Package ‘fastLink’

November 12, 2018

Type Package
Title Fast Probabilistic Record Linkage with Missing Data
Version 0.5.0
Date 2018-11-01
Description Implements a Fellegi-Sunter probabilistic record linkage model that allows for missing data and the inclusion of auxiliary information. This includes functionalities to conduct a merge of two datasets under the Fellegi-Sunter model using the Expectation-Maximization algorithm. In addition, tools for preparing, adjusting, and summarizing data merges are included. The package implements methods described in Enamorado, Fifield, and Imai (2017) "Using a Probabilistic Model to Assist Merging of Large-scale Administrative Records", available at <http://imai.princeton.edu/research/linkage.html>.
License GPL (>= 3)
Imports Matrix, parallel, foreach, doParallel, gtools, data.table, stringdist, stringr, stringi, Rcpp (>= 0.12.7), FactoClass, adagio, dplyr, plotrix, grDevices, graphics
Depends R (>= 2.14.0)
LinkingTo RcppArmadillo, Rcpp, RcppEigen
Encoding UTF-8
LazyData true
BugReports https://github.com/kosukeimai/fastLink/issues
RoxygenNote 6.0.1
Suggests testthat
NeedsCompilation yes
Author Ted Enamorado [aut, cre], Ben Fifield [aut], Kosuke Imai [aut]
Maintainer Ted Enamorado <fastlinkr@gmail.com>
Repository CRAN
Date/Publication 2018-11-12 16:50:02 UTC
R topics documented:

- fastLink-package .. 3
- aggconfusion ... 3
- aggregateEM .. 4
- blockData ... 4
- calcMoversPriors ... 5
- clusterMatch .. 6
- confusion .. 8
- countyfips .. 9
- countyinflow .. 9
- countyoutflow .. 9
- dedupeMatches ... 10
- dfA ... 11
- dfB ... 11
- emlinklog ... 11
- emlinkMARmov .. 13
- emlinkRS ... 15
- fastLink ... 16
- gammaCK2par ... 19
- gammaCKpar ... 20
- gammaKpar ... 21
- gammaNUMCK2par ... 22
- gammaNUMCKpar ... 23
- getMatches .. 24
- getPatterns ... 25
- getPosterior .. 26
- inspectEM ... 27
- matchesLink ... 27
- nameReweight .. 29
- plot.fastLink .. 30
- preprocText .. 30
- print.inspectEM ... 31
- statefips ... 31
- stateinflow ... 32
- statemove ... 32
- stateoutflow ... 32
- stringSubset ... 33
- summary.fastLink ... 34
- tableCounts ... 34

Index ... 36
Description

fastLink implements methods developed by Enamorado, Fifield, and Imai (2018) "Using a Probabilistic Model to Assist Merging of Large-scale Administrative Records", to probabilistically merge large datasets using the Fellegi-Sunter model while allowing for missing data and the inclusion of auxiliary information. The current version of this package conducts a merge of two datasets under the Fellegi-Sunter model, using the Expectation-Maximization Algorithm. In addition, tools for conducting and summarizing data merges are included.

Details

Package: fastLink
Type: Package
Version: 0.5.0-
Date: 2018-11-01
License: GPL (>= 3)

Author(s)

Ted Enamorado<fastlinkr@gmail.com>, Ben Fifield<fastlinkr@gmail.com>, and Kosuke Imai<kimai@princeton.edu>

Maintainer: Ted Enamorado<fastlinkr@gmail.com>

References

Description

Aggregate confusion tables from separate runs of fastLink() (UNDER DEVELOPMENT)

Usage

aggconfusion(object)
blockData

Arguments

object A list of confusion tables.

Value

'aggconfusion()' returns two tables - one calculating the confusion table, and another calculating a series of additional summary statistics.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com> and Ben Fifield <benfifield@gmail.com>

aggregateEM

Aggregate EM objects for use in 'summary.fastLink()'

Description

aggregateEM aggregates EM objects for easy processing by 'summary.fastLink()'

Usage

aggregateEM(em.list, within.geo)

Arguments

em.list A list of 'fastLink' or 'fastLink.EM' objects that should be aggregate in 'summary.fastLink()'
within.geo A vector of booleans corresponding to whether each object in 'em.list' is a within-geography match or an across-geography match. Should be of equal length to 'em.list'. Default is NULL (assumes all are within-geography matches).

blockData

blockData

Description

Contains functionalities for blocking two data sets on one or more variables prior to conducting a merge.

Usage

blockData(dfA, dfB, varnames, window.block, window.size, kmeans.block, nclusters, iter.max, n.cores)
calcMoversPriors

Arguments

- \texttt{dfA}
 Dataset A - to be matched to Dataset B
- \texttt{dfB}
 Dataset B - to be matched to Dataset A
- \texttt{varnames}
 A vector of variable names to use for blocking. Must be present in both \texttt{dfA} and \texttt{dfB}
- \texttt{window.block}
 A vector of variable names indicating that the variable should be blocked using windowing blocking. Must be present in \texttt{varnames}.
- \texttt{window.size}
 The size of the window for window blocking. Default is 1 (observations +/- 1 on the specified variable will be blocked together).
- \texttt{kmeans.block}
 A vector of variable names indicating that the variable should be blocked using k-means blocking. Must be present in \texttt{varnames}.
- \texttt{nclusters}
 Number of clusters to create with k-means. Default value is the number of clusters where the average cluster size is 100,000 observations.
- \texttt{iter.max}
 Maximum number of iterations for the k-means algorithm to run. Default is 5000
- \texttt{n.cores}
 Number of cores to parallelize over. Default is NULL.

