up the value in the distribution (stats::ecdf() function) of all daily discharge values from all years, unless specified. Returns a tibble with statistics.

**Usage**
```
calc_flow_percentile(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 roll_days = 1,
 roll_align = "right",
 flow_value,
 water_year_start = 1,
 start_year,
 end_year,
 exclude_years,
 complete_years = FALSE,
 months = 1:12
)
```

**Arguments**
- **data**: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
- **values**: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
- **groups**: Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
calc_flow_percentile

station_number  Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

roll_days  Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align  Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

flow_value  A numeric flow value of which to determine the percentile rank. Required.

water_year_start  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year  Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years  Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

complete_years  Logical values indicating whether to include only years with complete data in analysis. Default FALSE.

months  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

Value

A tibble data frame, or a single numeric value if no station number provided, of the percentile rank of a given flow value.

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {
  # Calculate the percentile rank of a 10-cms flow value from a full record
  calc_flow_percentile(station_number = "08NM116",
                      flow_value = 10)

  # Calculate the percentile rank of a 10-cms flow value from years with no missing data
  calc_flow_percentile(station_number = "08NM116",
                       complete_years = TRUE,
                       flow_value = 10)

  # Calculate the percentile rank of a 10-cms flow value for June from years with no missing data
  calc_flow_percentile(station_number = "08NM116",
                       complete_years = TRUE,
                       months = 6,
                       flow_value = 10)
}
**calc_longterm_daily_stats**

*Calculate long-term summary statistics from daily mean flows*

**Description**

Calculates the long-term mean, median, maximum, minimum, and percentiles of daily flow values for over all months and all data (Long-term) from a daily streamflow data set. Calculates statistics from all values, unless specified. Returns a tibble with statistics.

**Usage**

```r
calc_longterm_daily_stats(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 percentiles = c(10, 90),
 roll_days = 1,
 roll_align = "right",
 water_year_start = 1,
 start_year,
 end_year,
 exclude_years,
 months = 1:12,
 complete_years = FALSE,
 include_longterm = TRUE,
 custom_months,
 custom_months_label,
 transpose = FALSE,
 ignore_missing = FALSE
)
```

**Arguments**

- **data**: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
calc_longterm_daily_stats

values
Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

groups
Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number
Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

percentiles
Numeric vector of percentiles to calculate. Set to NA if none required. Default c(10,90).

roll_days
Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align
Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start
Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year
Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year
Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years
Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months
Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12, 1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

complete_years
Logical values indicating whether to include only years with complete data in analysis. Default FALSE.

include_longterm
Logical value indicating whether to include long-term calculation of all data. Default TRUE.

custom_months
Numeric vector of months to combine to summarize (ex. 6:8 for Jun-Aug). Adds results to the end of table. If wanting months that overlap calendar years (ex. Oct-Mar), choose water_year_start that begins before the first month listed. Leave blank for no custom month summary.

custom_months_label
Character string to label custom months. For example, if months = 7:9 you may choose "Summer" or "Jul-Sep". Default "Custom-Months".

transpose
Logical value indicating whether to transpose rows and columns of results. Default FALSE.
ignore_missing Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

Value

A tibble data frame with the following columns:

- Month month of the year, included 'Long-term' for all months, and 'Custom-Months' if selected
- Mean mean of all daily data for a given month and long-term over all years
- Median median of all daily data for a given month and long-term over all years
- Maximum maximum of all daily data for a given month and long-term over all years
- Minimum minimum of all daily data for a given month and long-term over all years
- P'n' each n-th percentile selected for a given month and long-term over all years

Default percentile columns:

- P10 annual 10th percentile selected for a given month and long-term over all years
- P90 annual 90th percentile selected for a given month and long-term over all years

Transposing data creates a column of "Statistics" and subsequent columns for each year selected.

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Calculate long-term statistics using data argument with defaults
calc_longterm_daily_stats(data = flow_data,
                            start_year = 1980)

# Calculate long-term statistics using station_number argument with defaults
calc_longterm_daily_stats(station_number = "08NM116",
                           start_year = 1980)

# Calculate long-term statistics regardless if there is missing data for a given year
calc_longterm_daily_stats(station_number = "08NM116",
                           ignore_missing = TRUE)

# Calculate long-term statistics for water years starting in October
calc_longterm_daily_stats(station_number = "08NM116",
                           start_year = 1980,
                           water_year_start = 10)

# Calculate long-term statistics with custom years and percentiles
calc_longterm_daily_stats(station_number = "08NM116",
                           start_year = 1981,
                           end_year = 2010,
calc_longterm_mean

Calculate the long-term mean annual discharge

Description

Calculates the long-term mean annual discharge (MAD) from a daily streamflow data set. Calculates statistics from all values, unless specified. Returns a tibble with statistics.

Usage

calc_longterm_mean(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  roll_days = 1,
  roll_align = "right",
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  complete_years = FALSE,
  months = 1:12,
  percent_MAD,
  transpose = FALSE
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
calc_longterm_mean

values
Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

groups
Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number
Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

roll_days
Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align
Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start
Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year
Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year
Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years
Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

complete_years
Logical values indicating whether to include only years with complete data in analysis. Default FALSE.

months
Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

percent_MAD
Numeric vector of percents of long-term mean annual discharge to add to the table (ex. 20 for 20 percent MAD or c(5,10,20) for multiple portions of MAD). Leave blank or set to NA for no values to be calculated.

transpose
Logical value indicating whether to transpose rows and columns of results. Default FALSE.

Value
A tibble data frame of numeric values of a long-term mean (and percent of long-term mean if selected) of selected years and months.

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {


# Calculate the long-term mean annual discharge (MAD) using only years with no missing data
calc_longterm_mean(station_number = "08NM116",
complete_years = TRUE)

# Calculate the long-term MAD and 5, 10 and 20-percent MADs using only years with no missing data
calc_longterm_mean(station_number = "08NM116",
complete_years = TRUE,
percent_MAD = c(5,10,20))

calc_longterm_monthly_stats

*Calculate long-term summary statistics from annual monthly mean flows*

**Description**

Calculates the long-term mean, median, maximum, minimum, and percentiles of annual monthly mean flow values for all months and all data (Long-term) from a daily streamflow data set. Calculates statistics from all values, unless specified. Returns a tibble with statistics.

**Usage**

```
calc_longterm_monthly_stats(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 percentiles = c(10, 90),
 roll_days = 1,
 roll_align = "right",
 water_year_start = 1,
 start_year,
 end_year,
 exclude_years,
 months = 1:12,
 complete_years = FALSE,
 include_annual = TRUE,
 custom_months,
 custom_months_label,
 transpose = FALSE,
 ignore_missing = FALSE
)
```
Arguments

data: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups: Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number: Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
percentiles: Numeric vector of percentiles to calculate. Set to NA if none required. Default c(10,90).
roll_days: Numeric value of the number of days to apply a rolling mean. Default 1.
roll_align: Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.
water_year_start: Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
start_year: Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
end_year: Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.
exclude_years: Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.
months: Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).
complete_years: Logical values indicating whether to include only years with complete data in analysis. Default FALSE.
include_annual: Logical value indicating whether to include annual calculation of all months. Default TRUE.
custom_months: Numeric vector of months to combine to summarize (ex. 6:8 for Jun-Aug). Adds results to the end of table. If wanting months that overlap calendar years (ex. Oct-Mar), choose water_year_start that begins before the first month listed. Leave blank for no custom month summary.
calc_longterm_monthly_stats

custom_months_label
Character string to label custom months. For example, if months = 7:9 you may choose "Summer" or "Jul-Sep". Default "Custom-Months".

transpose Logical value indicating whether to transpose rows and columns of results. Default FALSE.

ignore_missing Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

Value

A tibble data frame with the following columns:

Month    month of the year, included 'Annual' for all months, and 'Custom-Months' if selected
Mean     mean of all annual monthly means for a given month over all years
Median   median of all annual monthly means for a given month over all years
Maximum  maximum of all annual monthly means for a given month over all years
Minimum  minimum of all annual monthly means for a given month over all years
P'n'     each n-th percentile selected for annual monthly means for a given month over all years

Default percentile columns:

P10      annual 10th percentile selected for annual monthly means for a given month over all years
P90      annual 90th percentile selected for annual monthly means for a given month over all years

Transposing data creates a column of "Statistics" and subsequent columns for each year selected.

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

    # Calculate long-term monthly statistics using data argument with defaults
    flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
    calc_longterm_monthly_stats(data = flow_data,
                                start_year = 1980)

    # Calculate long-term monthly statistics using station_number argument with defaults
    calc_longterm_monthly_stats(station_number = "08NM116",
                                start_year = 1980)

    # Calculate long-term monthly statistics regardless if there is missing data for a given year
    calc_longterm_monthly_stats(station_number = "08NM116",
                                 ignore_missing = TRUE)
# Calculate long-term monthly statistics for water years starting in October
calc_longterm_monthly_stats(station_number = "08NM116",
    start_year = 1980,
    water_year_start = 10)

# Calculate long-term monthly statistics with custom years
calc_longterm_monthly_stats(station_number = "08NM116",
    start_year = 1981,
    end_year = 2010,

# Calculate long-term monthly statistics and add custom stats for July-September
calc_longterm_monthly_stats(station_number = "08NM116",
    start_year = 1980,
    custom_months = 7:9,
    custom_months_label = "Summer")
}

calc_longterm_percentile

*Calculate long-term percentiles*

**Description**

Calculates the long-term percentiles from a daily streamflow data set. Calculates statistics from all values, unless specified. Returns a tibble with statistics.

**Usage**

calc_longterm_percentile(
    data,
    dates = Date,
    values = Value,
    groups = STATION_NUMBER,
    station_number,
    percentiles,
    roll_days = 1,
    roll_align = "right",
    water_year_start = 1,
    start_year,
    end_year,
    exclude_years,
    complete_years = FALSE,
    months = 1:12,
    transpose = FALSE
)
**Arguments**

- **data**: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.

- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.

- **values**: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

- **groups**: Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

- **station_number**: Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

- **percentiles**: Numeric vector of percentiles (ex. c(5, 10, 25, 75)) to calculate. Required.

- **roll_days**: Numeric value of the number of days to apply a rolling mean. Default 1.

- **roll_align**: Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

- **water_year_start**: Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

- **start_year**: Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

- **end_year**: Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

- **exclude_years**: Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

- **complete_years**: Logical values indicating whether to include only years with complete data in analysis. Default FALSE.

- **months**: Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

- **transpose**: Logical value indicating whether to transpose rows and columns of results. Default FALSE.

**Value**

A tibble data frame of a long-term percentile of selected years and months.
Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Calculate the 20th percentile flow value from a flow record
calc_longterm_percentile(station_number = "08NM116",
percentile = 20)

# Calculate the 90th percentile flow value with custom years
calc_longterm_percentile(station_number = "08NM116",
start_year = 1980,
end_year = 2010,
percentile = 90)
}

calc_monthly_cumulative_stats

*Calculate cumulative monthly flow statistics*

Description

Calculate cumulative monthly flow statistics for each month of the year of daily flow values from a
daily streamflow data set. Calculates statistics from all values from complete years, unless specified.
Defaults to volumetric cumulative flows, can use use_yield and basin_area to convert to area-
based water yield. Returns a tibble with statistics.

