Package ‘fastStat’

November 22, 2019

Title Faster for Statistic Work

Version 1.3

Description When we do statistic work, we need to see the structure of the data.
list.str() function will help you see the structure of the data quickly.
list.plot() function can help you check every variable in your dataframe.
table_one() function will make it easy to make a baseline table including difference tests. uv_linear(), uv_logit(), uv_cox(), uv_logrank() will give you a hand to do univariable regression analysis, while mv_linear(), mv_logit() and mv_cox() will carry out multivariable regression analysis.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Imports set, reshape2, do, plyr, car, e1071, tseries, survival, ggplot2, ggrepel

URL https://github.com/yikeshu0611/fastStat

BugReports https://github.com/yikeshu0611/fastStat/issues

NeedsCompilation no

Author Jing Zhang [aut, cre],
Zhi Jin [aut]

Maintainer Jing Zhang <zj391120@163.com>

Repository CRAN

Date/Publication 2019-11-22 10:50:02 UTC

R topics documented:

digital ... 2
list.factor .. 3
list.NA .. 3
list.numeric ... 4
digital

Set Digital Number

Description

Set Digital Number

Usage

digital(x, round)

Arguments

x vector, dataframe or matrix
round digital number

Value

character with the same digital number

Examples

digital(1.2,4)
list.factor

Return All Factor Variables

Description

Return all factor variables in a dataframe or matrix.

Usage

```r
list.factor(x, levels = FALSE)
```

Arguments

- `x`: a dataframe or matrix
- `levels`: logical. TRUE to display levels for factor variable.

Value

factor variable names and levels

Examples

```r
c jh=data.frame(x=c(1,2,3,1),
k=c(4,5,6,7),
h=c('a','a','b','b'))
list.factor(jh)
```

list.NA

Return Na Count and Percentage

Description

Return Na count and percentage for each variable in a dataframe or matrix.

Usage

```r
list.NA(x)
```

Arguments

- `x`: a numeric vector, a dataframe or matrix

Value

A dataframe contains NA variable names, NA count and percentage
list.numeric

Return All Numeric Variables in A Dataframe

Description

Return All Numeric Variables in A Dataframe

Usage

list.numeric(df)

Arguments

df a dataframe

Value

numeric variable names

Examples

jh=data.frame(x=c(1,2,3,1),
 k=c(4,5,6,7),
 h=c('a','a','NA','D'),
 f=c(1,2,NA,NA))

list.numeric(jh)

list.plot

Scatter Plot for Single Value

Description

Scatter Plot for Single Value

Usage

list.plot(x, label = "x")
list.str

Arguments

- `x`: vector, dataframe or matrix
- `label`: labels for points. If missing, defaulted, no labels will be added. If label equals `x`, id will be added. If label equals `y`, y value will be added.

Value

`sscatter`

Examples

```
list.plot(mtcars)
```

```
list.str  Structure for Data
```

Description

Structure for Data

Usage

```
list.str(x, n = 3)
```

Arguments

- `x`: a dataframe or matrix
- `n`: the maximum level number to display

Value

a dataframe contains variable names and class

Examples

```
jh=data.frame(x=c(1,2,3,1),
              k=c(4,5,6,7),
              h=c('a', 'a', 'b', 'b'))
list.str(x = jh)
```
list.summary

Summary for Data

Description

Summary for Data

Usage

```r
list.summary(x, round = 2)
```

Arguments

- **x**: numeric
- **round**: digital number

Value

A dataframe with min, max, quantile 25 and 75, mean, median, sd and NA

Examples

```r
list.summary(mtcars)
```

mv_cox

Multivariable Logistic Regression

Description

Multivariable Logistic Regression

Usage

```r
mv_cox(data, time, event, x, direction = "no", summary = TRUE, ...)
```

Arguments

- **data**: data
- **time**: time variable
- **event**: event variable
- **x**: variable names for univariable logistic regression. If missing, it will be column names of data except y and adjust
- **direction**: direction for stepwise regression. Four options: no, backward, forward and both. Defaulted is no
- **summary**: logical. Whether to return summary results. TRUE as defaulted
- **...**: arguments passed to step() function.
mv_linear

Value

multivariable logistic regression results

Examples

mv_cox(data = mtcars,
 time = 'qsec', event = 'am',
 direction = 'both')

mv_linear

Multivariable Linear Regression

Description

Multivariable Linear Regression

Usage

mv_linear(data, y, x, direction = "no", summary = TRUE, ...)