Value

A list with an entry for each block. Each list entry contains two vectors — one with the indices indicating the block members in dataset A, and another containing the indices indicating the block members in dataset B.

Description

calcMoversPriors calculates prior estimates of in-state and cross-state movers rates from the IRS SOI Migration data, which can be used to improve the accuracy of the EM algorithm.

Usage

calcMoversPriors(\texttt{geo.a}, \texttt{geo.b}, \texttt{year.start}, \texttt{year.end}, \texttt{county}, \texttt{state.a}, \texttt{state.b}, \texttt{matchrate.lambda}, \texttt{remove.instate})

Arguments

- \texttt{geo.a}
 The state code (if state = TRUE) or county name (if state = FALSE) for the earlier of the two voter files.
- \texttt{geo.b}
 The state code (if state = TRUE) or county name (if state = FALSE) for the later of the two voter files.
- \texttt{year.start}
 The year of the voter file for geography A.
- \texttt{year.end}
 The year of the voter file for geography B.
Description

Creates properly sized clusters for matching, using either alphabetical or word embedding clustering. If using word embedding, the function first creates a word embedding out of the provided vectors, and then runs PCA on the matrix. It then takes the first \(k \) dimensions (where \(k \) is provided by the user) and k-means is run on that matrix to get the clusters.

Usage

```r
clusterMatch(vecA, vecB, nclusters, max.n, word.embed, min.var, weighted.kmeans, iter.max)
```

Value

calcMoversPriors returns a list with estimates of the expected match rate, and of the expected in-state movers rate when matching within-state.

Author(s)

Ben Fifield <benfifield@gmail.com>

Examples

```r
calcMoversPriors(geo.a = "CA", geo.b = "CA", year.start = 2014, year.end = 2015)
```
clusterMatch

Arguments

vecA The character vector from dataset A
vecB The character vector from dataset B
nclusters The number of clusters to create from the provided data. Either nclusters = NULL or max.n = NULL.
max.n The maximum size of either dataset A or dataset B in the largest cluster. Either nclusters = NULL or max.n = NULL
word.embed Whether to use word embedding clustering. Default is FALSE.
min.var The minimum amount of explained variance (maximum = 1) a PCA dimension can provide in order to be included in k-means clustering when using word embedding. Default is .20.
weighted.kmeans Whether to weight the k-means algorithm features by the explained variance of the included principal component when using word embedding clustering. Default is FALSE.
iter.max Maximum number of iterations for the k-means algorithm.

Value

clusterMatch returns a list of length 3:

clusterA The cluster assignments for dataset A
clusterB The cluster assignments for dataset B
nclusters The number of clusters created
kmeans The k-means object output.
pca The PCA object output.
dims.pca The number of dimensions from PCA used for the k-means clustering.

Author(s)

Ben Fifield <benfifield@gmail.com>

Examples

data(samplematch)
cl <- clusterMatch(dfa$firstname, dfb$firstname, nclusters = 3)
confusion

Get confusion table for fastLink objects

Description

Calculate confusion table after running fastLink().

Usage

confusion(object, threshold)

Arguments

object

A 'fastLink' object or list of fastLink objects. Can only be run if 'return.all = TRUE' in 'fastLink()'.

threshold

The matching threshold above which a pair is a true match. Default is .85

Value

'confusion()' returns two tables - one calculating the confusion table, and another calculating a series of additional summary statistics.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com> and Ben Fifield <benfifield@gmail.com>

Examples

Not run:

```r
out <- fastLink(
dfA = dfA, dfB = dfB,
varnames = c("firstname", "middleinitial", "lastname"),
stringdist.match = c("firstname", "middleinitial", "lastname"),
partial.match = c("firstname", "lastname", "streetname"),
return.all = TRUE)

c <- confusion(out)
```

End(Not run)
countyfips

County-level FIPS Codes

Description
This data maps county names to FIPS codes for use in calculating prior movers rates.

Usage

`countyfips`

Format
A dataframe containing 3235 observations.

countyinflow

County-level inflow rates by state

Description
This data compiles and cleans county-level movers inflow rates by county, from the IRS Statistics on Income dataset.

Usage

`countyinflow`

Format
A dataframe containing 423752 observations.

countyoutflow

County-level outflow rates by state

Description
This data compiles and cleans county-level movers outflow rates by county, from the IRS Statistics on Income dataset.

Usage

`countyoutflow`

Format
A dataframe containing 424475 observations.
dedupeMatches

Description

Dedupe matched dataframes.

Usage

```r
dedupeMatches(matchesA, matchesB, EM, matchesLink, patterns, linprog)
```

Arguments

- `matchesA`: A dataframe of the matched observations in dataset A, with all variables used to inform the match.
- `matchesB`: A dataframe of the matched observations in dataset B, with all variables used to inform the match.
- `EM`: The EM object from `emlinkMARmov()`.
- `matchesLink`: The output from `matchesLink()`.
- `patterns`: The output from `getPatterns()`.
- `linprog`: Whether to implement Winkler's linear programming solution to the deduplication problem. Default is false.

Value

`dedupeMatches()` returns a list containing the following elements:

- `matchesA`: A deduped version of `matchesA`
- `matchesB`: A deduped version of `matchesB`
- `EM`: A deduped version of the EM object

Author(s)

Ted Enamorado <ted.enamorado@gmail.com> and Ben Fifield <benfifield@gmail.com>
Sample dataset A

Description
This data is a randomized and anonymized sample dataset to display features of fastLink.

Usage
dfA

Format
A dataframe containing 500 observations.