Usage

calc_monthly_cumulative_stats(
data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
percentiles = c(5, 25, 75, 95),
use_yield = FALSE,
basin_area,
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
transpose = FALSE
)
Arguments

data: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups: Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number: Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
percentiles: Numeric vector of percentiles to calculate. Set to NA if none required. Default c(5, 25, 75, 95).
use_yield: Logical value indicating whether to calculate area-based water yield, in mm, instead of volumetric discharge. Default FALSE.
basin_area: Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
1. Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
2. A single numeric value to apply to all observations.
3. List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795, "08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.
water_year_start: Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
start_year: Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
end_year: Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.
exclude_years: Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.
months: Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12, 1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12). Need to be consecutive months for given year/water year to work properly.
transpose: Logical value indicating whether to transpose rows and columns of results. Default FALSE.
Value

A tibble data frame with the following columns, default units in cubic metres, or millimetres if use_yield and basin_area provided:

- **Month**: month (MMM-DD) of cumulative statistics
- **Mean**: monthly mean of all cumulative flows for a given month of the year
- **Median**: monthly mean of all cumulative flows for a given month of the year
- **Maximum**: monthly mean of all cumulative flows for a given month of the year
- **Minimum**: monthly mean of all cumulative flows for a given month of the year
- **P’n’**: each monthly n-th percentile selected of all cumulative flows for a given month of the year

Default percentile columns:

- **P5**: monthly 5th percentile of all cumulative flows for a given month of the year
- **P25**: monthly 25th percentile of all cumulative flows for a given month of the year
- **P75**: monthly 75th percentile of all cumulative flows for a given month of the year
- **P95**: monthly 95th percentile of all cumulative flows for a given month of the year

Transposing data creates a column of "Statistics" and subsequent columns for each year selected.

Examples

```r
Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {
 # Calculate annual monthly cumulative volume statistics
 calc_monthly_cumulative_stats(station_number = "08NM116")

 # Calculate annual monthly cumulative volume statistics with default HYDAT basin area
 calc_monthly_cumulative_stats(station_number = "08NM116",
 use_yield = TRUE)

 # Calculate annual monthly cumulative volume statistics with custom basin area
 calc_monthly_cumulative_stats(station_number = "08NM116",
 use_yield = TRUE,
 basin_area = 800)
}
```
calc_monthly_stats  Calculate monthly summary statistics

Description

Calculates means, medians, maximums, minimums, and percentiles for each month of all years of flow values from a daily streamflow data set. Calculates statistics from all values, unless specified. Returns a tibble with statistics.

Usage

calc_monthly_stats(
    data,                   # Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
    dates = Date,          # Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
    values = Value,       # Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
    groups = STATION_NUMBER,   # Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
    station_number,       # Leave blank if using station_number argument.
    percentiles = c(10, 90), # Roll days in days, with default days. Leave blank if using station_number argument.
    roll_days = 1,        # Roll align
    roll_align = "right", # Water year start
    water_year_start = 1, # Start year
    start_year,           # End year
    end_year,             # Exclude years
    months = 1:12,        # Transpose
    transpose = FALSE,    # Spread
    spread = FALSE,       # Ignore missing
    ignore_missing = FALSE, # Allowed missing
    allowed_missing = ifelse(ignore_missing, 100, 0) # )
)

Arguments

data                   Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates                   Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values                  Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups                  Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
calc_monthly_stats

station_number  Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

percentiles  Numeric vector of percentiles to calculate. Set to NA if none required. Default c(10, 90).

roll_days  Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align  Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year  Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years  Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12, 1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

transpose  Logical value indicating if each month statistic should be individual rows. Default FALSE.

spread  Logical value indicating if each month statistic should be the column name. Default FALSE.

ignore_missing  Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

allowed_missing  Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used.

Value

A tibble data frame with the following columns:

- **Year**: calendar or water year selected
- **Month**: month of the year
- **Mean**: mean of all daily flows for a given month and year
- **Median**: median of all daily flows for a given month and year
compute_annual_frequencies

Maximum  maximum of all daily flows for a given month and year
Minimum  minimum of all daily flows for a given month and year
P’n’  each n-th percentile selected for a given month and year

Default percentile columns:
P10  10th percentile of all daily flows for a given month and year
P90  90th percentile of all daily flows for a given month and year

Transposing data creates a column of ‘Statistics’ for each month, labeled as ‘Month-Statistic’ (ex "Jan-Mean"), and subsequent columns for each year selected. Spreading data creates columns of Year and subsequent columns of Month-Statistics (ex 'Jan-Mean').

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Calculate statistics using a data frame and data argument with defaults
flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
calc_monthly_stats(data = flow_data,
                   start_year = 1980)

# Calculate statistics using station_number argument with defaults
calc_monthly_stats(station_number = "08NM116",
                   start_year = 1980)

# Calculate statistics regardless if there is missing data for a given year
calc_monthly_stats(station_number = "08NM116",
                   ignore_missing = TRUE)

# Calculate statistics for water years starting in October
calc_monthly_stats(station_number = "08NM116",
                   start_year = 1980,
                   water_year_start = 10)

# Calculate statistics with custom years and percentiles
calc_monthly_stats(station_number = "08NM116",
                   start_year = 1981,
                   end_year = 2010,
                   percentiles = c(25,75))
}

compute_annual_frequencies

Perform an annual low or high-flow frequency analysis
compute_annual_frequencies

Description
Performs a flow volume frequency analysis on annual statistics from a daily streamflow data set. Defaults to a low flow frequency analysis using annual minimums. Set use_max = TRUE for annual high flow frequency analyses. Calculates statistics from all values, unless specified. Function will calculate using all values in 'Values' column (no grouped analysis). Analysis methodology replicates that from HEC-SSP. Returns a list of tibbles and plots.

Usage
compute_annual_frequencies(
data,  
dates = Date,  
values = Value,  
station_number,  
roll_days = c(1, 3, 7, 30),  
roll_align = "right",  
use_max = FALSE,  
use_log = FALSE,  
prob_plot_position = c("weibull", "median", "hazen"),  
prob_scale_points = c(0.9999, 0.999, 0.99, 0.9, 0.5, 0.2, 0.1, 0.02, 0.01, 0.001, 0.0001),  
fit_distr = c("PIII", "weibull"),  
fit_distr_method = ifelse(fit_distr == "PIII", "MOM", "MLE"),  
fit_quantiles = c(0.975, 0.99, 0.98, 0.95, 0.9, 0.8, 0.5, 0.2, 0.1, 0.05, 0.01),  
plot_curve = TRUE,  
water_year_start = 1,  
start_year,  
end_year,  
exclude_years,  
months = 1:12,  
ignore_missing = FALSE,  
allowed_missing = ifelse(ignore_missing, 100, 0)
)

Arguments
- **data**: A data frame of daily data that contains columns of dates and flow values. Groupings and the groups argument are not used for this function (i.e. station numbers). Leave blank or set to NULL if using station_number argument.
- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
- **values**: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
- **station_number**: Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT
database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

**roll_days**
Numeric value of the number of days to apply a rolling mean. Default 1.

**roll_align**
Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

**use_max**
Logical value to indicate using maximums rather than the minimums for analysis. Default FALSE.

**use_log**
Logical value to indicate log-scale transforming of flow data before analysis. Default FALSE.

**prob_plot_position**
Character string indicating the plotting positions used in the frequency plots, one of 'weibull', 'median', or 'hazen'. Points are plotted against \((i-a)/(n+1-a-b)\) where \(i\) is the rank of the value; \(n\) is the sample size and \(a\) and \(b\) are defined as: \((a=0, b=0)\) for Weibull plotting positions; \((a=2; b=3)\) for Median plotting positions; and \((a=.5; b=.5)\) for Hazen plotting positions. Default 'weibull'.

**prob_scale_points**
Numeric vector of probabilities to be plotted along the X axis in the frequency plot. Inverse of return period. Default \(c(.9999,.999,.99,.9,.5,.2,.1,.02,.01,.001,.0001)\).

**fit_distr**
Character string identifying the distribution to fit annual data, one of 'PIII' (Log Pearson Type III) or 'weibull' (Weibull) distributions. Default 'PIII'.

**fit_distr_method**
Character string identifying the method used to fit the distribution, one of 'MOM' (method of moments) or 'MLE' (maximum likelihood estimation). Selected as 'MOM' if \(fit\_distr = 'PIII'\) (default) or 'MLE' if \(fit\_distr = 'weibull'\).

**fit_quantiles**
Numeric vector of quantiles to be estimated from the fitted distribution. Default \(c(.975,.99,.98,.95,.90,.80,.50,.20,.10,.05,.01)\).

**plot_curve**
Logical value to indicate plotting the computed curve on the probability plot. Default TRUE.

**water_year_start**
Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

**start_year**
Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

**end_year**
Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

**exclude_years**
Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

**months**
Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

**ignore_missing**
Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.
allowed_missing

Numeric value between 0 and 100 indicating the **percentage** of missing dates allowed to be included to calculate a statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used.

Value

A list with the following elements:

**Freq_Analysis_Data**
Data frame with computed annual summary statistics used in analysis.

**Freq_Plot_Data**
Data frame with co-ordinates used in frequency plot.

**Freq_Plot**
ggplot2 object with frequency plot.

**Freq_Fitting**
List of fitted objects from fitdistrplus.

**Freq_Fitted_Quantiles**
Data frame with fitted quantiles.

See Also

*compute_frequency_analysis*

Examples

```r
Not run:

Working examples (see arguments for further analysis options):

Compute an annual frequency analysis using default arguments
results <- compute_annual_frequencies(station_number = "08NM116",
 start_year = 1980,
 end_year = 2010)

Compute an annual frequency analysis using default arguments (as listed)
results <- compute_annual_frequencies(station_number = "08NM116",
 roll_days = c(1,3,7,30),
 start_year = 1980,
 end_year = 2010,
 prob_plot_position = "weibull",
 prob_scale_points = c(.9999, .999, .99, .9, .5,
 .2, .1, .02, .01, .001, .0001),
 fit_distr = "PIII",
 fit_distr_method = "MOM")

Compute a 7-day annual frequency analysis with "median" plotting positions
and fitting the data to a weibull distribution (not default PIII)
results <- compute_annual_frequencies(station_number = "08NM116",
 roll_days = 7,
 start_year = 1980,
 end_year = 2010,
```

compute_annual_trends

Calculate prewhitened nonlinear annual trends on streamflow data

Description

Calculates prewhitened nonlinear trends on annual streamflow data. Uses the zyp package to calculate trends. Review zyp for more information. Calculates statistics from all values, unless specified. Returns a list of tibbles and plots. All annual statistics calculated using the `calc_all_annual_stats()` function which uses the following fasstr functions:

- `calc_annual_stats()`
- `calc_annual_lowflows()`
- `calc_annual_cumulative_stats()`
- `calc_annual_flow_timing()`
- `calc_monthly_stats()`
- `calc_annual_outside_normal()`

Usage

```r
calculate_annual_trends(
 data, # data frame with streamflow data
 dates = Date, # column name for dates
 values = Value, # column name for values
 groups = STATION_NUMBER, # column name for groups
 station_number, # station number
 zyp_method, # method for calculating trends
 basin_area, # basin area
 water_year_start = 1, # start of water year
 start_year, # start year
 end_year, # end year
 exclude_years, # years to exclude
 months = 1:12, # months
 annual_percentiles = c(10, 90), # percentiles
 monthly_percentiles = c(10, 20), # percentiles
 stats_days = 1, # days
 stats_align = "right", # alignment of statistics
 lowflow_days = c(1, 3, 7, 30), # days
 lowflow_align = "right", # alignment of lowflow
 timing_percent = c(25, 33, 50, 75), # percentiles
 normal_percentiles = c(25, 75) # percentiles
)
```

```r
prob_plot_position = "median",
fit_distr = "weibull")

End(Not run)
```
Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
zyp_method Character string identifying the prewhitened trend method to use from zyp, either 'zhang' or 'yuepilon'. 'zhang' is recommended over 'yuepilon' for hydrologic applications (Bürger 2017; Zhang and Zwiers 2004). Required.
basin_area Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
(1) Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
(2) A single numeric value to apply to all observations.
(3) List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795,"08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.
water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
start_year Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
end_year Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.
exclude_years  Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12). If not all months, seasonal total yield and volumetric flows will not be included.

annual_percentiles  Numeric vector of percentiles to calculate annually. Set to NA if none required. Used for calc_annual_stats() function. Default c(10,90).

monthly_percentiles  Numeric vector of percentiles to calculate monthly for each year. Set to NA if none required. Used for calc_monthly_stats() function. Default c(10,20).

stats_days  Numeric vector of the number of days to apply a rolling mean on basic stats. Default c(1). Used for calc_annual_stats() and calc_monthly_stats() functions.

stats_align  Character string identifying the direction of the rolling mean on basic stats from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'. Used for calc_annual_stats(), calc_monthly_stats(), and calc_annual_outside_normal() functions.

lowflow_days  Numeric vector of the number of days to apply a rolling mean on low flow stats. Default c(1,3,7,30). Used for calc_lowflow_stats() function.

lowflow_align  Character string identifying the direction of the rolling mean on low flow stats from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'. Used for calc_lowflow_stats() function.

timing_percent  Numeric vector of percents of annual total flows to determine dates. Used for calc_annual_flow_timing() function. Default c(25,33.3,50,75).

normal_percentiles  Numeric vector of two values, lower and upper percentiles, respectively indicating the limits of the normal range. Default c(25,75).

ignore_missing  Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

allowed_missing_annual  Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate an annual statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used. Only for annual means, percentiles, minimums, and maximums.

allowed_missing_monthly  Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a monthly statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if
compute_annual_trends

'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used. Only for monthly means, percentiles, minimums, and maximums.

include_plots Logical value indicating if annual trending plots should be included. Default TRUE.

zyp_alpha Numeric value of the significance level (ex. 0.05) of when to plot a trend line. Leave blank for no line.

