Package ‘fastclime’

April 29, 2016

Type Package
Title A Fast Solver for Parameterized LP Problems, Constrained L1 Minimization Approach to Sparse Precision Matrix Estimation and Dantzig Selector
Version 1.4.1
Date 2016-04-22
Author Haotian Pang, Di Qi, Han Liu and Robert Vanderbei
Maintainer Haotian Pang <hpang@princeton.edu>
Depends R (>= 2.15.0), lattice, igraph, MASS, Matrix
Description Provides a method of recovering the precision matrix efficiently and solving for the dantzig selector by applying the parametric simplex method. The computation is based on a linear optimization solver. It also contains a generic LP solver and a parameterized LP solver using parametric simplex method.
License GPL-2
Repository CRAN
NeedsCompilation yes
Date/Publication 2016-04-29 23:59:28

R topics documented:

fastclime-package .. 2
dantzig ... 3
dantzig.generator ... 4
dantzig.selector ... 5
fastclime .. 6
fastclime.generator .. 8
fastclime.plot ... 10
fastclime.selector .. 11
fastlp ... 12
paralp .. 14
plot.fastclime ... 15
Description

A package for generic linear programming, parameterized linear programming and constrained \ell_1 minimization approach to sparse precision matrix estimation

Details

The package "fastclime" provides 5 main functions:
(1) the data generator creates random samples from multivariate normal distributions with different graph structures. Please refer to \texttt{fastclime.generator}.
(2) The parametric simplex solver for constrained \ell_1 minimization approach to sparse precision matrix estimation. Please refer to \texttt{fastclime}.
(3) The path selector function gives the path and precision matrix for a given parameter in CLIME. Please refer to \texttt{fastclime.selector}.
(4) A generic linear programming solver and a parameterized linear programming solver. Please refer to \texttt{fastlp} and \texttt{paralp}.
(5) An implementation of the Primal Dual (i.e. Self Dual) Simplex Method on the Dantzig selector. Please refer to \texttt{dantzig}, \texttt{dantzig.selector} and \texttt{dantzig.generator}.

Author(s)

Haotian Pang, Di Qi, Han Liu and Robert Vanderbei
Maintainer: Haotian Pang\textless hpang@princeton.edu\textgreater ;

See Also

\texttt{fastclime.generator}, \texttt{fastclime}, \texttt{fastclime.plot}, \texttt{fastclime.selector}, \texttt{fastlp}, \texttt{paralp}, \texttt{dantzig}, \texttt{dantzig.selector}, and \texttt{dantzig.generator}
Description

Implementation of the Primal Dual (i.e. Self Dual) Simplex Method on Dantzig selector

Usage

dantzig(X, y, lambda = 0.01, nlambda = 50)

Arguments

X x is an n by d data matrix
y y is a length n response vector
lambda The parametric simplex method will stop when the calculated parameter is smaller than lambda. The default value is 0.01.
nlambda This is the number of the maximum path length one would like to achieve. The default length is 50.

Details

This program applies the parametric simplex linear programming method to the Dantzig selector to solve for the regression coefficient vector. The solution path of the problem corresponds to the parameter in the parametric simplex method.

Value

An object with S3 class "dantzig" is returned:

X X is the n by d data matrix.
y y is a length n response vector.
BETA0 BETA0 is a d by validn matrix where each column has an estimated regression coefficient vector given a lambda interval.
n0 n0 is the number of rows in the n by d data matrix.
d0 d0 is the number of columns in the n by d data matrix.
validn validn is the number of solutions along the solution path. The maximum is nlambda.
lambdalist lambdalist is the decrementing path of the lambda solution values.

