Package ‘fastStat’

September 17, 2020

Title Faster for Statistic Work
Version 1.4
Description When we do statistic work, we need to see the structure of the data. list.str() function will help you see the structure of the data quickly. list.plot() function can help you check every variable in your dataframe. table_one() function will make it easy to make a baseline table including difference tests. uv_lineart(), uv_logit(), uv_cox(), uv_logrank() will give you a hand to do univariable regression analysis, while mv_lineart(), mv_logit() and mv_cox() will carry out multivariable regression analysis.

License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports set, reshape2, do, plyr, car, e1071, tseries, survival, ggplot2, ggrepel, PredictABEL, survIDINRI

URL https://github.com/yikeshu0611/fastStat
BugReports https://github.com/yikeshu0611/fastStat/issues
Suggests rms
Depends survC1
NeedsCompilation no
Author Jing Zhang [aut, cre], Zhi Jin [aut]
Maintainer Jing Zhang <zj391120@163.com>
Repository CRAN
Date/Publication 2020-09-17 15:00:13 UTC

R topics documented:
cor2 ... 2
cor_sig ... 3
Correlation Analysis

Description

Correlation Analysis

Usage

```r
cor2(data, x1, x2, method = "spearman")
```
Arguments

- **data**: dataframe
- **x1**: x1
- **x2**: x2
- **method**: 1,2,3

Correlation Analysis with Significant Values

Description
Correlation Analysis with Significant Values

Usage
cor_sig(data, method = "pearson")

Arguments
- **data**: a dataframe or matrix
- **method**: a character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated.

Value
correlation analysis with significant star.

Examples
cor_sig(mtcars)

cor_sig_star

Correlation Analysis with Significant and Correlation Value

Description
Correlation Analysis with Significant and Correlation Value

Usage
cor_sig_star(data, method = "pearson")
Arguments

- **data**: a dataframe or matrix
- **method**: a character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default, 1), "kendall" (2), or "spearman" (3): can be abbreviated.

Value

correlation analysis with significant star.

Examples

cor_star(mtcars)
digital

Set Digital Number

Description

Set Digital Number

Usage

digital(x, round)

Arguments

- **x**: vector, dataframe or matrix
- **round**: digital number

Value

character with the same digital number

Examples

digital(1.2,4)

idi

Perform IDI for logistic and cox regression

Description

Easy to perform integrated discrimination improvement index (IDI) for logistic and cox regression.

Usage

idi(f1, f2, ...)

S3 method for class 'lrm'
idi(f1, f2, ...)

S3 method for class 'cph'
idi(f1, f2, timepoint = NULL, ...)

S3 method for class 'coxph'
idi(f1, f2, timepoint = NULL, ...)
list.factor

Arguments

- `f1` base model
- `f2` the other model
- ...
- `timepoint` one time point for cox regression, default is median time.

Value

IDI results

Examples

```r
library(rms)

# logistic
data(lung)

lung$status=lung$status-1
f1=lrm(status~age+sex,lung)
f2=lrm(status~age+sex+ph.ecog,lung)
idi(f1,f2)

# survival
head(lung)

range(lung$time)

lung=lung[complete.cases(lung),]

f1=cph(Surv(time,status)~age+sex,lung)
f2=cph(Surv(time,status)~age+sex+ph.ecog,lung)
idi(f1,f2)
```

list.factor

Return All Factor Variables

Description

Return all factor variables in a dataframe or matrix

Usage

```r
list.factor(x, levels = FALSE)
```

Arguments

- `x` a dataframe or matrix
- `levels` logical. TRUE to display levels for factor variable.
Value

factor variable names and levels

Examples

```r
jh=data.frame(x=c(1,2,3,1),
              k=c(4,5,6,7),
              h=c('a','a','b','b'))
list.factor(jh)
```

```
list.NA(jh)
```

| list.NA | Return Na Count and Percentage |

Description

Return Na count and percentage for each variable in a dataframe or matrix.