Value

A list of tibbles and optional plots from the trending analysis including:

- Annual_Trends_Data
  a tibble of the annual statistics used for trending
- Annual_Trends_Results
  a tibble of the results of the zyp trending analysis
- Annual_*
  each ggplot2 object for each annual trended statistic

References

References:


See Also

zyp-package, calc_all_annual_stats

Examples

```r
Not run:

Working examples:

Compute trends statistics using a data frame and data argument with defaults
flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
trends <- compute_annual_trends(data = flow_data,
```
zyp_method = "zhang")

# Compute trends statistics using station_number with defaults
# Compute trends statistics using station_number with defaults
# Compute trends statistics using station_number with defaults
trends <- compute_annual_trends(station_number = "08NM116",
                               zyp_method = "zhang")

# Compute trends statistics and plot a trend line if the significance is less than 0.05
# Compute trends statistics and plot a trend line if the significance is less than 0.05
# Compute trends statistics and plot a trend line if the significance is less than 0.05
trends <- compute_annual_trends(station_number = "08NM116",
                                zyp_method = "zhang",
                                zyp_alpha = 0.05)

# Compute trends statistics and do not plot the results
# Compute trends statistics and do not plot the results
# Compute trends statistics and do not plot the results
trends <- compute_annual_trends(station_number = "08NM116",
                                zyp_method = "zhang",
                                include_plots = FALSE)

## End(Not run)

---

**compute_frequency_analysis**

*Perform a custom volume frequency analysis*

**Description**

Performs a volume frequency analysis on custom data. Defaults to ranking by minimums; use use_max for to rank by maximum flows. Calculates the statistics from events and flow values provided. Columns of events (e.g. years), their values (minimums or maximums), and identifiers (low-flows, high-flows, etc.). Function will calculate using all values in the provided data (no grouped analysis). Analysis methodology replicates that from HEC-SSP. Returns a list of tibbles and plots.

**Usage**

```r
compute_frequency_analysis(
 data,
 events = Year,
 values = Value,
 measures = Measure,
 use_max = FALSE,
 use_log = FALSE,
 prob_plot_position = c("weibull", "median", "hazen"),
 prob_scale_points = c(0.9999, 0.999, 0.99, 0.9, 0.5, 0.2, 0.1, 0.02, 0.01, 0.001,
 0.0001),
 fit_distr = c("PIII", "weibull"),
 fit_distr_method = ifelse(fit_distr == "PIII", "MOM", "MLE"),
 fit_quantiles = c(0.975, 0.99, 0.98, 0.95, 0.9, 0.8, 0.5, 0.2, 0.1, 0.05, 0.01),
 plot_curve = TRUE
)
```
compute_frequency_analysis

Arguments

data A data frame of data that contains columns of events, flow values, and measures (data type).

events Column in data that contains event identifiers, typically year values. Default 'Year'.

values Column in data that contains numeric flow values, in units of cubic metres per second. Default 'Value'.

measures Column in data that contains measure identifiers (example data: '7-day low' or 'Annual Max'). Can have multiple measures (ex. '7-day low' and '30-day low') in column if multiple statistics are desired. Default 'Measure'.

use_max Logical value to indicate using maximums rather than the minimums for analysis. Default FALSE.

use_log Logical value to indicate log-scale transforming of flow data before analysis. Default FALSE.

prob_plot_position Character string indicating the plotting positions used in the frequency plots, one of 'weibull', 'median', or 'hazen'. Points are plotted against (i-a)/(n+1-a-b) where i is the rank of the value; n is the sample size and a and b are defined as: (a=0, b=0) for Weibull plotting positions; (a=.2; b=.3) for Median plotting positions; and (a=.5; b=.5) for Hazen plotting positions. Default 'weibull'.

prob_scale_points Numeric vector of probabilities to be plotted along the X axis in the frequency plot. Inverse of return period. Default c(.9999, .999, .99, .9, .5, .2, .1, .02, .01, .001, .0001).

fit_distr Character string identifying the distribution to fit annual data, one of 'PIII' (Log Pearson Type III) or 'weibull' (Weibull) distributions. Default 'PIII'.

fit_distr_method Character string identifying the method used to fit the distribution, one of 'MOM' (method of moments) or 'MLE' (maximum likelihood estimation). Selected as 'MOM' if fit_distr = 'PIII' (default) or 'MLE' if fit_distr = 'weibull'.

fit_quantiles Numeric vector of quantiles to be estimated from the fitted distribution. Default c(.975, .99, .98, .95, .90, .80, .50, .20, .10, .05, .01).

plot_curve Logical value to indicate plotting the computed curve on the probability plot. Default TRUE.

Value

A list with the following elements:

Freq_Analysis_Data Data frame with computed annual summary statistics used in analysis.

Freq_Plot_Data Data frame with co-ordinates used in frequency plot.

Freq_Plot ggplot2 object with frequency plot

Freq_Fitting List of fitted objects from fitdistrplus.

Freq_Fitted_Quantiles Data frame with fitted quantiles.
compute_frequency_quantile

## Examples

```r
Not run:

Working example:

Calculate some values to use for a frequency analysis
(requires years, values for those years, and the name of the measure/metric)
low_flows <- calc_annual_lowflows(station_number = "08NM116",
 start_year = 1980,
 end_year = 2000,
 roll_days = 7)
low_flows <- dplyr::select(low_flows, Year, Value = Min_7_Day)
low_flows <- dplyr::mutate(low_flows, Measure = "7-Day")

Compute the frequency analysis using the default parameters
results <- compute_frequency_analysis(data = low_flows,
 events = Year,
 values = Value,
 measure = Measure)

End(Not run)
```

---

**compute_frequency_quantile**

*Calculate an annual frequency analysis quantile*

**Description**

Performs a volume frequency analysis on annual statistics from a daily streamflow data set and calculates a statistic based on the provided mean n-days and return period of the statistic, defaults to minimum flows. For example, to determine the 7Q10 of a data set, set the `roll_days` to 7 and the `return_period` to 10. Function will calculate using all values in `Values` column (no grouped analysis), unless specified. Analysis methodology replicates that from HEC-SSP. Returns a tibble with statistics.

**Usage**

```r
compute_frequency_quantile(data,
 dates = Date,
 values = Value,
 station_number,
 roll_days = NA,
 roll_align = "right",
 return_period = NA,
 use_max = FALSE,
 use_log = FALSE,
```


```r
compute_frequency_quantile
fit_distr = c("PIII", "weibull"),
fit_distr_method = ifelse(fit_distr == "PIII", "MOM", "MLE"),
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
ignore_missing = FALSE,
allowed_missing = ifelse(ignore_missing, 100, 0)
```

**Arguments**

- **data**
  A data frame of data that contains columns of events, flow values, and measures (data type).

- **dates**
  Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using `station_number` argument.

- **values**
  Column in `data` that contains numeric flow values, in units of cubic metres per second. Default 'Value'.

- **station_number**
  Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using `data` argument.

- **roll_days**
  Numeric value of the number of days to apply a rolling mean. Required.

- **roll_align**
  Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

- **return_period**
  Numeric vector of the estimated time interval, in years, between flow events of a similar size, inverse of probability, used to estimate the frequency statistic. Required.

- **use_max**
  Logical value to indicate using maximums rather than the minimums for analysis. Default FALSE.

- **use_log**
  Logical value to indicate log-scale transforming of flow data before analysis. Default FALSE.

- **fit_distr**
  Character string identifying the distribution to fit annual data, one of 'PIII' (Log Pearson Type III) or 'weibull' (Weibull) distributions. Default 'PIII'.

- **fit_distr_method**
  Character string identifying the method used to fit the distribution, one of 'MOM' (method of moments) or 'MLE' (maximum likelihood estimation). Selected as 'MOM' if `fit_distr` = 'PIII' (default) or 'MLE' if `fit_distr` = 'weibull'.

- **water_year_start**
  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

- **start_year**
  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
end_year Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

ignore_missing Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

allowed_missing Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing usage.

Value

A numeric value of the frequency analysis quantile, given the roll_days and return_period.

See Also

compute_frequency_analysis

Examples

## Not run:

# Working example:

# Compute the annual 7-day flow value with a 1 in 10 year return interval
compute_frequency_quantile(station_number = "08NM116",
                          roll_days = 7,
                          return_period = 10)

## End(Not run)
compute_full_analysis

Description

Calculates tables and plots from a suite of statistics from fasstr functions. Calculates statistics from all values, unless specified. The statistics are grouped into 7 analysis groups (see analyses argument) which are stored in lists in the object. Due to the number of tables and plots to be made, this function may take several minutes to complete. If ignore_missing = FALSE (default) and there is missing data, some tables and plots may be empty and produce warnings. Use ignore_missing = TRUE to ignore the missing values or filter your data to complete years. Returns a list of tibbles and plots.

Usage

compute_full_analysis(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  analyses = 1:7,
  basin_area,
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  months = 1:12,
  ignore_missing = FALSE,
  allowed_missing_annual = ifelse(ignore_missing, 100, 0),
  allowed_missing_monthly = ifelse(ignore_missing, 100, 0),
  zyp_method = "zhang",
  zyp_alpha
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
**compute_full_analysis**

**station_number**
Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

**analyses**
Numeric vector of analyses to run (default is all (1:7)):
- 1: Screening
- 2: Long-term
- 3: Annual
- 4: Monthly
- 5: Daily
- 6: Annual Trends
- 7: Low-flow Frequencies

**basin_area**
Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
1. Leave blank if `groups` is `STATION_NUMBER` with HYDAT station numbers to extract basin areas from HYDAT.
2. A single numeric value to apply to all observations.
3. List each basin area for each group/station in `groups` (can override HYDAT value if listed) as such c("08NM116" = 795,"08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.

**water_year_start**
Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

**start_year**
Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

**end_year**
Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

**exclude_years**
Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

**months**
Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when `water_year_start` = 10 (Oct). Default summarizes all months (1:12). If not all months, seasonal total yield and volumetric flows will not be included.