Sample dataset B

Description
This data is a randomized and anonymized sample dataset to display features of fastLink.

Usage
dfB

Format
A dataframe containing 350 observations.

emlinklog

Description
Expectation-Maximization algorithm for Record Linkage allowing for dependencies across linkage fields

Usage
emlinklog(patterns, nob.s.a, nob.s.b, p.m, p.gamma.j.m, p.gamma.j.u, iter.max, tol, varnames)
Arguments

patterns table that holds the counts for each unique agreement pattern. This object is produced by the function: tableCounts.
nobs.a Number of observations in dataset A
nobs.b Number of observations in dataset B
p.m probability of finding a match. Default is 0.1
p.gamma.j.m probability that conditional of being in the matched set we observed a specific agreement pattern.
p.gamma.j.u probability that conditional of being in the non-matched set we observed a specific agreement pattern.
iter.max Max number of iterations. Default is 5000
tol Convergence tolerance. Default is 1e-05
varnames The vector of variable names used for matching. Automatically provided if using fastLink() wrapper. Used for clean visualization of EM results in summary functions.

Value

emlinklog returns a list with the following components:

zeta.j The posterior match probabilities for each unique pattern.
p.m The probability of finding a match.
p.u The probability of finding a non-match.
p.gamma.j.m The probability of observing a particular agreement pattern conditional on being in the set of matches.
p.gamma.j.u The probability of observing a particular agreement pattern conditional on being in the set of non-matches.
patterns.w Counts of the agreement patterns observed, along with the Felligi-Sunter Weights.
iter.converge The number of iterations it took the EM algorithm to converge.
nobs.a The number of observations in dataset A.
nobs.b The number of observations in dataset B.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com> and Benjamin Fifield

Examples

Not run:
Calculate gammas
g1 <- gammaCKpar(dfA$firstname, dfB$firstname)
g2 <- gammaCKpar(dfA$middlename, dfB$middlename)
g3 <- gammaCKpar(dfA$lastname, dfB$lastname)
g4 <- gammaKpar(dfA$birthyear, dfB$birthyear)
Description

Expectation-Maximization algorithm for Record Linkage under the Missing at Random (MAR) assumption.

Usage

```r
emlinkMARmov(patterns, nobs.a, nobs.b, p.m, iter.max, 
  tol, p.gamma.k.m, p.gamma.k.u, prior.lambda, w.lambda, 
  prior.pi, w.pi, address.field, gender.field, varnames)
```

Arguments

- **patterns**
 - table that holds the counts for each unique agreement pattern. This object is produced by the function: `tableCounts`.
- **nobs.a**
 - Number of observations in dataset A
- **nobs.b**
 - Number of observations in dataset B
- **p.m**
 - probability of finding a match. Default is 0.1
- **iter.max**
 - Max number of iterations. Default is 5000
- **tol**
 - Convergence tolerance. Default is 1e-05
- **p.gamma.k.m**
 - probability that conditional of being in the matched set we observed a specific agreement value for field k.
- **p.gamma.k.u**
 - probability that conditional of being in the non-matched set we observed a specific agreement value for field k.
- **prior.lambda**
 - The prior probability of finding a match, derived from auxiliary data.
- **w.lambda**
 - How much weight to give the prior on lambda versus the data. Must range between 0 (no weight on prior) and 1 (weight fully on prior)
- **prior.pi**
 - The prior probability of the address field not matching, conditional on being in the matched set. To be used when the share of movers in the population is known with some certainty.
- **w.pi**
 - How much weight to give the prior on pi versus the data. Must range between 0 (no weight on prior) and 1 (weight fully on prior)
address.field Boolean indicators for whether a given field is an address field. Default is NULL (FALSE for all fields). Address fields should be set to TRUE while non-address fields are set to FALSE if provided.

gender.field Boolean indicators for whether a given field is for gender. If so, exact match is conducted on gender. Default is NULL (FALSE for all fields). The one gender field should be set to TRUE while all other fields are set to FALSE if provided.

varnames The vector of variable names used for matching. Automatically provided if using fastLink() wrapper. Used for clean visualization of EM results in summary functions.

Value

emlinkMARmov returns a list with the following components:

zeta.j The posterior match probabilities for each unique pattern.
p.m The probability of a pair matching.
p.u The probability of a pair not matching.
p.gamma.k.m The matching probability for a specific matching field.
p.gamma.k.u The non-matching probability for a specific matching field.
p.gamma.j.m The probability that a pair is in the matched set given a particular agreement pattern.
p.gamma.j.u The probability that a pair is in the unmatched set given a particular agreement pattern.
patterns.w Counts of the agreement patterns observed, along with the Felligi-Sunter Weights.
iter.converge The number of iterations it took the EM algorithm to converge.
nobs.a The number of observations in dataset A.
nobs.b The number of observations in dataset B.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com> and Kosuke Imai

Examples

```r
## Not run:
## Calculate gammas
g1 <- gammaKpar(dfA$firstname, dfB$firstname)
g2 <- gammaKpar(dfA$middlename, dfB$middlename)
g3 <- gammaKpar(dfA$lastname, dfB$lastname)
g4 <- gammaKpar(dfA$birthyear, dfB$birthyear)

## Run tableCounts
tc <- tableCounts(list(g1, g2, g3, g4), nobs.a = nrow(dfA), nobs.b = nrow(dfB))

## Run EM
em <- emlinkMARmov(tc, nobs.a = nrow(dfA), nobs.b = nrow(dfB))

## End(Not run)
```
Description

Calculates Felligi-Sunter weights and posterior zeta probabilities for matching patterns observed in a larger population that are not present in a sub-sample used to estimate the EM.