Note

The program will stop when either the maximum number of iterations for each column nlambda is achieved or when the required lambda is achieved for each column. Note if d is large and nlambda is also large, it is possible that the program will fail to allocate memory for the path.
dantzig.generator

Author(s)
Haotian Pang, Han Liu, Robert Vanderbei and Di Qi
Maintainer: Haotian Pang<hpang@princeton.edu>

See Also
dantzig.selector

Examples

```r
#generate data
a = dantzig.generator(n = 200, d = 100, sparsity = 0.1)

#regression coefficient estimation
b = dantzig(a$x, a$y, lambda = 0.1, nlambda = 100)
```

Description
Generates sparse linear regression model for testing dantzig function

Usage
dantzig.generator(n = 50, d = 100, sparsity = 0.1, sigma0=1)

Arguments

- **n**: The number of observations (sample size). The default value is 50.
- **d**: The number of variables (dimension). The default value is 100.
- **sparsity**: d is either the number of nonzero entries out of d or the proportion of nonzero entries in BETA.
- **sigma0**: sigma0 is the standard deviation of the noise vector.

Details
Generates sparse linear regression model for testing dantzig function.
Value

An object with S3 class "dantzig.generator" is returned:

- \(X \) is the \(n \) by \(d \) matrix for the generated data
- \(y \) is a \(n \) response vector for the generated data
- \(\text{BETA} \) is a length \(d \) regression coefficient vector
- \(s \) is the number of nonzero entries out of \(d \)
- \(\text{pos} \) is a vector containing the indices of the nonzero entries (may contain repeats)

Author(s)

Haotian Pang, Han Liu, Robert Vanderbei and Di Qi
Maintainer: Di Qi <dqi@princeton.edu>

See Also
dantzig

Examples

```r
##
L = dantzig.generator(n = 50, d = 100, sparsity = 0.1)
```

dantzig.selector

Dantzig selector

Description

Function used to select the solution path for a given lambda

Usage

dantzig.selector(lambdalist, BETA0, lambda)

Arguments

- `lambdalist`
 lambdalist is the length validn decremented path of the lambda solution values. It is obtained from the dantzig function.

- `BETA0`
 BETA0 is a d by validn matrix where each column has an estimated regression coefficient vector given a given lambda interval. It is obtained from the dantzig function.

- `lambda`
 lambda is the lambda solution value the user wishes to estimate a regression coefficient vector with.
Details

Finds the estimated regression coefficient vector associated with a given lambda

Value

\(\beta_0 \)

\(\beta_0 \) is the estimated regression coefficient vector for the given lambda.

Author(s)

Di Qi, Haotian Pang
Maintainer: Di Qi <dqi@princeton.edu>

See Also

dantzig

Examples

```r
# generate data
a = dantzig.generator(n = 200, d = 100, sparsity = 0.1)

# regression coefficient estimation
b = dantzig(a$x, a$y, lambda = 0.1, nlambda = 100)

# estimated regression coefficient vector
c = dantzig.selector(b$lambda_list, b$beta, 15)
```

fastclime
The main solver for fastclime package

Description

A fast parametric simplex solver for constrained 11 minimization approach to sparse precision matrix estimation

Usage

```r
fastclime(x, lambda.min = 0.1, nlambda = 50)
```

Arguments

\(x \)

There are 2 options: (1) \(x \) is an \(n \times d \) data matrix (2) an \(d \times d \) sample covariance matrix. The program automatically identifies the input matrix by checking the symmetry. (\(n \) is the sample size and \(d \) is the dimension)
lambda.min

This is the smallest value of lambda you would like the solver to explore. The default value is 0.1. If nlambda is large enough, the precision matrix selector function fastclime.selector will be able to find all precision matrix corresponding to all lambda values ranging from 1 to lambda.min.

nlambda

It is the number of the path length one would like to achieve. The default length is 50. Note if d is large and nlambda is also large, it is possible that the program will fail to allocate memory for the path.

Details

This program uses parametric simplex linear programming method to solve CLIME (Constrained l1 Minimization Sparse Precision Matrix Estimation) problem. The solution path of the problem corresponds to the parameter in the parametric simplex method.

Value

An object with S3 class "fastclime" is returned:

data

The n by d data matrix or d by d sample covariance matrix from the input

cov.input

An indicator of the sample covariance.

sigmahat

The empirical covariance of the data. If cov.input is TRUE, sigmahat = data

maxnlambda

The length of the path. If the program finds lambda.min in less than nlambda iterations for all columns, then the actual maximum length for all columns will be returned. Otherwise it equals nlambda.

lambdamtx

The sequence of regularization parameters for each column, it is a nlambda by d matrix. It will be filled with 0 when the program finds the required lambda.min value for that column. This parameter is required for fastclime.selector.

icovlist

A nlambda list of d by d precision matrices as an alternative graph path (numerical path) corresponding to lambdamtx. This parameter is also required for fastclime.selector.