Usage

```
list.NA(x)
```

Arguments

- `x`: a numeric vector, a dataframe or matrix

Value

A dataframe contains NA variable names, NA count and percentage

Examples

```r
jh=data.frame(x=c(1,2,3,1),
              k=c(4,5,6,7),
              h=c('a','a','NA','b'),
              f=c(1,2,NA,NA))
list.NA(jh)
```
list.numeric

Return All Numeric Variables in A Dataframe

Description

Return All Numeric Variables in A Dataframe

Usage

list.numeric(df)

Arguments

df
 a dataframe

Value

numeric variable names

Examples

jh=data.frame(x=c(1,2,3,1),
 k=c(4,5,6,7),
 h=c('a','a','b','b'))
list.numeric(jh)

list.plot

Scatter Plot for Single Value

Description

Scatter Plot for Single Value

Usage

list.plot(x, label = "x")

Arguments

 x
 vector, dataframe or matrix

 label
 labels for points. If label equals x, defaulted, id will be added. If label equals y, y value will be added. If label equals xy, id and y value will be added.

Value

 sactter
list.str

Examples

list.plot(mtcars)

list.str Structure for Data

Description
Structure for Data

Usage

list.str(x, n = 3)

Arguments

x a dataframe or matrix
n the maximum level number to display

Value

a dataframe contains variable names and class

Examples

jh=data.frame(x=c(1,2,3,1),
k=c(4,5,6,7),
h=c('a','a','b','b'))
list.str(x = jh)

list.summary Summary for Data

Description
Summary for Data

Usage

list.summary(x, round = 2)
Arguments

x numeric
round digital number

Value

a dataframe with min, max, quantile 25 and 75, mean, median, sd and NA

Examples

list.summary(mtcars)

mv_cox

Multivariable Logistic Regression

Description

Multivariable Logistic Regression

Usage

mv_cox(data, time, event, x, direction = "no", summary = TRUE, ...)

Arguments

data data
time time variable
event event variable
x variable names for univariable logistic regression. If missing, it will be column names of data except y and adjust
direction direction for stepwise regression. Four options: no, backward, forward and both. Defaulted is no
summary logical. Whether to return summary results. TRUE as defaulted
... arguments passed to step() function.

Value

multivariable logistic regression results

Examples

mv_cox(data = mtcars,
 time = 'qsec', event = 'am',
 direction = 'both')
mv_linear

Description
Multivariable Linear Regression

Usage
```r
mv_linear(data, y, x, direction = "no", summary = TRUE, ...)
```

Arguments
- `data` : data
- `y` : y variable
- `x` : variable names for univariable linear regression. If missing, it will be column names of data except `y` and `adjust`
- `direction` : direction for stepwise regression. Four options: no, backward, forward and both. Defaulted is no
- `summary` : logical. Whether to return summary results. TRUE as defaulted
- `...` : arguments passed to `step()` function

Value
multivariable linear regression results

Examples
```r
mv_linear(data = rock, y = 'perm',
          direction = 'both')
```

mv_logit

Description
Multivariable Logistic Regression

Usage
```r
mv_logit(data, y, x, direction = "no", summary = TRUE, ...)
```
Arguments

- `data`: data
- `y`: y variable
- `x`: variable names for unvariable logistic regression. If missing, it will be column names of data except y and adjust
- `direction`: direction for stepwise regression. Four options: no, backward, forward and both. Defaulted is no
- `summary`: logical. Whether to return summary results. TRUE as defaulted
- `...`: arguments passed to step() function

Value

multivariable logistic regression results

Examples

```r
mv_logit(data = mtcars, y = 'am',
         variable = c('cyl', 'disp'))
```

Normal Distribution Test

Description

Using Jarque Bera test, shapiro wilk test and Kolmogorov Smirnov test for one numeric object or numeric object in dataframe or matrix. Na is omitted in each object.

Usage

```r
normal(x, num.names)
```

Arguments

- `x`: numeric object or dataframe and matrix
- `num.names`: numeric column names for dataframe and matrix. If missing, all numeric column names will be given.

Value

a dataframe containing kurtosis, skewness and p value for Jarque Bera test, shapiro wilk test and Kolmogorov Smirnov test. In star column, star represents p > 0.05, while underline taking the opposite.
Examples

```r
set.seed(2019)
n1=rnorm(100,0,2)
df=data.frame(rn1=rnorm(100,0,2),
              rn2=rnorm(100,2,4))
#normal test for one object
normal(rn1)

#normal test for dataframe
normal(df)
```

round<-

Change the Digital for Double

Description

Change the Digital for Double

Usage

```r
round(x) <- value
```

Arguments

- **x**: a double number
- **value**: digital number

Value

double number

Examples

```r
x = 3.123
#usual method
x = round(x, 3)
#now
round(x) = 3
```
survdiff_p.value