Usage

`emlinkRS(patterns.out, em.out, nobs.a, nobs.b)`

Arguments

`patterns.out` The output from `tableCounts()` or `emlinkMARmov()` (run on full dataset), containing all observed matching patterns in the full sample and the number of times that pattern is observed.

`em.out` The output from `emlinkMARmov()`, an EM object estimated on a smaller random sample to apply to counts from a larger sample

`nobs.a` Total number of observations in dataset A

`nobs.b` Total number of observations in dataset B

Value

`emlinkMARmov` returns a list with the following components:

`zeta.j` The posterior match probabilities for each unique pattern.

`p.m` The posterior probability of a pair matching.

`p.u` The posterior probability of a pair not matching.

`p.gamma.k.m` The posterior of the matching probability for a specific matching field.

`p.gamma.k.u` The posterior of the non-matching probability for a specific matching field.

`p.gamma.j.m` The posterior probability that a pair is in the matched set given a particular agreement pattern.

`p.gamma.j.u` The posterior probability that a pair is in the unmatched set given a particular agreement pattern.

`patterns.w` Counts of the agreement patterns observed, along with the Felligi-Sunter Weights.

`iter.converge` The number of iterations it took the EM algorithm to converge.

`nobs.a` The number of observations in dataset A.

`nobs.b` The number of observations in dataset B.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com> and Ben Fifield <benfifield@gmail.com>
Examples

```r
## Not run:
## ---------------
## Run on subset
## ---------------
dfa.s <- dfa[sample(1:nrow(dfa), 50),]; dfb.s <- dfb[sample(1:nrow(dfb), 50),]

## Calculate gammas
g1 <- gammaKpar(dfa.s$firstname, dfb.s$firstname)
g2 <- gammaKpar(dfa.s$middleName, dfb.s$middleName)
g3 <- gammaKpar(dfa.s$lastName, dfb.s$lastName)
g4 <- gammaKpar(dfa.s$birthday, dfb.s$birthday)

## Run tableCounts
tc <- tableCounts(list(g1, g2, g3, g4), nobs.a = nrow(dfa.s), nobs.b = nrow(dfb.s))

## Run EM	em <- emlinkMAR(tc, nobs.a = nrow(dfa.s), nobs.b = nrow(dfb.s))

## Apply to full data
## ---------------

## Calculate gammas
g1 <- gammaKpar(dfa$firstname, dfb$firstname)
g2 <- gammaKpar(dfa$middleName, dfb$middleName)
g3 <- gammaKpar(dfa$lastName, dfb$lastName)
g4 <- gammaKpar(dfa$birthday, dfb$birthday)

## Run tableCounts
tc <- tableCounts(list(g1, g2, g3, g4), nobs.a = nrow(dfa), nobs.b = nrow(dfb))

em.full <- emlinkRS(tc, em, nrow(dfa), nrow(dfb))

## End(Not run)
```

Description

Run the fastLink algorithm to probabilistically match two datasets.

Usage

```r
fastLink(dfa, dfb, varnames, stringdist.match, stringdist.method, numeric.match, partial.match, cut.a, cut.p, jw.weight,
```
Arguments

dfA Dataset A - to be matched to Dataset B

dfB Dataset B - to be matched to Dataset A

varnames A vector of variable names to use for matching. Must be present in both dfA and dfB

stringdist.match A vector of variable names indicating which variables should use string distance matching. Must be a subset of 'varnames' and must not be present in 'numeric.match'.

stringdist.method String distance method for calculating similarity, options are: "jw" Jaro-Winkler (Default), "jaro" Jaro, and "lv" Edit

numeric.match A vector of variable names indicating which variables should use numeric matching. Must be a subset of 'varnames' and must not be present in 'stringdist.match'.

partial.match A vector of variable names indicating whether to include a partial matching category for the string distances. Must be a subset of 'varnames' and 'stringdist.match'.

cut.a Lower bound for full string-distance match, ranging between 0 and 1. Default is 0.94

cut.p Lower bound for partial string-distance match, ranging between 0 and 1. Default is 0.88

jw.weight Parameter that describes the importance of the first characters of a string (only needed if stringdist.method = "jw"). Default is .10

cut.a.num Lower bound for full numeric match. Default is 1

cut.p.num Lower bound for partial numeric match. Default is 2.5

priors.obj A list containing priors for auxiliary movers information, as output from calcMoversPriors(). Default is NULL

w.lambda How much weight to give the prior on lambda versus the data. Must range between 0 (no weight on prior) and 1 (weight fully on prior). Default is NULL (no prior information provided).

w.pi How much weight to give the prior on pi versus the data. Must range between 0 (no weight on prior) and 1 (weight fully on prior). Default is NULL (no prior information provided).

address.field The name of the address field. To be used when 'pi.prior' is included in 'priors.obj'. Default is NULL (no matching variables should have address prior applied). Must be present in 'varnames'.
gender.field

The name of the field indicating gender. If provided, the exact-matching gender prior is used in the EM algorithm. Default is NULL (do not implement exact matching on gender). Must be present in ‘varnames’.

estimate.only

Whether to stop running the algorithm after the EM step (omitting getting the matched indices of dataset A and dataset B). Only the EM object will be returned. Can be used when running the match on a random sample and applying to a larger dataset, or for out-of-sample prediction of matches. Default is FALSE.