**ignore_missing**
Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

**allowed_missing_annual**
Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate an annual statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing usage. Only for annual means, percentiles, minimums, and maximums.
allowed_missing_monthly

Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a monthly statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used. Only for monthly means, percentiles, minimums, and maximums.

zyp_method

Character string identifying the prewhitened trend method to use from 'zyp', either 'zhang' or 'yuepilon'. 'zhang' is recommended over 'yuepilon' for hydrologic applications (see compute_annual_trends(); Bürger 2017; Zhang and Zwiers 2004). Only required if analysis group 6 is included. Default 'zhang'.

zyp_alpha

Numeric value of the significance level (ex. 0.05) of when to plot a trend line. Leave blank for no line.

Value

A list of lists of tibble data frames and ggplot2 objects from various fasstr functions organized by the analysis groups as listed above.

See Also

plot_flow_data, screen_flow_data, plot_data_screening, plot_missing_dates, calc_longterm_monthly_stats, plot_longterm_monthly_stats, calc_longterm_daily_stats, plot_longterm_daily_stats, plot_flow_duration, calc_annual_stats, plot_annual_stats, calc_annual_cumulative_stats, plot_annual_cumulative_stats, calc_annual_flow_timing, plot_annual_flow_timing, calc_annual_outside_normal, plot_annual_outside_normal, calc_annual_lowflows, plot_annual_lowflows, plot_annual_means, calc_monthly_stats, plot_monthly_stats, calc_monthly_cumulative_stats, plot_monthly_cumulative_stats, calc_daily_stats, plot_daily_stats, calc_daily_cumulative_stats, plot_daily_cumulative_stats, compute_annual_trends, compute_annual_frequencies, write_flow_data, write_plots

Examples

```r
Not run:

Working examples:

Compute a full analysis will all the analyses
results <- compute_full_analysis(station_number = "08NM116",
 start_year = 1980,
 end_year = 2010)

Compute a full analysis with only Annual (3) and Daily (5) analyses
results <- compute_full_analysis(station_number = "08NM116",
 start_year = 1980,
 end_year = 2010,
 analyses = c(3,5))

End(Not run)
```
compute_hydat_peak_frequencies

Perform a frequency analysis on annual peak statistics from HYDAT

Description

Performs a volume frequency analysis on annual peak statistics (instantaneous minimums or maximums) extracted from HYDAT. Calculates statistics from all years, unless specified. The data argument is not available. Analysis methodology replicates that from HEC-SSP. Returns a list of tibbles and plots.

Usage

compute_hydat_peak_frequencies(
station_number,
use_max = FALSE,
use_log = FALSE,
prob_plot_position = c("weibull", "median", "hazen"),
prob_scale_points = c(0.9999, 0.999, 0.99, 0.9, 0.5, 0.2, 0.1, 0.02, 0.01, 0.001,
0.0001),
fit_distr = c("PIII", "weibull"),
fit_distr_method = ifelse(fit_distr == "PIII", "MOM", "MLE"),
fit_quantiles = c(0.975, 0.99, 0.98, 0.95, 0.9, 0.8, 0.5, 0.2, 0.1, 0.05, 0.01),
start_year,
end_year,
exclude_years,
plot_curve = TRUE)

Arguments

station_number A character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract annual peak minimum or maximum instantaneous streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database.

use_max Logical value to indicate using maximums rather than the minimums for analysis. Default FALSE.

use_log Logical value to indicate log-scale transforming of flow data before analysis. Default FALSE.

prob_plot_position Character string indicating the plotting positions used in the frequency plots, one of 'weibull', 'median', or 'hazen'. Points are plotted against (i-a)/(n+1-a-b) where i is the rank of the value; n is the sample size and a and b are defined as: (a=0, b=0) for Weibull plotting positions; (a=.2; b=.3) for Median plotting positions; and (a=.5; b=.5) for Hazen plotting positions. Default 'weibull'.
compute_hydat_peak_frequencies

prob_scale_points

   Numeric vector of probabilities to be plotted along the X axis in the frequency plot. Inverse of return period. Default c(.9999, .999, .99, .9, .5, .2, .1, .02, .01, .001, .0001).

fit_distr

   Character string identifying the distribution to fit annual data, one of 'PIII' (Log Pearson Type III) or 'weibull' (Weibull) distributions. Default 'PIII'.

fit_distr_method

   Character string identifying the method used to fit the distribution, one of 'MOM' (method of moments) or 'MLE' (maximum likelihood estimation). Selected as 'MOM' if fit_distr = 'PIII' (default) or 'MLE' if fit_distr = 'weibull'.

fit_quantiles

   Numeric vector of quantiles to be estimated from the fitted distribution. Default c(.975, .99, .98, .95, .90, .80, .50, .20, .10, .05, .01).

start_year

   Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year

   Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years

   Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

plot_curve

   Logical value to indicate plotting the computed curve on the probability plot. Default TRUE.

Value

   A list with the following elements:

Freq_Analysis_Data

   Data frame with computed annual summary statistics used in analysis.

Freq_Plot_Data

   Data frame with co-ordinates used in frequency plot.

Freq_Plot

   ggplot2 object with frequency plot

Freq_Fitting

   List of fitted objects from fitdistrplus.

Freq_Fitted_Quantiles

   Data frame with fitted quantiles.

See Also

   compute_frequency_analysis

Examples

   ## Not run:

   # Working examples (see arguments for further analysis options):

   # Compute an annual peak frequency analysis using default arguments (instantaneous lows)
   results <- compute_hydat_peak_frequencies(station_number = "08NM116",
                                             start_year = 1980,
                                             end_year = 2010)
# Compute an annual peak frequency analysis using default arguments (instantaneous highs)
results <- compute_hydat_peak_frequencies(station_number = "08NM116",
                                           start_year = 1980,
                                           end_year = 2010,
                                           use_max = TRUE)

## End(Not run)

fill_missing_dates  Fills data gaps of missing dates

Description

Fills data gaps of missing dates of the data provided. Builds a continuous data set from the start
date to the end date. Only missing dates are filled, columns not specified as dates or groups will be
filled with NA. Will completely fill first and last years, unless specified using fill_end_years =
FALSE.

Usage

fill_missing_dates(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  water_year_start = 1,
  fill_end_years = TRUE
)

Arguments

data            Data frame of daily data that contains columns of dates, flow values, and (optional)
                 groups (e.g. station numbers). Leave blank or set to NULL if using
                 station_number argument.
dates           Name of column in data that contains dates formatted YYYY-MM-DD. Only
                 required if dates column name is not 'Date' (default). Leave blank or set to NULL
                 if using station_number argument.
values          Name of column in data that contains numeric flow values, in units of cubic
                 metres per second. Not required as of fasstr 0.3.3 as all other columns are filled
                 with NA.
groups          Name of column in data that contains unique identifiers for different data sets, if
                 applicable. Only required if groups column name is not 'STATION_NUMBER'.
                 Function will automatically group by a column named 'STATION_NUMBER' if
                 present. Remove the 'STATION_NUMBER' column beforehand to remove
                 this grouping. Leave blank if using station_number argument.
**plot_annual_cumulative_stats**

- **station_number** Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

- **water_year_start** Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

- **fill_end_years** Logical value indicating whether to fill incomplete start and end years with rows of dates. If FALSE then only missing dates between the provided start and end dates will be filled. Default TRUE.

**Value**

A tibble data frame of the source data with additional rows where missing dates existed.

**Examples**

```r
Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

Fill missing dates with NA using calendar years
fill_missing_dates(station_number = "08NM116")

Fill missing dates with NA using water years starting in August
fill_missing_dates(station_number = "08NM116",
 water_year_start = 8)
}
```

---

**plot_annual_cumulative_stats**

*Plot annual (and seasonal) cumulative flows*

**Description**

Plots annual and seasonal (if `include_seasons = TRUE`) total flows, volumetric discharge or water yields, from a daily streamflow data set. Calculates statistics from all values, unless specified. Data calculated from `plot_annual_cumulative_stats()` function. For water year and seasonal data, the designated year is the year in which the year or season ends. Returns a list of plots.

**Usage**

```r
plot_annual_cumulative_stats(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
```
use_yield = FALSE,  
basin_area,  
water_year_start = 1,  
start_year,  
end_year,  
exclude_years,  
months = 1:12,  
include_seasons = FALSE,  
include_title = FALSE  
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
use_yield Logical value indicating whether to calculate area-based water yield, in mm, instead of volumetric discharge. Default FALSE.
basin_area Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
(1) Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
(2) A single numeric value to apply to all observations.
(3) List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795,"08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.
water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
start_year Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
end_year Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12). If not all months, seasonal total yield and volumetric flows will not be included.

include_seasons Logical value indication whether to include seasonal yields or volumetric discharges. Default TRUE.

include_title Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

Value

A list of ggplot2 objects with the following for each station provided:

Annual_Total_Volume annual total volumetric discharge, in cubic metres

Two_Seasons_Total_Volume if include_seasons = TRUE, two seasons total volumetric discharges, in cubic metres

Four_Seasons_Total_Volume if include_seasons = TRUE, four seasons total volumetric discharges, in cubic metres

If use_yield argument is used the list will contain the following objects:

Annual_Yield annual water yield, in millimetres

Two_Seasons_Yield if include_seasons = TRUE, two seasons water yield, in millimetres

Four_Seasons_Yield if include_seasons = TRUE, four seasons water yield, in millimetres

See Also

calc_annual_cumulative_stats

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat()) if (file.exists(tidyhydat::hy_downloaded_db())) {

# Plot annual cumulative yield statistics with default HYDAT basin area plot_annual_cumulative_stats(station_number = "08NM116", use_yield = TRUE)

# Plot annual cumulative yield statistics with custom basin area
plot_annual_cumulative_stats(station_number = "08NM116",
    use_yield = TRUE,
    basin_area = 800)
}

plot_annual_flow_timing

*Plot annual timing of flows*

**Description**

Plots the timing (day of year and date) of portions of total annual flow of daily flow values from a daily streamflow data set. Calculates statistics from all values from complete years, unless specified. Data calculated using `calc_annual_flow_timing()` function. Returns a list of plots.

**Usage**

```r
plot_annual_flow_timing(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 percent_total = c(25, 33.3, 50, 75),
 water_year_start = 1,
 start_year,
 end_year,
 exclude_years,
 months = 1:12,
 include_title = FALSE
)
```

**Arguments**

- **data**: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using `station_number` argument.
- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using `station_number` argument.
- **values**: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using `station_number` argument.
plot_annual_flow_timing

groups
Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number
Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

percent_total
Numeric vector of percents of total annual flows to determine dates. Default c(25, 33.3, 50, 75).

water_year_start
Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year
Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year
Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years
Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months
Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12, 1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

include_title
Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

Value
A list of ggplot2 objects with the following for each station provided:

Annual_Flow_Timing
a plot that contains each n-percent of total volumetric discharge

Default plots on each object:

DoY_25pct_TotalQ
day of year of 25-percent of total volumetric discharge

DoY_33.3pct_TotalQ
day of year of 33.3-percent of total volumetric discharge

DoY_50pct_TotalQ
day of year of 50-percent of total volumetric discharge

DoY_75pct_TotalQ
day of year of 75-percent of total volumetric discharge

References
plot_annual_lowflows

Plot annual low flows and dates

Description

Plot annual n-day minimum values, and the day of year and date of occurrence of daily flow values from a daily streamflow data set. Calculates statistics from all values, unless specified. Data calculated from calc_annual_lowflows() function. Returns a list of plots.

Usage

plot_annual_lowflows(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  roll_days = c(1, 3, 7, 30),
  roll_align = "right",
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  months = 1:12,
  ignore_missing = FALSE,
  allowed_missing = ifelse(ignore_missing, 100, 0),
  include_title = FALSE
)
Arguments

data          Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates         Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values        Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups        Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
roll_days     Numeric value of the number of days to apply a rolling mean. Default 1.
roll_align    Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.
water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
start_year    Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
end_year      Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.
exclude_years Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.
months        Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).
ignore_missing Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.
allowed_missing Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used.
plot_annual_means

plot_annual_means    Plot annual means compared to the long-term mean

Description

Plot annual means using the long-term annual mean as the point of reference for annual means. Calculates statistics from all values, unless specified. Data calculated using calc_annual_stats() function. Returns a list of plots.