Note

The program will stop when either the maximum number of iteration for each column nlambda is achieved or when the required lambda.min is achieved for each column. When the dimension is huge, make sure nlambda is small so that there are enough memory to allocate the solution path. lambdamtx and icovlist will be used in fastclime.selector.

Author(s)

Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang<hpang@princeton.edu>

See Also

fastclime.generator, fastclime.plot, fastclime.selector and fastclime-package.
Examples

```r
# generate data
L = fastclime.generator(n = 100, d = 20)

# graph path estimation
out1 = fastclime(L$data, 0.1)
out2 = fastclime.selector(out1$lambdamtx, out1$icovlist, 0.2)
fastclime.plot(out2$adj)

# graph path estimation using the sample covariance matrix as the input.
out1 = fastclime(cor(L$data), 0.1)
out2 = fastclime.selector(out1$lambdamtx, out1$icovlist, 0.2)
fastclime.plot(out2$adj)
```

Description

Implements the data generation from multivariate normal distributions with different graph structures, including "random", "hub", "cluster" and "band".

Usage

```r
fastclime.generator(n = 200, d = 50, graph = "random", v = NULL, u = NULL, g = NULL, prob = NULL, vis = FALSE, verbose = TRUE)
```

Arguments

- `n` The number of observations (sample size). The default value is 200.
- `d` The number of variables (dimension). The default value is 50.
- `graph` The graph structure with 4 options: "random", "hub", "cluster" and "band".
- `v` The off-diagonal elements of the precision matrix, controlling the magnitude of partial correlations with `u`. The default value is 0.3.
- `u` A positive number being added to the diagonal elements of the precision matrix, to control the magnitude of partial correlations. The default value is 0.1.
- `g` For "cluster" or "hub" graph, `g` is the number of hubs or clusters in the graph. The default value is about `d/20` if `d >= 40` and 2 if `d < 40`. For "band" graph, `g` is the bandwidth and the default value is 1. NOT applicable to "random" graph.
- `prob` For "random" graph, it is the probability that a pair of nodes has an edge. The default value is `3/d`. For "cluster" graph, it is the probability that a pair of nodes has an edge in each cluster. The default value is `6*g/d` if `d/g <= 30` and `0.3` if `d/g > 30`. NOT applicable to "hub" or "band" graphs.
- `vis` Visualize the adjacency matrix of the true graph structure, the graph pattern, the covariance matrix and the empirical covariance matrix. The default value is `FALSE`.
- `verbose` If `verbose = FALSE`, tracing information printing is disabled. The default value is `TRUE`.
Details

Given the adjacency matrix \(\theta\), the graph patterns are generated as below:

(I) "random": Each pair of off-diagonal elements are randomly set \(\theta[i,j] = \theta[j,i] = 1\) for \(i \neq j\) with probability \(\text{prob}\), and 0 otherwise. It results in about \(d \times (d-1) \times \text{prob}/2\) edges in the graph.

(II) "hub": The row/columns are evenly partitioned into \(g\) disjoint groups. Each pair of off-diagonal elements are set \(\theta[i,j] = \theta[j,i] = 1\) for \(i \neq j\) if \(j\) also belongs to the same group as \(i\) and 0 otherwise. It results in \(d - g\) edges in the graph.

(III) "cluster": The row/columns are evenly partitioned into \(g\) disjoint groups. Each pair of off-diagonal elements are set \(\theta[i,j] = \theta[j,i] = 1\) for \(i \neq j\) with the probability \(\text{prob}\) if both \(i\) and \(j\) belong to the same group, and 0 otherwise. It results in about \(g \times (d/g) \times (d/g-1) \times \text{prob}/2\) edges in the graph.

(IV) "band": The off-diagonal elements are set to be \(\theta[i,j] = 1\) if \(1 \leq |i-j| \leq g\) and 0 otherwise. It results in \((2d-1-g) \times g/2\) edges in the graph.