e.m.obj

An EM object from a prior run of 'fastLink' or 'emlinkMARmov’. Parameter estimates will be applied to the matching patterns in 'dfA' and 'dfB’. If provided. 'estimate.only’ is set to FALSE. Often provided when parameters have been estimated on a smaller sample, and the user wants to apply them to the full dataset. Default is NULL (EM will be estimated from matching patterns in 'dfA' and 'dfB’).

dedupe.matches

Whether to dedupe the set of matches returned by the algorithm. Default is TRUE.

linprog.dedupe

If deduping matches, whether to use Winkler’s linear programming solution to dedupe. Default is FALSE.

reweight.names

Whether to reweight the posterior match probabilities by the frequency of individual first names. Default is FALSE.

firstname.field

The name of the field indicating first name. Must be provided if reweight.names = TRUE.

cond.indep

Estimates for the parameters of interest are obtained from the Fellegi-Sunter model under conditional independence. Default is TRUE. If set to FALSE parameters estimates are obtained from a model that allows for dependencies across linkage fields.

n.cores

Number of cores to parallelize over. Default is NULL.

tol.em

Convergence tolerance for the EM Algorithm. Default is 1e-04.

threshold.match

A number between 0 and 1 indicating either the lower bound (if only one number provided) or the range of certainty that the user wants to declare a match. For instance, threshold.match = .85 will return all pairs with posterior probability greater than .85 as matches, while threshold.match = c(.85, .95) will return all pairs with posterior probability between .85 and .95 as matches.

return.all

Whether to return the most likely match for each observation in dfA and dfB. Overrides user setting of threshold.match by setting threshold.match to 0.0001, and automatically dedupes all matches. Default is TRUE.

return.df

Whether to return the entire dataframe of dfA and dfB instead of just the indices. Default is FALSE.

verbose

Whether to print elapsed time for each step. Default is FALSE.

Value

fastLink returns a list of class 'fastLink’ containing the following components if calculating matches:
Field comparisons for string variables. Two possible agreement patterns are considered: 0 total disagreement, 2 agreement. The distance between strings is calculated using a Jaro-Winkler distance.

Usage

gammaCK2par(matAp, matBp, n.cores, cut.a, method, w)
gammaCKpar

Arguments

matAp vector storing the comparison field in data set 1
matBp vector storing the comparison field in data set 2
ncores Number of cores to parallelize over. Default is NULL.
cuta Lower bound for full match, ranging between 0 and 1. Default is 0.92
method String distance method, options are: "jw" Jaro-Winkler (Default), "jaro" Jaro, and "lv" Edit
w Parameter that describes the importance of the first characters of a string (only needed if method = "jw"). Default is .10

Value
gammaCK2par returns a list with the indices corresponding to each matching pattern, which can be fed directly into tableCounts and matchesLink.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com>, Ben Fifield <benfifield@gmail.com>, and Kosuke Imai

Examples

Not run:
g1 <- gammaCK2par(dfA$firstname, dfB$lastname)

End(Not run)

Description

Field comparisons for string variables. Three possible agreement patterns are considered: 0 total disagreement, 1 partial agreement, 2 agreement. The distance between strings is calculated using a Jaro-Winkler distance.

Usage

gammaCKpar(matAp, matBp, ncores, cut.a, cut.p, method, w)
gammaKpar

Arguments

- `matAp` vector storing the comparison field in data set 1
- `matBp` vector storing the comparison field in data set 2
- `n.cores` Number of cores to parallelize over. Default is NULL.
- `cut.a` Lower bound for full match, ranging between 0 and 1. Default is 0.92
- `cut.p` Lower bound for partial match, ranging between 0 and 1. Default is 0.88
- `method` String distance method, options are: "jw" Jaro-Winkler (Default), "jaro" Jaro, and "lv" Edit
- `w` Parameter that describes the importance of the first characters of a string (only needed if method = "jw"). Default is .10

Value

`gammaKpar` returns a list with the indices corresponding to each matching pattern, which can be fed directly into `tableCounts` and `matchesLink`.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com>, Ben Fifield <benfifield@gmail.com>, and Kosuke Imai

Examples

```r
## Not run:
g1 <- gammaKpar(dfA$firstname, dfB$lastname)
## End(Not run)
```

Description

Field comparisons: 0 disagreement, 2 total agreement.

Usage

`gammaKpar(matAp, matBp, gender, n.cores)`

Arguments

- `matAp` vector storing the comparison field in data set 1
- `matBp` vector storing the comparison field in data set 2
- `gender` Whether the matching variable is gender. Will override standard warnings of missingness/nonvariability. Default is FALSE.
- `n.cores` Number of cores to parallelize over. Default is NULL.
Value
gammaKpar returns a list with the indices corresponding to each matching pattern, which can be fed directly into tableCounts and matchesLink.

Author(s)
Ted Enamorado <ted.enamorado@gmail.com>, Ben Fifield <benfifield@gmail.com>, and Kosuke Imai

Examples
```r
## Not run:
g1 <- gammaKpar(dfA$birthyear, dfB$birthyear)
```

End(Not run)

Description
Field comparisons for numeric variables. Two possible agreement patterns are considered: 0 total disagreement, 2 agreement. The distance between numbers is calculated using their absolute distance.

Usage
gammaNUMCK2par(matAp, matBp, n.cores, cut.a)

Arguments
- `matAp`: vector storing the comparison field in data set 1
- `matBp`: vector storing the comparison field in data set 2
- `n.cores`: Number of cores to parallelize over. Default is NULL.
- `cut.a`: Lower bound for full match. Default is 1

Value
gammaNUMCK2par returns a list with the indices corresponding to each matching pattern, which can be fed directly into tableCounts and matchesLink.