Usage

plot_annual_means(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
roll_days = 1,
roll_align = "right",
water_year_start = 1,
start_year,
end_year,
exclude_years,
months = 1:12,
ignore_missing = FALSE,
allowed_missing = ifelse(ignore_missing, 100, 0),
include_title = FALSE
)

Arguments

- **data**: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
- **values**: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
- **groups**: Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
- **station_number**: Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
- **roll_days**: Numeric value of the number of days to apply a rolling mean. Default 1.
- **roll_align**: Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.
- **water_year_start**: Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
- **start_year**: Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
- **end_year**: Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.
- **exclude_years**: Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.
months Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

ignore_missing Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

allowed_missing Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a statistic (0 to 100 percent). If ‘ignore_missing = FALSE’ then it defaults to 0 (zero missing dates allowed), if ‘ignore_missing = TRUE’ then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used.

include_title Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

Value

A list of ggplot2 objects for with the following plots for each station provided:

Annual_Means a plot that contains annual means with the long-term mean as the x-axis intercept

See Also
calc_annual_stats

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

    # Plot annual means
    plot_annual_means(station_number = "08NM116")

    # Plot mean flows from July-September
    plot_annual_means(station_number = "08NM116",
                      months = 7:9)

}
**Description**

Plots the number of days per year outside of the 'normal' range (typically between 25 and 75th percentiles) for each day of the year. Upper and lower-range percentiles are calculated for each day of the year from all years, and then each daily flow value for each year is compared. All days above or below the normal range are included. Calculates statistics from all values from complete years, unless specified. Data calculated using `calc_annual_outside_normal()` function. Returns a list of plots.

**Usage**

```r
plot_annual_outside_normal(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 normal_percentiles = c(25, 75),
 roll_days = 1,
 roll_align = "right",
 water_year_start = 1,
 start_year,
 end_year,
 exclude_years,
 months = 1:12,
 include_title = FALSE
)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.</td>
</tr>
<tr>
<td>dates</td>
<td>Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.</td>
</tr>
<tr>
<td>values</td>
<td>Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.</td>
</tr>
<tr>
<td>groups</td>
<td>Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.</td>
</tr>
<tr>
<td>station_number</td>
<td>Character string vector of seven digit Water Survey of Canada station numbers (e.g. &quot;08NM116&quot;) of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.</td>
</tr>
</tbody>
</table>
normal_percentiles
  Numeric vector of two values, lower and upper percentiles, respectively indicating the limits of the normal range. Default c(25, 75).

roll_days
  Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align
  Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start
  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year
  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year
  Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years
  Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months
  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

include_title
  Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

Value

A list of ggplot2 objects with the following for each station provided:

Annual_Days_Outside_Normal
  a plot that contains the number of days outside normal

Default plots on each object:

Days_Below_Normal
  number of days per year below the daily normal (default 25th percentile)

Days_Above_Normal
  number of days per year above the daily normal (default 75th percentile)

Days_Outside_Normal
  number of days per year below and above the daily normal (default 25/75th percentile)

See Also

calc_annual_outside_normal

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {


# Plot annual statistics with default limits of normal (25 and 75th percentiles)
plot_annual_outside_normal(station_number = "08NM116")

# Plot annual statistics with custom limits of normal
plot_annual_outside_normal(station_number = "08NM116",
                           normal_percentiles = c(10, 90))

plot_annual_stats

Plot annual summary statistics

Description

Plots means, medians, maximums, minimums, and percentiles for each year from all years of a daily streamflow data set. Calculates statistics from all values, unless specified. Data calculated using calc_annual_stats() function. Returns a list of plots.

Usage

plot_annual_stats(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  percentiles,
  roll_days = 1,
  roll_align = "right",
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  months = 1:12,
  ignore_missing = FALSE,
  allowed_missing = ifelse(ignore_missing, 100, 0),
  log_discharge = FALSE,
  log_ticks = ifelse(log_discharge, TRUE, FALSE),
  include_title = FALSE
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
plot_annual_stats

dates
Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.

values
Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

groups
Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number
Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

percentiles
Numeric vector of percentiles to calculate. Set to NA if none required. Default NA.

roll_days
Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align
Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start
Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year
Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year
Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years
Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months
Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

ignore_missing
Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

allowed_missing
Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used.

log_discharge
Logical value to indicate plotting the discharge axis (Y-axis) on a logarithmic scale. Default FALSE.
log_ticks Logical value to indicate plotting logarithmic scale ticks when log_discharge = TRUE. Ticks will not appear when log_discharge = FALSE. Default to TRUE when log_discharge = TRUE.

include_title Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

Value
A list of ggplot2 objects for with the following plots (percentile plots optional) for each station provided:

Annual_Stats a plot that contains annual statistics

Default plots on each object:
Mean annual mean of all daily flows
Median annual median of all daily flows
Maximum annual maximum of all daily flows
Minimum annual minimum of all daily flows

See Also
calc_annual_stats

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Plot annual statistics using a data frame and data argument with defaults
flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
plot_annual_stats(data = flow_data)

# Plot annual statistics using station_number argument with defaults
plot_annual_stats(station_number = "08NM116")

# Plot annual statistics regardless if there is missing data for a given year
plot_annual_stats(station_number = "08NM116",
                  ignore_missing = TRUE)

# Plot annual statistics for water years starting in October
plot_annual_stats(station_number = "08NM116",
                  water_year_start = 10)

# Plot annual statistics with custom years and percentiles
plot_annual_stats(station_number = "08NM116",
                  start_year = 1981,
                  end_year = 2010,
                  percentiles = c(25, 75))
plot_daily_cumulative_stats

Plot cumulative daily flow statistics

Description

Plot the daily cumulative mean, median, maximum, minimum, and 5, 25, 75, 95th percentiles for each day of the year from a daily streamflow data set. Calculates statistics from all values from complete, unless specified. Data calculated using calc_daily_cumulative_stats() function. Can plot individual years for comparison using the add_year argument. Defaults to volumetric cumulative flows, can use use_yield and basin_area to convert to water yield. Returns a list of plots.

Usage

plot_daily_cumulative_stats(
  data, 
  dates = Date, 
  values = Value, 
  groups = STATION_NUMBER, 
  station_number, 
  use_yield = FALSE, 
  basin_area, 
  water_year_start = 1, 
  start_year, 
  end_year, 
  exclude_years, 
  months = 1:12, 
  log_discharge = FALSE, 
  log_ticks = ifelse(log_discharge, TRUE, FALSE),
  include_title = FALSE, 
  add_year
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

use_yield Logical value indicating whether to calculate area-based water yield, in mm, instead of volumetric discharge. Default FALSE.

basin_area Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
(1) Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
(2) A single numeric value to apply to all observations.
(3) List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795,"08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.

water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12). Need to be consecutive months for given year/water year to work properly.

log_discharge Logical value to indicate plotting the discharge axis (Y-axis) on a logarithmic scale. Default FALSE.

log_ticks Logical value to indicate plotting logarithmic scale ticks when log_discharge = TRUE. Ticks will not appear when log_discharge = FALSE. Default to TRUE when log_discharge = TRUE.

include_title Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

add_year Numeric value indicating a year of daily flows to add to the daily statistics plot. Leave blank or set to NULL for no years.
Value

A list of ggplot2 objects with the following for each station provided:

Daily_Cumulative_Stats
a plot that contains daily cumulative flow statistics

Default plots on each object:

Mean
daily cumulative mean
Median
daily cumulative median
Min-5 Percentile Range
a ribbon showing the range of data between the daily cumulative minimum and 5th percentile
5-25 Percentiles Range
a ribbon showing the range of data between the daily cumulative 5th and 25th percentiles
25-75 Percentiles Range
a ribbon showing the range of data between the daily cumulative 25th and 75th percentiles
75-95 Percentiles Range
a ribbon showing the range of data between the daily cumulative 75th and 95th percentiles
95 Percentile-Max Range
a ribbon showing the range of data between the daily cumulative 95th percentile and the maximum

‘Year’ Flows (optional) the daily cumulative flows for the designated year

See Also

calc_daily_cumulative_stats

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Plot annual daily yield statistics with default HYDAT basin area
plot_daily_cumulative_stats(station_number = "08NM116",
    use_yield = TRUE)

# Plot annual daily yield statistics with custom basin area
plot_daily_cumulative_stats(station_number = "08NM116",
    use_yield = TRUE,
    basin_area = 800)
}

**plot_daily_stats**  

Plot daily summary statistics

**Description**

Plots means, medians, maximums, minimums, and percentiles for each day of the year of flow values from a daily streamflow data set. Can determine statistics of rolling mean days (e.g. 7-day flows) using the `roll_days` argument. Calculates statistics from all values, unless specified. The Maximum-Minimum band can be removed using the `include_extremes` argument and the percentile bands can be customized using the `inner_percentiles` and `outer_percentiles` arguments. Data calculated using `calc_daily_stats()` function. Returns a list of plots.

**Usage**

```r
plot_daily_stats(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 roll_days = 1,
 roll_align = "right",
 water_year_start = 1,
 start_year,
 end_year,
 exclude_years,
 complete_years = FALSE,
 months = 1:12,
 ignore_missing = FALSE,
 include_extremes = TRUE,
 inner_percentiles = c(25, 75),
 outer_percentiles = c(5, 95),
 add_year,
 log_discharge = TRUE,
 log_ticks = ifelse(log_discharge, TRUE, FALSE),
 include_title = FALSE
)
```

**Arguments**

- `data`  
  Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using `station_number` argument.

- `dates`  
  Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using `station_number` argument.
plot_daily_stats

values  Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

groups  Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number  Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

roll_days  Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align  Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year  Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years  Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

complete_years  Logical values indicating whether to include only years with complete data in analysis. Default FALSE.

months  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

ignore_missing  Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

include_extremes  Logical value to indicate plotting a ribbon with the range of daily minimum and maximum flows. Default TRUE.

inner_percentiles  Numeric vector of two percentile values indicating the lower and upper limits of the inner percentiles ribbon for plotting. Default c(25,75), set to NULL for no inner ribbon.

outer_percentiles  Numeric vector of two percentile values indicating the lower and upper limits of the outer percentiles ribbon for plotting. Default c(5,95), set to NULL for no outer ribbon.
add_year Numeric value indicating a year of daily flows to add to the daily statistics plot. Leave blank or set to NULL for no years.

log_discharge Logical value to indicate plotting the discharge axis (Y-axis) on a logarithmic scale. Default FALSE.

log_ticks Logical value to indicate plotting logarithmic scale ticks when log_discharge = TRUE. Ticks will not appear when log_discharge = FALSE. Default to TRUE when log_discharge = TRUE.

include_title Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

Value

A list of ggplot2 objects with the following for each station provided:

Daily_Stats a plot that contains daily flow statistics

Default plots on each object:

Mean daily mean
Median daily median
25-75 Percentiles a ribbon showing the range of data between the daily 25th and 75th percentiles
5-95 Percentiles a ribbon showing the range of data between the daily 5th and 95th percentiles
Minimum-Maximum a ribbon showing the range of data between the daily minimum and maximums
'Year' (on annual plots) the daily flows for the designated year

See Also
calc_daily_stats

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Plot daily statistics using a data frame and data argument with defaults
flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
plot_daily_stats(data = flow_data,
                 start_year = 1980)

# Plot daily statistics using only years with no missing data
plot_daily_stats(station_number = "08NM116",
                 complete_years = TRUE)

# Plot daily statistics and add a specific year's daily flows
plot_daily_stats(station_number = "08NM116",
                 start_year = 1980,
# Plot daily statistics for 7-day flows for July-September months only
plot_daily_stats(station_number = "08NM116",
                 start_year = 1980,
                 roll_days = 7,
                 months = 7:9)
}

---

plot_data_screening  
*Plot annual summary statistics for data screening*

**Description**

Plots the mean, median, maximum, minimum, standard deviation of annual flows. Calculates statistics from all values, unless specified. Data calculated using `screen_flow_data()` function. Returns a list of plots.

**Usage**