Extract P Value after survdiff() function

Description
Extract P Value after survdiff() function

Usage
survdiff_p.value(survdiff)

Arguments
survdiff the results of survdiff() function

Value
p value

Examples
library(survival)
diff_result=survdiff(Surv(qsec,vs)~cyl,data=mtcars)
survdiff_p.value(diff_result)

survSum

Calculate Survival Rate and Time

Description
Calculate Survival Rate and Time

Usage
surv_table(fit)
surv_median_time(fit)
surv_year_rate(fit, year)

Arguments
fit fit by survfit() function
year year
Value

a dataframe

Examples

library(survival)
fit=survfit(Surv(futime, fustat)-rx, data=ovarian)

#survival table
surv_table(fit)

#median survival rate
surv_median_time(fit)

#one year survival rate
surv_year_rate(fit,365)

#two years survival rate
surv_year_rate(fit,365*2)

datatableGetValue

Get Summary Table

Description

Get the first summary table when study.

Usage

table_one(
 data,
 group,
 mean_sd,
 median_q4,
 median_range,
 count_percent,
 mean,
 median,
 max,
 min,
 sd,
 q25,
 q75,
 count,
 percent,
 round = 2,
 count.percent.direction = "v",
)
t.test,
anova,
wilcox.test,
kruskal.test,
chisq.test,
fisher.test,
weighted,
statistics = FALSE
)

Arguments

data data that will be summarized
group one or more group variable names
mean_sd variable names for mean and standard deviation. in the results represents plus
and minus
median_q4 variable names for median and 25 and 75 quantiles
median_range variable names for median and range
count_percent variable names for count and percentage
mean variable names for mean
median variable names for median
max variable names for max
min variable names for min
sd variable names for standard deviation
q25 variable names for 25 quantile
q75 variable names for 75 quantile
count variable names for count
percent variable names for percentage
round digital round. 2 is defaulted
count.percent.direction calculate of direction for count, percent and count_percent arguments, which
should be one of g, group, v or var, v as defaulted
t.test two-side t test
anova two-side anova
wilcox.test two-side wilcox test
kruskal.test two-side kruskal test
chisq.test two-side chisq test
fisher.test two-side fisher test
weighted weight for data
statistics a logical object. TRUE to display the statistic information. Default is FALSE
Value

a summary matrix

Examples

```r
table_one(data = mtcars, group='vs',
  mean_sd = 'wt',
  count_percent = c('gear','am')
)

table_one(data = mtcars,
  group='vs',
  mean_sd = 'wt',
  t.test = 'wt',
  count_percent = c('gear','am','cyl'),
  chisq.test = c('am','gear'),
  fisher.test = c('cyl'),
  round = 3
)
```

to.factor

Set Factor Class

Description

Set Factor Class

Usage

```r
to.factor(x, levels)
```

Arguments

- `x` the data that you want to set
- `levels` levels, the first levels is the reference. If the length of levels is 1, no levels will be given to `x`

Value

factor `x`

Examples

```r
to.factor(mtcars$gear,c(4,3,5))
to.factor(mtcars$gear)
```
to.factor<-
Set Factor Class

Description
Set Factor Class

Usage

to.factor(x) <- value

Arguments
x the data that you want to set
value levels, the first value is the reference. If the length of value is 1, no levels will be given to x

Value
factor x

Examples

to.factor(mtcars$gear) <- c(4,3,5)

to.labels
Give Labels to Factor

Description
Give Labels to Factor

Usage

to.labels(x, labels)

Arguments
x factor or numeric variable
labels labels separated by colon

Value
factor variable with lables, the first lable will be treated as reference.

Examples

to.labels(x=mtcars$am,labels=c('0:Female','1:Man'))
to.labels<-

\textit{Give Labels to Factor}

\textbf{Description}
Give Labels to Factor

\textbf{Usage}
to.labels(x) <- value

\textbf{Arguments}
x factor or numeric variable
value labels separated by colon

\textbf{Value}
factor variable with lables, the first lable will be treated as reference.