Author(s)
Ted Enamorado <ted.enamorado@gmail.com>, Ben Fifield <benfifield@gmail.com>, and Kosuke Imai
Example

```r
# Not run:
g1 <- gammaNUMCKpar(dfA$birthyear, dfB$birthyear)

# End(Not run)
```

Description

Field comparisons for numeric variables. Three possible agreement patterns are considered: 0 total disagreement, 1 partial agreement, 2 agreement. The distance between numbers is calculated using their absolute distance.

Usage

```r
gammaNUMCKpar(matA, matB, n.cores, cut.a, cut.p)
```

Arguments

- `matA`: vector storing the comparison field in data set 1
- `matB`: vector storing the comparison field in data set 2
- `n.cores`: Number of cores to parallelize over. Default is NULL.
- `cut.a`: Lower bound for full match. Default is 1
- `cut.p`: Lower bound for partial match. Default is 2

Value

`gammaNUMCKpar` returns a list with the indices corresponding to each matching pattern, which can be fed directly into `tableCounts` and `matchesLink`.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com>, Ben Fifield <benfifield@gmail.com>, and Kosuke Imai

Examples

```r
# Not run:
g1 <- gammaNUMCKpar(dfA$birthyear, dfB$birthyear)

# End(Not run)
```
getMatches

Description
Subset two data frames to the matches returned by fastlink() or matchesLink(). Can also return a single deduped data frame if dfA and dfB are identical and fl.out is of class 'fastLink.dedupe'.

Usage
getMatches(dfa, dfb, fl.out, threshold.match, combine.dfs)

Arguments
dfa Dataset A - matched to Dataset B by fastLink().
dfb Dataset B - matches to Dataset A by fastLink().
fl.out Either the output from fastLink() or matchesLink().
threshold.match
 A number between 0 and 1 indicating the lower bound that the user wants to declare a match. For instance, threshold.match = .85 will return all pairs with posterior probability greater than .85 as matches. Default is 0.85.
combine.dfs
 Whether to combine the two data frames being merged into a single data frame. If FALSE, two data frames are returned in a list. Default is TRUE.

Value
getMatches() returns a list of two data frames:
dfa.match A subset of dfA subsetted down to the successful matches.
dfb.match A subset of dfB subsetted down to the successful matches.

Author(s)
Ben Fifield <benfifield@gmail.com>

Examples
Not run:
fl.out <- fastlink(dfa, dfb,
 varnames = c("firstname", "lastname", "streetname", "birthyear"),
 n.cores = 1)
ret <- getMatches(dfa, dfb, fl.out)

End(Not run)
getPatterns

Description

Get the full matching patterns for all matched pairs in dataset A and dataset B

Usage

```r
getPatterns(matchesA, matchesB, varnames, stringdist.match, numeric.match,
            partial.match, stringdist.method = "jw", cut.a = 0.92, cut.p = 0.88,
            jw.weight = 0.1, cut.a.num = 1, cut.p.num = 2.5)
```

Arguments

- **matchesA**: A dataframe of the matched observations in dataset A, with all variables used to inform the match.
- **matchesB**: A dataframe of the matched observations in dataset B, with all variables used to inform the match.
- **varnames**: A vector of variable names to use for matching. Must be present in both matchesA and matchesB.
- **stringdist.match**: A vector of booleans, indicating whether to use string distance matching when determining matching patterns on each variable. Must be same length as varnames.
- **numeric.match**: A vector of booleans, indicating whether to use numeric pairwise distance matching when determining matching patterns on each variable. Must be same length as varnames.
- **partial.match**: A vector of booleans, indicating whether to include a partial matching category for the string distances. Must be same length as varnames. Default is FALSE for all variables.
- **stringdist.method**: String distance method for calculating similarity, options are: "jw" Jaro-Winkler (Default), "jaro" Jaro, and "lv" Edit
- **cut.a**: Lower bound for full string-distance match, ranging between 0 and 1. Default is 0.92
- **cut.p**: Lower bound for partial string-distance match, ranging between 0 and 1. Default is 0.88
- **jw.weight**: Parameter that describes the importance of the first characters of a string (only needed if stringdist.method = "jw"). Default is .10
- **cut.a.num**: Lower bound for full numeric match. Default is 1
- **cut.p.num**: Lower bound for partial numeric match. Default is 2.5
Value

getPatterns() returns a dataframe with a row for each matched pair, where each column indicates the matching pattern for each matching variable.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com> and Ben Fifield <benfifield@gmail.com>

Description

Get the posterior probability of a match for each matched pair of observations

Usage

getPosterior(matchesA, matchesB, EM, patterns)

Arguments

matchesA A dataframe of the matched observations in dataset A, with all variables used to inform the match.
matchesB A dataframe of the matched observations in dataset B, with all variables used to inform the match.
EM The EM object from emlinkMARmov()
patterns The output from getPatterns().

Value

getPosterior returns the posterior probability of a match for each matched pair of observations in matchesA and matchesB

Author(s)

Ben Fifield <benfifield@gmail.com>
inspectEM

Description

Inspect EM objects to analyze successfully and unsuccessfully matched patterns.

Usage

inspectEM(object, posterior.range, digits)

Arguments

- **object**: The output from either fastLink or emlinkMARmov.
- **posterior.range**: The range of posterior probabilities to display. Default is c(0.85, 1).
- **digits**: How many digits to include in inspectEM dataframe. Default is 3.

Value

inspectEM returns a data frame with information about patterns around the provided threshold.