```r
plot_data_screening(
 data,
 dates = Date,
 values = Value,
 groups = STATION_NUMBER,
 station_number,
 roll_days = 1,
 roll_align = "right",
 water_year_start = 1,
 months = 1:12,
 start_year,
 end_year,
 include_title = FALSE
)
```

**Arguments**

- **data**: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using `station_number` argument.

- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using `station_number` argument.

- **values**: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using `station_number` argument.
groups  Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number  Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

roll_days  Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align  Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

months  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

start_year  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year  Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

include_title  Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

Value
A list of ggplot2 objects with the following for each station provided:

Data_Screening  a plot that contains annual summary statistics for screening

Default plots on each object:

Minimum  annual minimum of all daily flows for a given year
Maximum  annual maximum of all daily flows for a given year
Mean  annual mean of all daily flows for a given year
StandardDeviation  annual 1 standard deviation of all daily flows for a given year

See Also

screen_flow_data
Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

    # Plot screening statistics using a data frame and data argument with defaults
    flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
    plot_data_screening(data = flow_data)

    # Plot screening statistics using station_number argument with defaults
    plot_data_screening(station_number = "08NM116")

    # Plot screening statistics for water years starting in October
    plot_data_screening(station_number = "08NM116",
                        water_year_start = 10)

    # Plot screening statistics for 7-day flows for July-September months only
    plot_data_screening(station_number = "08NM116",
                        roll_days = 7,
                        months = 7:9)
}

plot_flow_data

Plot a daily streamflow data set

Description

Plot the daily mean flow values from a streamflow data set. Plots daily discharge values from all
years, unless specified. Can choose specific dates to start and end plotting. Can choose to plot out
each year separately. Multiple groups/stations can be plotted if provided with the groups argument.
Returns a list of plots.

Usage

plot_flow_data(
    data,
    dates = Date,
    values = Value,
    groups = STATION_NUMBER,
    station_number,
    roll_days = 1,
    roll_align = "right",
    water_year_start = 1,
    start_year,
    end_year,
    exclude_years,
    months = 1:12,
    start_date,
Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
roll_days Numeric value of the number of days to apply a rolling mean. Default 1.
roll_align Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.
water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
start_year Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
end_year Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.
exclude_years Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.
months Numeric vector of months to include in plotting. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default plots all months (1:12).
start_date Date (YYYY-MM-DD) of first date to consider for plotting. Leave blank if all years are required.
end_date  Date (YYYY-MM-DD) of last date to consider for plotting. Leave blank if all years are required.

log_discharge  Logical value to indicate plotting the discharge axis (Y-axis) on a logarithmic scale. Default TRUE.

log_ticks  Logical value to indicate plotting logarithmic scale ticks when using a log-scale discharge axis. Default to FALSE when log_discharge = FALSE and TRUE when log_discharge = TRUE.

plot_by_year  Logical value to indicate whether to plot each year of data individually. Default FALSE.

one_plot  Logical value to indicate whether to plot all groups/stations on one plot. Default FALSE.

include_title  Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

Value

A ggplot2 object of daily flows from flow_data or HYDAT flow data provided

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

  # Plot data from a data frame and data argument
  flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
  plot_flow_data(data = flow_data)

  # Plot data directly from HYDAT
  plot_flow_data(station_number = "08NM116")

  # Plot statistics with custom years
  plot_flow_data(station_number = "08NM116",
                 start_year = 1981,
                 end_year = 2010,

  # Plot data between specific dates
  plot_flow_data(station_number = "08NM116",
                 start_date = "1990-01-01",
                 end_date = "1990-06-01")

  # Plot data multiple groups on one plot
  plot_flow_data(station_number = c("08NM241", "08NM242"),
                 one_plot = TRUE)
}


Description

Plots flow duration curves of flow data from a daily streamflow data set. Plots the percent time flows are equalled or exceeded. Calculates statistics from all values, unless specified. Data calculated using calc_longterm_stats() function then converted for plotting. Returns a list of plots.

Usage

plot_flow_duration(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  roll_days = 1,
  roll_align = "right",
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  complete_years = FALSE,
  custom_months,
  custom_months_label,
  ignore_missing = FALSE,
  months = 1:12,
  include_longterm = TRUE,
  log_discharge = TRUE,
  log_ticks = ifelse(log_discharge, TRUE, FALSE),
  include_title = FALSE
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
plot_flow_duration

groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

roll_days Numeric value of the number of days to apply a rolling mean. Default 1.

roll_align Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

complete_years Logical values indicating whether to include only years with complete data in analysis. Default FALSE.

custom_months Numeric vector of months to combine to summarize (ex. 6:8 for Jun-Aug). Adds results to the end of table. If wanting months that overlap calendar years (ex. Oct-Mar), choose water_year_start that begins before the first month listed. Leave blank for no custom month summary.

custom_months_label Character string to label custom months. For example, if months = 7:9 you may choose "Summer" or "Jul-Sep". Default "Custom-Months".

ignore_missing Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

months Numeric vector of month curves to plot. NA if no months required. Default 1:12.

include_longterm Logical value indicating whether to include long-term curve of all data. Default TRUE.

log_discharge Logical value to indicate plotting the discharge axis (Y-axis) on a logarithmic scale. Default FALSE.

log_ticks Logical value to indicate plotting logarithmic scale ticks when log_discharge = TRUE. Ticks will not appear when log_discharge = FALSE. Default to TRUE when log_discharge = TRUE.

include_title Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.
Value

A list of ggplot2 objects with the following for each station provided:

- **Flow_Duration**: a plot that contains flow duration curves for each month, long-term, and (option) customized months

See Also

calc_longterm_daily_stats

Examples

```r
Not run:

Not run:

Working examples:

Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

Plot flow durations using a data frame and data argument with defaults
flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
plot_flow_duration(data = flow_data,
 start_year = 1980)

Plot flow durations using station_number argument with defaults
plot_flow_duration(station_number = "08NM116",
 start_year = 1980)

Plot flow durations and add custom stats for July-September
plot_flow_duration(station_number = "08NM116",
 start_year = 1980,
 custom_months = 7:9,
 custom_months_label = "Summer")
}

End(Not run)
```

plot_longterm_daily_stats

*Plot long-term summary statistics from daily mean flows*

Description

Plots the long-term mean, median, maximum, minimum, and percentiles of daily flow values for over all months and all data (Long-term) from a daily streamflow data set. Calculates statistics from all values, unless specified. The Maximum-Minimum band can be removed using the `include_extremes` argument and the percentile bands can be customized using the `inner_percentiles` and `outer_percentiles` arguments. Data calculated using the `calc_longterm_daily_stats()` function. Returns a list of plots.
plot_longterm_daily_stats

Usage

plot_longterm_daily_stats(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  roll_days = 1,
  roll_align = "right",
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  months = 1:12,
  complete_years = FALSE,
  ignore_missing = FALSE,
  include_extremes = TRUE,
  inner_percentiles = c(25, 75),
  outer_percentiles = c(5, 95),
  add_year,
  log_discharge = TRUE,
  log_ticks = ifelse(log_discharge, TRUE, FALSE),
  include_title = FALSE
)

Arguments

data    Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates   Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values  Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups  Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
roll_days Numeric value of the number of days to apply a rolling mean. Default 1.
**roll_align**  Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

**water_year_start**  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

**start_year**  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

**end_year**  Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

**exclude_years**  Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

**months**  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12, 1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

**complete_years**  Logical values indicating whether to include only years with complete data in analysis. Default FALSE.

**ignore_missing**  Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

**include_extremes**  Logical value to indicate plotting a ribbon with the range of daily minimum and maximum flows. Default TRUE.

**inner_percentiles**  Numeric vector of two percentile values indicating the lower and upper limits of the inner percentiles ribbon for plotting. Default c(25,75), set to NULL for no inner ribbon.

**outer_percentiles**  Numeric vector of two percentile values indicating the lower and upper limits of the outer percentiles ribbon for plotting. Default c(5,95), set to NULL for no outer ribbon.

**add_year**  Numeric value indicating a year of daily flows to add to the daily statistics plot. Leave blank or set to NULL for no years.

**log_discharge**  Logical value to indicate plotting the discharge axis (Y-axis) on a logarithmic scale. Default FALSE.

**log_ticks**  Logical value to indicate plotting logarithmic scale ticks when log_discharge = TRUE. Ticks will not appear when log_discharge = FALSE. Default to TRUE when log_discharge = TRUE.

**include_title**  Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

**Value**

A list of ggplot2 objects with the following for each station provided:
Long-term Monthly Statistics

- a plot that contains long-term flow statistics

Default plots on each object:

- **Monthly Mean**: mean of all annual monthly means for a given month over all years
- **Monthly Median**: median of all annual monthly means for a given month over all years
- **25-75 Percentiles Range**: a ribbon showing the range of data between the monthly 25th and 75th percentiles
- **5-95 Percentiles Range**: a ribbon showing the range of data between the monthly 5th and 95th percentiles
- **Max-Min Range**: a ribbon showing the range of data between the monthly minimum and maximums

See Also

calc_longterm_daily_stats

Examples

```r
Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

 # Plot longterm daily statistics using data argument with defaults
 flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
 plot_longterm_daily_stats(data = flow_data,
 start_year = 1980)

 # Plot longterm daily statistics for water years starting in October
 plot_longterm_daily_stats(station_number = "08NM116",
 start_year = 1980,
 end_year = 2010,
 water_year_start = 10)