Arguments

data data
y y variable
x variable names for univariable linear regression. If missing, it will be column
 names of data except y and adjust
direction direction for stepwise regression. Four options: no, backward, forward and both.
 Defaulted is no
summary logical. Whether to return summary results. TRUE as defaulted
... arguments passed to step() function

Value

multivariable linear regression results

Examples

mv_linear(data = rock, y = 'perm',
 direction = 'both')
mv_logit

Multivariable Logistic Regression

Description

Multivariable Logistic Regression

Usage

mv_logit(data, y, x, direction = "no", summary = TRUE, ...)

Arguments

data data

y y variable

x variable names for univariable logistic regression. If missing, it will be column names of data except y and adjust
direction direction for stepwise regression. Four options: no, backward, forward and both. Defaulted is no
summary logical. Whether to return summary results. TRUE as defaulted
... arguments passed to step() function

Value

multivariable logistic regression results

Examples

mv_logit(data = mtcars, y = 'am',
variable = c('cyl', 'disp'))

normal

Normal Distribution Test

Description

Using Jarque Bera test, shapiro wilk test and Kolmogorov Smirnov test for one numeric object or numeric object in dataframe or matrix. Na is omitted in each object.

Usage

normal(x, num.names)
survdiff_p.value

Arguments
x numerica object or dataframe and matrix
num.names numeric column names for dataframe and matrix. If missing, all numeric column names will be given.

Value
a dataframe containing kurtosis, skewness and p value for Jarque Bera test, shapiro wilk test and Kolmogorov Smirnov test. In star column, star represents p > 0.05, while underline taking the opposite.

Examples
set.seed(2019)
rn1=rnorm(100,0,2)
df=data.frame(rn1=rnorm(100,0,2),
 rn2=rnorm(100,2,4))
#normal test for one object
normal(rn1)

#normal test for dataframe
normal(df)

survdiff_p.value Extract P Value after survdiff() function

Description
Extract P Value after survdiff() function

Usage
survdiff_p.value(survdiff)

Arguments
survdiff the results of survdiff() function

Value
p value

Examples
library(survival)
diff_result=survdiff(Surv(qsec,vs)~cyl,data=mtcars)
survdiff_p.value(diff_result)
table_one

Get Summary Table

Description

Get the first summary table when study.

Usage

```r
table_one(data, group, mean_sd, median_q4, median_range, count_percent, mean, median, max, min, sd, q25, q75, count, percent, round = 2, count.percent.direction = "v", t.test, anova, wilcox.test, kruskal.test, chisq.test, fisher.test, weighted, statistics = FALSE)
```

Arguments

data data that will be summarized

group one or more group variable names

mean_sd variable names for mean and standard deviation. in the results represents plus and minus

median_q4 variable names for median and 25 and 75 quantiles

median_range variable names for median and range

count_percent variable names for count and percentage

mean variable names for mean

median variable names for median

max variable names for max

min variable names for min

sd variable names for standard deviation

q25 variable names for 25 quantile

q75 variable names for 75 quantile

count variable names for count

percent variable names for percentage

round digital round. 2 is defaulted

count.percent.direction calculate of direction for count, percent and count_percent arguments, which should be one of g, group, v or var, v as defaulted

t.test two-side t test

anova two-side anova

wilcox.test two-side wilcoxon test

kruskal.test two-side kruskal test

chisq.test two-side chisq test

fisher.test two-side fisher test

weighted weight for data

statistics a logical object. TRUE to display the statistic information. Default is FALSE
to.factor

Value

a summary matrix

Examples

table_one(data = mtcars, group='vs',
 mean_sd = 'wt',
 count_percent = c('gear','am'))
)

table_one(data = mtcars,
 group='vs',
 mean_sd = 'wt',
 t.test = 'wt',

 count_percent = c('gear','am','cyl'),
 chisq.test = c('am','gear'),
 fisher.test = c('cyl'),

 round = 3
)

to.factor Set Factor Class

Description

Set Factor Class

Usage

to.factor(x, levels)

Arguments

x the data that you want to set
levels levels, the first levels is the reference. If the length of levels is 1, no levels will be given to x

Value

factor x

Examples

to.factor(mtcars$gear,c(4,3,5))
to.factor(mtcars$gear)
to.factor<-
Set Factor Class

Description
Set Factor Class

Usage
to.factor(x) <- value

Arguments
x
value

Value
factor x

Examples
to.factor(mtcars$gear) <- c(4,3,5)

to.labels
Give Labels to Factor

Description
Give Labels to Factor

Usage
to.labels(x, labels)

Arguments
x
labels

Value
factor variable with labels, the first label will be treated as reference.