Author(s)

Ben Fifield <bfifield@princeton.edu>

matchesLink

Description

matchesLink produces two dataframes that store all the pairs that share a pattern that conforms to the an interval of the Fellegi-Sunter weights.

Usage

matchesLink(gammalist, nobs.a, nobs.b, em, thresh, n.cores = NULL)
matchesLink

Arguments

gammalist A list of objects produced by either gammaKpar or gammaCKpar.
nobs.a number of observations in dataset 1
nobs.b number of observations in dataset 2
em parameters obtained from the Expectation-Maximization algorithm under the MAR assumption. These estimates are produced by emlinkMARmov
thresh is the interval of posterior zeta values for the agreements that we want to examine closer. Ranges between 0 and 1. Can be a vector of length 1 (from specified value to 1) or 2 (from first specified value to second specified value).
n.cores Number of cores to parallelize over. Default is NULL.

Value

matchesLink returns an nmatches X 2 matrix with the indices of the matches rows in dataset A and dataset B.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com>, Ben Fifield <benfifield@gmail.com>, and Kosuke Imai

Examples

```r
## Not run:
## Calculate gammas
G1 <- gammaCKpar(dfA$firstname, dfB$firstname)
G2 <- gammaCKpar(dfA$middle, dfB$middle)
G3 <- gammaCKpar(dfA$last, dfB$last)
G4 <- gammaKpar(dfA$birth, dfB$birth)

## Run tableCounts
tc <- tableCounts(list(G1, G2, G3, G4), nobs.a = nrow(dfA), nobs.b = nrow(dfB))

## Run EM
e <- emlinkMAR(tc)

## Get matches
m <- matchesLink(list(G1, G2, G3, G4), nobs.a = nrow(dfA), nobs.b = nrow(dfB),
                em = e, thresh = .95)

## End(Not run)```
Description

Reweights posterior probabilities to account for observed frequency of names. Downweights posterior probability of match if first name is common, upweights if first name is uncommon.

Usage

nameReweight(dfa, dfb, EM, gammalist, matchesLink, varnames, firstname.field, patterns, threshold.match, n.cores)

Arguments

dfa The full version of dataset A that is being matched.
dfb The full version of dataset B that is being matched.
EM The EM object from emlinkMARmov().
gammalist The list of gamma objects calculated on the full dataset that indicate matching patterns, which is fed into tableCounts() and matchesLink().
matchesLink The output from matchesLink().
varnames A vector of variable names to use for matching. Must be present in both matchesA and matchesB.
firstname.field A vector of booleans, indicating whether each field indicates first name. TRUE if so, otherwise FALSE.
patterns The output from getPatterns().
threshold.match A number between 0 and 1 indicating either the lower bound (if only one number provided) or the range of certainty that the user wants to declare a match. For instance, threshold.match = .85 will return all pairs with posterior probability greater than .85 as matches, while threshold.match = c(.85, .95) will return all pairs with posterior probability between .85 and .95 as matches.
n.cores Number of cores to parallelize over. Default is NULL.

Value

nameReweight() returns a list containing the following elements:

zetaA The reweighted zeta estimates for each matched element in dataset A.
zetaB The reweighted zeta estimates for each matched element in dataset B.

Author(s)

Ted Enamorado <ted.enamorado@gmail.com> and Ben Fifield <benfifield@gmail.com>
plot.fastLink

*Plot matching patterns of the EM object by posterior probability of match*

**Description**

plot.fastLink() plots the matching patterns of the EM object, ordering the matching patterns by the posterior probability of the match.

**Usage**

```r
S3 method for class 'fastLink'
plot(x, posterior.range, ...)
```

**Arguments**

- `x`: Either a fastLink or fastLink.EM object to be plotted.
- `posterior.range`: The range of posterior probabilities to display. Default is c(0.85, 1).
- `...`: Further arguments to be passed to `plot.fastLink()`.

---

preprocText

*preprocText*

**Description**

Preprocess text data such as names and addresses.

**Usage**

```r
preprocText(text, convert_text, tolower, soundex, usps_address, remove_whitespace, remove_punctuation, convert_text_to)
```

**Arguments**

- `text`: A vector of text data to convert.
- `convert_text`: Whether to convert text to the desired encoding, where the encoding is specified in the 'convert_text_to' argument. Default is TRUE.
- `tolower`: Whether to normalize the text to be all lowercase. Default is TRUE.
- `soundex`: Whether to convert the field to the Census’s soundex encoding. Default is FALSE.
- `usps_address`: Whether to use USPS address standardization rules to clean address fields. Default is FALSE.
remove_whitespace
Whether to remove leading and trailing whitespace, and to convert multiple spaces to a single space. Default is TRUE.

remove_punctuation
Whether to remove punctuation from a string. Default is TRUE.

convert_text_to
Which encoding to use when converting text. Default is 'Latin-ASCII'. Full list of encodings in the `stri_trans_list()` function in the `stringi` package.

Value

preprocText() returns the preprocessed vector of text.

Author(s)

Ben Fifield <benfifield@gmail.com>

print.inspectEM

---

Description

Print information from the EM algorithm to console.

Usage

```
S3 method for class 'inspectEM'
print(x, ...)
```

Arguments

- `x`: An `inspectEM` object
- `...`: Further arguments to be passed to `print.fastLink()`.

statefips

---

State-level FIPS Codes

Description

This data maps state names to FIPS codes for use in calculating prior movers rates.

Usage