}
```

---

plot_longterm_monthly_stats

*Plot long-term summary statistics from annual monthly mean flows*

Description

Plots the long-term mean, median, maximum, minimum, and percentiles of annual monthly mean flow values for all months and all data (Long-term) from a daily streamflow data set. Calculates statistics from all values, unless specified. The Maximum-Minimum band can be removed using the include_extremes argument and the percentile bands can be customized using the inner_percentiles and outer_percentiles arguments. Data calculated using the calc_longterm_monthly_stats() function. Returns a list of plots.
Usage

plot_longterm_monthly_stats(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  roll_days = 1,
  roll_align = "right",
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  months = 1:12,
  complete_years = FALSE,
  ignore_missing = FALSE,
  include_extremes = TRUE,
  inner_percentiles = c(25, 75),
  outer_percentiles = c(5, 95),
  add_year,
  log_discharge = TRUE,
  log_ticks = ifelse(log_discharge, TRUE, FALSE),
  include_title = FALSE
)

Arguments

data      Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates     Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values    Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups    Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
roll_days Numeric value of the number of days to apply a rolling mean. Default 1.
roll_align  Character string identifying the direction of the rolling mean from the specified
date, either by the first ('left'), last ('right'), or middle ('center') day of
the rolling n-day group of observations. Default 'right'.

water_year_start  Numeric value indicating the month (1 through 12) of the start of water year for
analysis. Default 1.

start_year  Numeric value of the first year to consider for analysis. Leave blank or set well
before start date (i.e. 1800) to use from the first year of the source data.

end_year  Numeric value of the last year to consider for analysis. Leave blank or set well
after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years  Numeric vector of years to exclude from analysis. Leave blank or set to NULL to
include all years.

months  Numeric vector of months to include in analysis. For example, 3 for March, 6:8
for Jun-Aug or c(10:12, 1) for first four months (Oct-Jan) when water_year_start
= 10 (Oct). Default summarizes all months (1:12).

complete_years  Logical values indicating whether to include only years with complete data in
analysis. Default FALSE.

ignore_missing  Logical value indicating whether dates with missing values should be included
in the calculation. If TRUE then a statistic will be calculated regardless of missing
dates. If FALSE then only those statistics from time periods with no missing dates
will be returned. Default FALSE.

include_extremes  Logical value to indicate plotting a ribbon with the range of daily minimum and
maximum flows. Default TRUE.

inner_percentiles  Numeric vector of two percentile values indicating the lower and upper limits of
the inner percentiles ribbon for plotting. Default c(25,75), set to NULL for no
inner ribbon.

outer_percentiles  Numeric vector of two percentile values indicating the lower and upper limits
of the outer percentiles ribbon for plotting. Default c(5,95), set to NULL for no
outer ribbon.

add_year  Numeric value indicating a year of daily flows to add to the daily statistics plot.
Leave blank or set to NULL for no years.

log_discharge  Logical value to indicate plotting the discharge axis (Y-axis) on a logarithmic
scale. Default FALSE.

log_ticks  Logical value to indicate plotting logarithmic scale ticks when log_discharge
= TRUE. Ticks will not appear when log_discharge = FALSE. Default to TRUE
when log_discharge = TRUE.

include_title  Logical value to indicate adding the group/station number to the plot, if pro-
vided. Default FALSE.

Value

A list of ggplot2 objects with the following for each station provided:
**plot_missing_dates**  
Plot annual and monthly missing dates

**Description**  
Plots the number of missing data for each month of each year. Calculates statistics from all values, unless specified. Data calculated using `screen_flow_data()` function. Returns a list of plots.
Usage

plot_missing_dates(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  roll_days = 1,
  roll_align = "right",
  water_year_start = 1,
  start_year,
  end_year,
  months = 1:12,
  include_title = FALSE
)

Arguments

data  Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates  Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values  Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups  Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number  Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
roll_days  Numeric value of the number of days to apply a rolling mean. Default 1.
roll_align  Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.
water_year_start  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
start_year  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
end_year  Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

months  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

include_title  Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

Value
A list of ggplot2 objects with the following for each station provided:

Missing_Dates  a plot that contains the number of missing dates for each year and month

See Also
screen_flow_data

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Plot missing dates using a data frame and data argument with defaults
flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
plot_missing_dates(data = flow_data)

# Plot missing dates using station_number argument with defaults
plot_missing_dates(station_number = "08NM116")

# Plot missing dates for water years starting in October
plot_missing_dates(station_number = "08NM116",
                 water_year_start = 9)

# Plot missing dates for 7-day flows for July-September months only
plot_missing_dates(station_number = "08NM116",
                 roll_days = 7,
                 months = 7:9)
}

plot_monthly_cumulative_stats

Plot cumulative monthly flow statistics
plot_monthly_cumulative_stats

Description

Plot the monthly cumulative mean, median, maximum, minimum, and 5, 25, 75, 95th percentiles for each month of the year from a daily streamflow data set. Calculates statistics from all values from complete years, unless specified. Data calculated using calc_monthly_cumulative_stats() function. Can plot individual years for comparison using the add_year argument. Defaults to volumetric cumulative flows, can use use_yield and basin_area to convert to water yield. Returns a list of plots.

Usage

plot_monthly_cumulative_stats(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  use_yield = FALSE,
  basin_area,
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  months = 1:12,
  log_discharge = FALSE,
  log_ticks = ifelse(log_discharge, TRUE, FALSE),
  include_title = FALSE,
  add_year
)

Arguments

data: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups: Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number: Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT
database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

**use_yield**
Logical value indicating whether to calculate area-based water yield, in mm, instead of volumetric discharge. Default FALSE.

**basin_area**
Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
(1) Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
(2) A single numeric value to apply to all observations.
(3) List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795,"08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.

**water_year_start**
Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

**start_year**
Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

**end_year**
Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

**exclude_years**
Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

**months**
Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12). Need to be consecutive months for given year/water year to work properly.

**log_discharge**
Logical value to indicate plotting the discharge axis (Y-axis) on a logarithmic scale. Default FALSE.

**log_ticks**
Logical value to indicate plotting logarithmic scale ticks when log_discharge = TRUE. Ticks will not appear when log_discharge = FALSE. Default to TRUE when log_discharge = TRUE.

**include_title**
Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

**add_year**
Numeric value indicating a year of daily flows to add to the daily statistics plot. Leave blank or set to NULL for no years.

**Value**
A list of ggplot2 objects with the following for each station provided:

- **Monthly_Cumulative_Stats**
  a plot that contains monthly cumulative flow statistics

Default plots on each object:

- **Mean** monthly cumulative mean
- **Median** monthly cumulative median
plot_monthly_stats

Min-5 Percentile Range
a ribbon showing the range of data between the monthly cumulative minimum
and 5th percentile

5-25 Percentiles Range
a ribbon showing the range of data between the monthly cumulative 5th and 25th
percentiles

25-75 Percentiles Range
a ribbon showing the range of data between the monthly cumulative 25th and
75th percentiles

75-95 Percentiles Range
a ribbon showing the range of data between the monthly cumulative 75th and
95th percentiles

95 Percentile-Max Range
a ribbon showing the range of data between the monthly cumulative 95th per-
centile and the maximum

'Year' Flows (optional) the monthly cumulative flows for the designated year

See Also
calc_monthly_cumulative_stats

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Plot annual cumulative volume statistics
plot_monthly_cumulative_stats(station_number = "08NM116")

# Plot annual cumulative yield statistics with default HYDAT basin area
plot_monthly_cumulative_stats(station_number = "08NM116",
                           use_yield = TRUE)

# Plot annual cumulative yield statistics with custom basin area
plot_monthly_cumulative_stats(station_number = "08NM116",
                           use_yield = TRUE,
                           basin_area = 800)

}

plot_monthly_stats  Plot monthly summary statistics

Description

Plots means, medians, maximums, minimums, and percentiles for each month of all years of flow
values from a daily streamflow data set. Calculates statistics from all values, unless specified. Data
calculated using the calc_monthly_stats() function. Produces a list containing a plot for each
statistic. Returns a list of plots.
plot_monthly_stats

Usage

plot_monthly_stats(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  percentiles,
  roll_days = 1,
  roll_align = "right",
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  months = 1:12,
  ignore_missing = FALSE,
  allowed_missing = ifelse(ignore_missing, 100, 0),
  log_discharge = FALSE,
  log_ticks = ifelse(log_discharge, TRUE, FALSE),
  include_title = FALSE
)

Arguments

- **data**: Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g., station numbers). Leave blank or set to NULL if using station_number argument.

- **dates**: Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.

- **values**: Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

- **groups**: Name of column in data that contains unique identifiers for different data sets, if applicable. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

- **station_number**: Character string vector of seven digit Water Survey of Canada station numbers (e.g., "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydrodat package and a HYDAT database. Leave blank if using data argument.

- **percentiles**: Numeric vector of percentiles to calculate. Set to NA if none required. Default NA.

- **roll_days**: Numeric value of the number of days to apply a rolling mean. Default 1.
plot_monthly_stats

roll_align
Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.

water_year_start
Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year
Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year
Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years
Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months
Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).

ignore_missing
Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.

allowed_missing
Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used.

log_discharge
Logical value to indicate plotting the discharge axis (Y-axis) on a logarithmic scale. Default FALSE.

log_ticks
Logical value to indicate plotting logarithmic scale ticks when log_discharge = TRUE. Ticks will not appear when log_discharge = FALSE. Default to TRUE when log_discharge = TRUE.

include_title
Logical value to indicate adding the group/station number to the plot, if provided. Default FALSE.

Value

A list of ggplot2 objects for each monthly statistic for each station provided that contain:

- Monthly Mean Flows
  mean of all daily flows for a given month and year
- Monthly Median Flows
  median of all daily flows for a given month and year
- Monthly Maximum Flows
  maximum of all daily flows for a given month and year
- Monthly Minimum Flows
  minimum of all daily flows for a given month and year
- Monthly P'n' Flows
  (optional) each n-th percentile selected for a given month and year
screen_flow_data

See Also
calc_monthly_stats

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Plot monthly statistics using a data frame and data argument with defaults
flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
results <- plot_monthly_stats(data = flow_data,
                              start_year = 1980,
                              percentiles = 10)

# Plot monthly statistics for water years starting in October
results <- plot_monthly_stats(station_number = "08NM116",
                              start_year = 1980,
                              end_year = 2010,
                              water_year_start = 10,
                              percentiles = 10)
}

screen_flow_data

Calculate annual summary and missing data statistics for screening data

Description

Calculates means, medians, maximums, minimums, standard deviations of annual flows and data availability and missing data statistics for each year and month of each year. Calculates the statistics from all daily discharge values from all years, unless specified. Returns a tibble with statistics.

Usage

screen_flow_data(
data,  
dates = Date,  
values = Value,  
groups = STATION_NUMBER,  
station_number,  
roll_days = 1,  
roll_align = "right",  
water_year_start = 1,  
start_year,  
end_year,  
months = 1:12,  
transpose = FALSE
)
Arguments

data  Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g., station numbers). Leave blank or set to NULL if using station_number argument.
dates  Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values  Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups  Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
station_number  Character string vector of seven digit Water Survey of Canada station numbers (e.g., "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.
roll_days  Numeric value of the number of days to apply a rolling mean. Default 1.
roll_align  Character string identifying the direction of the rolling mean from the specified date, either by the first ('left'), last ('right'), or middle ('center') day of the rolling n-day group of observations. Default 'right'.
water_year_start  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.
start_year  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.
end_year  Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.
months  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12).
transpose  Logical value indicating whether to transpose rows and columns of results. Default FALSE.

Value

A tibble data frame with the following columns:

Year  calendar or water year selected
n_days  number of days per year
n_Q  number of days per year with flow data
n_missing_Q  number of days per year with no flow data
Minimum annual minimum of all daily flows for a given year
Maximum annual maximum of all daily flows for a given year
Mean annual mean of all daily flows for a given year
Median annual median of all daily flows for a given year
StandardDeviation annual 1 standard deviation of all daily flows for a given year

and the following monthly missing columns (order will depend on water_year_month):

Jan_missing_Q number of Jan days per year with no flow data
Feb_missing_Q number of Feb days per year with no flow data
Mar_missing_Q number of Mar days per year with no flow data
Apr_missing_Q number of Apr days per year with no flow data
May_missing_Q number of May days per year with no flow data
Jun_missing_Q number of Jun days per year with no flow data
Jul_missing_Q number of Jul days per year with no flow data
Aug_missing_Q number of Aug days per year with no flow data
Sep_missing_Q number of Sep days per year with no flow data
Oct_missing_Q number of Oct days per year with no flow data
Nov_missing_Q number of Nov days per year with no flow data
Dec_missing_Q number of Dec days per year with no flow data

Transposing data creates a column of “Statistics” and subsequent columns for each year selected.

Examples

# Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
if (file.exists(tidyhydat::hy_downloaded_db())) {

# Calculate screening statistics using data frame and data argument with defaults
flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
screen_flow_data(data = flow_data)

# Calculate screening statistics using station_number argument with defaults
screen_flow_data(station_number = "08NM116")

# Calculate screening statistics for water years starting in October
screen_flow_data(station_number = "08NM116",
                  water_year_start = 9)

# Calculate screening statistics for 7-day flows for July-September months only
screen_flow_data(station_number = "08NM116",
                  roll_days = 7,
                  months = 7:9)
}

}
write_flow_data

Write a streamflow dataset as a .xlsx, .xls, or .csv file

Description

Write a daily streamflow data set to a directory. Can fill missing dates or filter data by years or dates before writing using given arguments. List data frame or HYDAT station number to write its entirety. Can write as .xls, .xlsx, or .csv file types. Writing as Excel file type uses the writexl package.

Usage

write_flow_data(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  water_year_start = 1,
  start_year,
  end_year,
  start_date,
  end_date,
  file_name,
  fill_missing = FALSE,
  digits
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.
groups Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.
**station_number**  Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

**water_year_start**  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

**start_year**  Numeric value of the first year of data to write. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

**end_year**  Numeric value of the last year of data to write. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

**start_date**  Date (YYYY-MM-DD) of first date of data to write. Leave blank or set well before start date (i.e. 1800-01-01) if all dates required.

**end_date**  Date (YYYY-MM-DD) of last date of data to write. Leave blank or set well after end date (i.e. 2100-12-31) if all dates required.

**file_name**  Character string naming the output file. If none provided, a default file name (with .xlsx) is provided (see "Successfully created" message when using function for file name).

**fill_missing**  Logical value indicating whether to fill dates with missing flow data with NA. Default FALSE.

**digits**  Integer indicating the number of decimal places or significant digits used to round flow values. Use follows that of base::round() digits argument.

### Examples