\textbf{Examples}
to.labels(x=mtcars$am) <- c('0:Female','1:Man')

\begin{center}
\begin{tabular}{l}
to.numeric \hline \\
\end{tabular}
\end{center}

\textit{Change to Numeric Form}

\textbf{Description}
Change to Numeric Form

\textbf{Usage}
to.numeric(x)

\textbf{Arguments}
x vector

\textbf{Value}
numeric data

\textbf{Examples}
x=c(1,2,3)
to.factor(x) <- 1
to.numeric(x)
to.numeric <- Change to Numeric Form

Description
Change to Numeric Form

Usage
to.numeric(x) <- value

Arguments
x vector
value anything, which will be ignored

Value
numeric data

Examples
x=c(1,2,3)
to.factor(x) <- 1
to.numeric(x) <- 1

to.refer Set Refer for Factor

Description
Convert data to be factor and set reference.

Usage
to.refer(x, refer)

Arguments
x the data that you want to set
refer refering level

Value
referred factor refer
Examples

to.refer(mtcars$vs, 1)

description

Convert data to be factor and set reference.

Usage

to.refer(x) <- value

Arguments

x
the data that you want to set

value
refering level

Value

refered factor value

Examples

to.refer(mtcars$vs) = 1

uv_cox

Looping for Univariable Cox Regression

Description

Looping for Univariable Cox Regression

Usage

uv_cox(
 data,
 time,
 event,
 variable,
 adjust,
 round = 3,
 p_threshold = 0.05,
 order_by.hr = TRUE
)
Arguments

data: data

time: time variable

event: event variable

variable: variable names for univariable cox regression. If missing, it will be column names of data except y and adjust

adjust: adjust variable names for univariable cox regression

round: digital round, 3 is defaulted

p_threshold: threshold for p value to show star. 0.05 is defaulted

order_by.hr: logical. TRUE means order in or by decreasing. FALSE is defaulted

Value

univariable cox regression results

Examples

uv_cox(data = mtcars,
 time = 'qsec', event = 'vs')

uv_linear(data, y, variable, adjust, round = 3, p_threshold = 0.05, order_by.hr = TRUE)

Description

Looping for Univariable Logistic Regression

Usage
uv_logit

Arguments

- `data`: data
- `y`: y
- `variable`: variable names for univariable logistic regression. If missing, it will be column names of data except `y` and `adjust`
- `adjust`: adjust variable names for univariable logistic regression
- `round`: digital round, 3 is defaulted
- `p_threshold`: threshold for p value to show star. 0.05 is defaulted
- `order_by.beta`: logical. TRUE means order in or by decreasing. FALSE is defaulted

Value

univariable logistic regression results

Examples

```
uv_linear(data = mtcars, y = 'vs')
```

** uv_logit
Looping for Univariable Logistic Regression

Description

Looping for Univariable Logistic Regression

Usage

```
uv_logit(
  data,
  y,
  variable,
  adjust,
  round = 3,
  p_threshold = 0.05,
  order_by.or = TRUE
)
```

Arguments

- `data`: data
- `y`: y
- `variable`: variable names for univariable logistic regression. If missing, it will be column names of data except `y` and `adjust`
- `adjust`: adjust variable names for univariable logistic regression
- `round`: digital round, 3 is defaulted
- `p_threshold`: threshold for p value to show star. 0.05 is defaulted
- `order_by.or`: logical. TRUE means order in or by decreasing. FALSE is defaulted
Value

univariable logistic regression results

Examples

uv_logit(data = mtcars, y = 'vs')

uv_logrank

Looping for logrank Regression

Description

Looping for logrank Regression

Usage

uv_logrank(data, time, event, variable, round = 3, order_by.p = TRUE)

Arguments

data data
time time variable
event event variable
variable variable names for logrank regression. If missing, it will be column names of data except y
round digital round, 3 is defaulted
order_by.p logical. TRUE, defaulted, means increasing order in p value

Value

logrank regression results

Examples

uv_logrank(data = mtcars,
 time = 'qsec', event = 'vs')
Index

cor2, 2

cor_sig, 3

cor_sig_star, 3

cor_star, 4

digital, 5

idi, 5

list.factor, 6
list.NA, 7
list.numeric, 8
list.plot, 8
list.str, 9
list.summary, 9

mv_cox, 10
mv_linear, 11
mv_logit, 11

normal, 12

round<-, 13

surv_median_time (survSum), 14
surv_table (survSum), 14
surv_year_rate (survSum), 14
survdiff_p.value, 14
survSum, 14

table_one, 15
to.factor, 17
to.factor<-, 18
to.labels, 18
to.labels<-, 19
to.numeric, 19
to.numeric<-, 20
to.refer, 20
to.refer<-, 21

uv_cox, 21