```
statefips
```

Format

A dataframe containing 54 observations.
stateinflow  
*State-level inflow rates by state*

**Description**
This data compiles and cleans state-level movers inflow rates by state, from the IRS Statistics on Income dataset.

**Usage**
stateinflow

**Format**
A dataframe containing 11321 observations.

statemove  
*In-state movers rates by state*

**Description**
This data collects in-state movers rates by state, for imputation where within-county movers rates are not available.

**Usage**
statemove

**Format**
A dataframe containing 51 observations.

stateoutflow  
*State-level outflow rates by state*

**Description**
This data compiles and cleans state-level movers outflow rates by state, from the IRS Statistics on Income dataset.

**Usage**
stateoutflow

**Format**
A dataframe containing 11320 observations.
stringSubset

Description

Removes as candidate matches any observations with no close matches on string-distance measures.

Usage

stringSubset(vecA, vecB, similarity.threshold, stringdist.method, jw.weight, n.cores)

Arguments

vecA  A character or factor vector from dataset A
vecB  A character or factor vector from dataset B
similarity.threshold  Lower bound on string-distance measure for being considered a possible match. If an observation has no possible matches above this threshold, it is discarded from the match. Default is 0.8.
stringdist.method  The method to use for calculating string-distance similarity. Possible values are ”jaro” (Jaro Distance), ”jw” (Jaro-Winkler), and ”lv” (Levenshtein). Default is ”jw”.
jw.weight  Parameter that describes the importance of the first characters of a string (only needed if stringdist.method = ”jw”). Default is .10.
n.cores  Number of cores to parallelize over. Default is NULL.

Value

A list of length two, where the both entries are a vector of indices to be included in the match from dataset A (entry 1) and dataset B (entry 2).

Examples

## Not run:
subset_out <- stringSubset(dfA$firstname, dfB$lastname, n.cores = 1)
fl_out <- fastLink(dfA[subset_out$dfA.block == 1,], dfB[subset_out$dfB.block == 1,], varnames = c(”firstname”, ”lastname”, ”streetname”, ”birthyear”), n.cores = 1)

## End(Not run)
summary.fastLink  
*Get summaries of fastLink() objects*

**Description**

`summary.fastLink()` calculates and outputs FDR, FNR, match counts, and match rates for estimated matches from a `fastLink()` object.

**Usage**

```r
S3 method for class 'fastLink'
summary(object, num.comparisons = 1,
 thresholds = c(.95, .85, .75), weighted = TRUE, digits = 3, ...)
```

**Arguments**

- **object**
  Either a single `‘fastLink’` or `‘fastLink.EM’` object, or a list of `‘fastLink’` or `‘fastLink.EM’` objects to be aggregated together produced by `‘aggregateEM’`.

- **num.comparisons**
  The number of comparisons attempted for each observation in the across-geography match step. A correction factor to avoid multiple-counting. Default is NULL.

- **thresholds**
  A vector of posterior probabilities to calculate the summary statistics.

- **weighted**
  Whether to weight the cross-geography matches on FDR and FNR.

- **digits**
  How many digits to include in summary object. Default is 3.

- **...**
  Further arguments to be passed to `summary.fastLink()`.

---

**TableCounts**

**Description**

Count pairs with the same pattern in the cross product between two datasets.

**Usage**

```r
tableCounts(gammalist, nobs.a, nobs.b, n.cores)
```

**Arguments**

- **gammalist**
  A list of objects produced by `gammaKpar`, `gammaCK2par`, or `gammaCKpar`.

- **nobs.a**
  number of observations in dataset 1

- **nobs.b**
  number of observations in dataset 2

- **n.cores**
  Number of cores to parallelize over. Default is NULL.
**Value**

`tableCounts` returns counts of all unique matching patterns, which can be fed directly into `emlinkMAR` to get posterior matching probabilities for each unique pattern.

**Author(s)**

Ted Enamorado <ted.enamorado@gmail.com>, Ben Fifield <benfifield@gmail.com>, and Kosuke Imai

**Examples**

```r
Not run:
Calculate gammas
g1 <- gammaCKpar(dfA$firstname, dfB$firstname)
g2 <- gammaCKpar(dfA$middle, dfB$middle)
g3 <- gammaCKpar(dfA$last, dfB$last)
g4 <- gammaKpar(dfA$birth, dfB$birth)

Run tableCounts
tc <- tableCounts(list(g1, g2, g3, g4), nobs.a = nrow(dfA), nobs.b = nrow(dfB))

End(Not run)
```
Index

*Topic **dataset**
  countyfips, 9
  countyinflow, 9
  countyoutflow, 9
  dfA, 11
  dfB, 11
  statefips, 31
  stateinflow, 32
  statemove, 32
  stateoutflow, 32

*Topic **package**
  fastLink-package, 3
  aggconfusion, 3
  aggregateEM, 4
  blockData, 4
  calcMoversPriors, 5
  clusterMatch, 6
  confusion, 8
  countyfips, 9
  countyinflow, 9
  countyoutflow, 9
  dedupeMatches, 10
  dfA, 11
  dfB, 11
  emlinklog, 11
  emlinkMARmov, 13
  emlinkRS, 15
  fastLink, 16
  fastLink-package, 3
  gammaCK2par, 19
  gammaCKpar, 20
  gammaKpar, 21
  gammaNUMCK2par, 22
  gammaNUMCKpar, 23
  getMatches, 24
  getPatterns, 25
  getPosterior, 26
  inspectEM, 27
  matchesLink, 27
  nameReweight, 29
  plot.fastLink, 30
  preprocText, 30
  print.inspectEM, 31
  statefips, 31
  stateinflow, 32
  statemove, 32
  stateoutflow, 32
  stringSubset, 33
  summary.fastLink, 34
  tableCounts, 34