Examples
to.labels(x=mtcars$am,labels=c('0:Female','1:Man'))
to.labels<-

Give Labels to Factor

Description
Give Labels to Factor

Usage
to.labels(x) <- value

Arguments
x factor or numeric variable
value labels separated by colon

Value
factor variable with lables, the first lable will be treated as reference.

Examples
to.labels(x=mtcars$am) <- c('0:Female','1:Man')

to.numeric

Change to Numeric Form

Description
Change to Numeric Form

Usage
to.numeric(x)

Arguments
x vector

Value
numeric data

Examples
x=c(1,2,3)
to.factor(x) <- 1
to.numeric(x)
to.numeric<-

Change to Numeric Form

Description

Change to Numeric Form

Usage

to.numeric(x) <- value

Arguments

 x vector
 value anything, which will be ignored

Value

numeric data

Examples

x=c(1,2,3)
to.factor(x) <- 1
to.numeric(x) <- 1

to.refer

Set Refer for Factor

Description

Convert data to be factor and set reference.

Usage

to.refer(x, refer)

Arguments

 x the data that you want to set
 refer refering level

Value

refered factor refer
Examples

to.refer(mtcars$vs, 1)

description

Convert data to be factor and set reference.

Usage

to.refer(x) <- value

Arguments

x the data that you want to set
value refering level

Value

referred factor value

Examples

to.refer(mtcars$vs) = 1

uv_cox

Looping for Univariable Cox Regression

Description

Looping for Univariable Cox Regression

Usage

uv_cox(data, time, event, variable, adjust, round = 3,
p_threshold = 0.05, order_by.hr = TRUE)
Arguments

data data

time time variable

event event variable

variable variable names for univariable cox regression. If missing, it will be column names of data except y and adjust

adjust adjust variable names for univariable cox regression

round digital round, 3 is defaulted

p_threshold threshold for p value to show star. 0.05 is defaulted

order_by.hr logical. TRUE means order in or by decreasing. FALSE is defaulted

Value

univariable cox regression results

Examples

uv_cox(data = mtcars,
 time = 'qsec', event = 'vs')

uv_linear Looping for Univariable Logistic Regression

Description

Looping for Univariable Logistic Regression

Usage

uv_linear(data, y, variable, adjust, round = 3, p_threshold = 0.05,
 order_by.beta = TRUE)

Arguments

data data

y y

variable variable names for univariable logistic regression. If missing, it will be column names of data except y and adjust

adjust adjust variable names for univariable logistic regression

round digital round, 3 is defaulted

p_threshold threshold for p value to show star. 0.05 is defaulted

order_by.beta logical. TRUE means order in or by decreasing. FALSE is defaulted
uv_logit

Value

univariable logistic regression results

Examples

```
uv_logit(data = mtcars, y = 'vs')
```

Description

Looping for Univariable Logistic Regression

Usage

```
uv_logit(data, y, variable, adjust, round = 3, p_threshold = 0.05, order_by.or = TRUE)
```

Arguments

- **data**: data
- **y**: y
- **variable**: variable names for univariable logistic regression. If missing, it will be column names of data except y and adjust
- **adjust**: adjust variable names for univariable logistic regression
- **round**: digital round, 3 is defaulted
- **p_threshold**: threshold for p value to show star. 0.05 is defaulted
- **order_by.or**: logical. TRUE means order in or by decreasing. FALSE is defaulted

Value

univariable logistic regression results

Examples

```
uv_logit(data = mtcars, y = 'vs')
```
uv_logrank

Looping for logrank Regression

Description

Looping for logrank Regression

Usage

uv_logrank(data, time, event, variable, round = 3, order_by.p = TRUE)

Arguments

data data
time time variable
event event variable
variable variable names for logrank regression. If missing, it will be column names of
data except y
round digital round, 3 is defaulted
order_by.p logical. TRUE, defaulted, means increasing order in p value

Value

logrank regression results

Examples

uv_logrank(data = mtcars,
 time = 'qsec', event = 'vs')
Index

digital, 2
list.factor, 3
list.NA, 3
list.numeric, 4
list.plot, 4
list.str, 5
list.summary, 6
mv_cox, 6
mv_linear, 7
mv_logit, 8
normal, 8
survdiff_p.value, 9
table_one, 10
to.factor, 11
to.factor<-, 12
to.labels, 12
to.labels<-, 13
to.numeric, 13
to.numeric<-, 14
to.refer, 14
to.refer<-, 15

uv_cox, 15
uv_linear, 16
uv_logit, 17
uv_logrank, 18