```r
Not run:

Working examples:

Write data from a data frame
flow_data <- tidyhydat::hy_daily_flows(station_number = "08NM116")
write_flow_data(data = flow_data,
 file_name = "Mission_Creek_daily_flows.xlsx")

Write data directly from HYDAT
write_flow_data(station_number = "08NM116",
 file_name = "Mission_Creek_daily_flows.xlsx")

Write data directly from HYDAT and fill missing dates with NA
write_flow_data(station_number = "08NM116",
 file_name = "Mission_Creek_daily_flows.xlsx",
 fill_missing = TRUE)

End(Not run)
```
write_full_analysis
Write a suite of tables and plots from various fasstr functions into a directory

Description

Calculates and writes tables and plots from a suite of statistics from fasstr functions into an Excel workbook, and accompanying plot files for certain analyses. Due to the number of tables and plots to be made, this function may take several minutes to complete. If ignore_missing = FALSE (default) and there is missing data, some tables and plots may be empty and produce warnings. Use ignore_missing = TRUE to ignore the missing values or filter your data to complete years. Calculates statistics from all values, unless specified. Returns a list of tibbles and plots, along with saving the Excel and image files in a directory.

Usage

write_full_analysis(
  data,
  dates = Date,
  values = Value,
  groups = STATION_NUMBER,
  station_number,
  analyses = 1:7,
  basin_area,
  water_year_start = 1,
  start_year,
  end_year,
  exclude_years,
  months = 1:12,
  ignore_missing = FALSE,
  allowed_missing_annual = ifelse(ignore_missing, 100, 0),
  allowed_missing_monthly = ifelse(ignore_missing, 100, 0),
  zyp_method = "zhang",
  zyp_alpha,
  file_name,
  plot_filetype = "pdf"
)

Arguments

data Data frame of daily data that contains columns of dates, flow values, and (optional) groups (e.g. station numbers). Leave blank or set to NULL if using station_number argument.
dates Name of column in data that contains dates formatted YYYY-MM-DD. Only required if dates column name is not 'Date' (default). Leave blank or set to NULL if using station_number argument.
values  Name of column in data that contains numeric flow values, in units of cubic metres per second. Only required if values column name is not 'Value' (default). Leave blank if using station_number argument.

groups  Name of column in data that contains unique identifiers for different data sets, if applicable. Only required if groups column name is not 'STATION_NUMBER'. Function will automatically group by a column named 'STATION_NUMBER' if present. Remove the 'STATION_NUMBER' column beforehand to remove this grouping. Leave blank if using station_number argument.

station_number  Character string vector of seven digit Water Survey of Canada station numbers (e.g. "08NM116") of which to extract daily streamflow data from a HYDAT database. Requires tidyhydat package and a HYDAT database. Leave blank if using data argument.

analyses  Numeric vector of analyses to run (default is all (1:7)):
- 1: Screening
- 2: Long-term
- 3: Annual
- 4: Monthly
- 5: Daily
- 6: Annual Trends
- 7: Low-flow Frequencies

basin_area  Upstream drainage basin area, in square kilometres, to apply to observations. Three options:
(1) Leave blank if groups is STATION_NUMBER with HYDAT station numbers to extract basin areas from HYDAT.
(2) A single numeric value to apply to all observations.
(3) List each basin area for each group/station in groups (can override HYDAT value if listed) as such c("08NM116" = 795,"08NM242" = 10). If group is not listed the HYDAT area will be applied if it exists, otherwise it will be NA.

water_year_start  Numeric value indicating the month (1 through 12) of the start of water year for analysis. Default 1.

start_year  Numeric value of the first year to consider for analysis. Leave blank or set well before start date (i.e. 1800) to use from the first year of the source data.

end_year  Numeric value of the last year to consider for analysis. Leave blank or set well after end date (i.e. 2100) to use up to the last year of the source data.

exclude_years  Numeric vector of years to exclude from analysis. Leave blank or set to NULL to include all years.

months  Numeric vector of months to include in analysis. For example, 3 for March, 6:8 for Jun-Aug or c(10:12,1) for first four months (Oct-Jan) when water_year_start = 10 (Oct). Default summarizes all months (1:12). If not all months, seasonal total yield and volumetric flows will not be included.

ignore_missing  Logical value indicating whether dates with missing values should be included in the calculation. If TRUE then a statistic will be calculated regardless of missing dates. If FALSE then only those statistics from time periods with no missing dates will be returned. Default FALSE.
allowed_missing_annual
Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate an annual statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used. Only for annual means, percentiles, minimums, and maximums.

allowed_missing_monthly
Numeric value between 0 and 100 indicating the percentage of missing dates allowed to be included to calculate a monthly statistic (0 to 100 percent). If 'ignore_missing = FALSE' then it defaults to 0 (zero missing dates allowed), if 'ignore_missing = TRUE' then it defaults to 100 (any missing dates allowed); consistent with ignore_missing usage. Supersedes ignore_missing when used. Only for monthly means, percentiles, minimums, and maximums.

zypon_method
Character string identifying the prewhitened trend method to use from 'zypon', either 'zhang' or 'yuepilon'. 'zhang' is recommended over 'yuepilon' for hydrologic applications (see compute_annual_trends(); Bürger 2017; Zhang and Zwiers 2004). Only required if analysis group 6 is included. Default 'zhang'.

zypon_alpha
Numeric value of the significance level (ex. 0.05) of when to plot a trend line. Leave blank for no line.

file_name
Character string of the name of the Excel Workbook (and folder for plots if necessary) to create on drive to write all results.

plot_filetype
Image type to write. One of 'png', 'eps', 'ps', 'tex', 'pdf', 'jpeg', 'tiff', 'bmp', or 'svg'. If not 'pdf' then individual plots will be created instead of a combined PDF. Default 'pdf'.

See Also
compute_full_analysis, screen_flow_data, plot_data_screening, plot_missing_dates, calc_longterm_monthly_stats, plot_longterm_monthly_stats, calc_longterm_daily_stats, plot_longterm_daily_stats, plot_flow_duration, calc_annual_stats, plot_annual_stats, calc_annual_cumulative_stats, plot_annual_cumulative_stats, calc_annual_flow_timing, plot_annual_flow_timing, calc_annual_outside_normal, plot_annual_outside_normal, calc_annual_lowflows, plot_annual_lowflows, plot_annual_means, calc_monthly_stats, plot_monthly_stats, calc_monthly_cumulative_stats, plot_monthly_cumulative_stats, calc_daily_stats, plot_daily_stats, calc_daily_cumulative_stats, plot_daily_cumulative_stats, compute_annual_trends, compute_annual_frequencies, write_flow_data, write_plots

Examples
## Not run:

# Working examples:

# Save a full analysis will all the analyses
write_full_analysis(station_number = "08NM116",
file_name = "Mission Creek",
start_year = 1980,
end_year = 2010)

# Save a full analysis with only Annual and Daily analyses
write_full_analysis(station_number = "08NM116",
file_name = "Mission Creek",
start_year = 1980,
end_year = 2010,
analyses = c(3,5))

## End(Not run)

---

**write_objects_list**  
*Write all data frames and plots from a list of objects into a directory*

**Description**

Write a list of tables (data frames) and plots (ggplots, as used by fasstr) into a directory. Objects that are not class "data.frame" or "gg" will not be saved. Each table and plot will be named by the object name in the list.

**Usage**

```r
write_objects_list(
 list,
 folder_name,
 table_filetype,
 plot_filetype,
 width,
 height,
 units = "in",
 dpi = 300
)
```

**Arguments**

- **list**: List of data frames and plots to write to disk.
- **folder_name**: Name of folder to create on disk (if it does not exist) to write each plot from list. If using `combined_pdf` argument, then it will be the name of the PDF document.
- **table_filetype**: Table file type to write. One of 'csv', 'xls', or 'xlsx'.
- **plot_filetype**: Image type to write. One of 'png', 'eps', 'ps', 'tex', 'pdf', 'jpeg', 'tiff', 'bmp', or 'svg'. Image type will be overwritten if using `combined_pdf` is used.
- **width**: Numeric plot width in units. If not supplied, uses the size of current graphics device.
- **height**: Numeric plot height in units. If not supplied, uses the size of current graphics device.
write_plots

Write plots from a list into a directory or PDF document

Description
Write a list of plots (ggplots; as used by fasstr) into a directory or PDF document. When writing into a named directory each plot will be named by the plot name listed in the list; uses ggplot2::ggsave function. When writing into a PDF document (combined_pdf == TRUE) the plot names will not appear; uses grDevices::pdf function.

Usage
write_plots(
  plots,
  folder_name,
  plot_filetype,
  width,
  height,
  units = "in",
  dpi = 300,
  combined_pdf = FALSE
)
Arguments

plots: List of plots to write to disk.
folder_name: Name of folder to create on disk (if it does not exist) to write each plot from list. If using combined_pdf argument, then it will be the name of the PDF document.
plot_filetype: Image type to write. One of 'png', 'eps', 'ps', 'pdf', 'jpeg', 'tiff', 'bmp', or 'svg'. Image type will be overwritten if using combined_pdf is used.
width: Numeric plot width in units. If not supplied, uses the size of current graphics device.
height: Numeric plot height in units. If not supplied, uses the size of current graphics device.
units: Character string plot height and width units, one of 'in', 'cm', or 'mm'. Default 'in'.
dpi: Numeric resolution of plots. Default 300.
combined_pdf: Logical value indicating whether to combine list of plots into one PDF document. Default FALSE.

Examples

```r
Not run:

Working examples:

Example plots to save
plots <- plot_annual_lowflows(station_number = "08NM116")

Write the plots as "png" files
write_plots(plots = plots,
 folder_name = "Low Flow Plots",
 plot_filetype = "png")

Write the plots as a combined "pdf" document
write_plots(plots = plots,
 folder_name = "Low Flow Plots",
 combined_pdf = TRUE)

End(Not run)
```

write_results: Write a data frame as a .xlsx, .xls, or .csv file

Description

Write a data frame to a directory with all numbers rounded to specified digits. Can write as .xls, .xlsx, or .csv file types. Writing as .xlsx or .xls uses the writexl package.
Usage

write_results(data, file_name, digits)

Arguments

data Data frame to be written to a directory.
file_name Character string naming the output file. Required.
digits Integer indicating the number of decimal places or significant digits used to round flow values. Use follows that of base::round() digits argument.

Examples

## Not run:
# Working examples:

# Example data to write
data_results <- calc_longterm_daily_stats(station_number = c("08HA002", "08HA011"),
start_year = 1971, end_year = 2000)

# Write the data and round numbers to 1 decimal place
write_results(data = data_results,
              digits = 1)

## End(Not run)