The adjacency matrix \(\theta\) has all diagonal elements equal to 0. To obtain a positive definite precision matrix, the smallest eigenvalue of \(\theta^*\text{v}\) (denoted by \(e\)) is computed. Then we set the precision matrix equal to \(\theta^*\text{v} \wedge (|e| + \theta \times 0.1 \times \text{u} I)\). The covariance matrix is then computed to generate multivariate normal data.

Value

An object with S3 class "sim" is returned:

- **data**: The \(n\) by \(d\) matrix for the generated data
- **sigma**: The covariance matrix for the generated data
- **omega**: The precision matrix for the generated data
- **sigmahat**: The empirical covariance matrix for the generated data
- **theta**: The adjacency matrix of true graph structure (in sparse matrix representation) for the generated data

Author(s)

Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang<hpang@princeton.edu>

See Also

fastclime and fastclime-package
Examples

```r
## band graph with bandwidth 3
L = fastclime.generator(graph = "band", g = 3)
plot(L)

## random sparse graph
L = fastclime.generator(vis = TRUE)

## random dense graph
L = fastclime.generator(prob = 0.5, vis = TRUE)

## hub graph with 6 hubs
L = fastclime.generator(graph = "hub", g = 6, vis = TRUE)

## hub graph with 8 clusters
L = fastclime.generator(graph = "cluster", g = 8, vis = TRUE)
```

fastclime.plot
Graph visualization

Description

Implements the graph visualization using adjacency matrix. It can automatic organize 2D embedding layout.

Usage

```r
fastclime.plot(G, epsflag = FALSE, graph.name = "default", cur.num = 1,
location)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>The adjacency matrix corresponding to the graph.</td>
</tr>
<tr>
<td>epsflag</td>
<td>If epsflag = TRUE, save the plot as an eps file in the target directory. The default value is FALSE.</td>
</tr>
<tr>
<td>graph.name</td>
<td>The name of the output eps files. The default value is "default".</td>
</tr>
<tr>
<td>cur.num</td>
<td>The number of plots saved as eps files. Only applicable when epsflag = TRUE. The default value is 1.</td>
</tr>
<tr>
<td>location</td>
<td>Target directory. The default value is the current working directory.</td>
</tr>
</tbody>
</table>

Details

The user can change cur.num to plot several figures and select the best one. The implementation is based on the popular package "igraph".
Author(s)

Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang<hpang@princeton.edu>

See Also

fastclime and fastclime-package

Examples

visualize the hub graph
L = fastclime.generator(graph = "hub")
fastclime.plot(L$theta)

visualize the band graph
L = fastclime.generator(graph = "band", g=5)
fastclime.plot(L$theta)

visualize the cluster graph
L = fastclime.generator(graph = "cluster")
fastclime.plot(L$theta)

show working directory
getwd()
plot 5 graphs and save the plots as eps files in the working directory
fastclime.plot(L$theta, epsflag = TRUE, cur.num = 5)

Description

Select the precision matrix and solution path for a given parameter lambda

Usage

fastclime.selector(lambdamtx, icovlist, lambda)

Arguments

lambdamtx The sequence of regularization parameters for each column, it is a nlambda by d matrix.

icovlist A nlambda list of d by d precision matrices as an alternative graph path (numerical path) corresponding to lambdamtx.

lambda The user specified parameter lambda. The function will return the solution path corresponding to this value. Note lambda has to be larger than or equal to lambda.min input in fastclime.
Details

The output from `fastclime` stores a list of precision matrices and a matrix of parameters. This program will select the required solution path and precision matrix for a given parameter \(\lambda \).

Value

An object with S3 class "fastclime.selector" is returned:

- `icov` The estimated precision matrix corresponding to \(\lambda \).
- `adaj` The estimated graph path corresponding to \(\lambda \).
- `sparsity` The sparsity level of this estimated graph for this value of \(\lambda \).

Note

The function is able to estimate the precision matrices corresponding to all \(\lambda \) values ranging from 1 to \(\lambda_{\text{min}} \), provided a large enough \(n_{\lambda} \) is used in `fastclime`. The function will give a message if the program could not find the solution path corresponding to the required \(\lambda \). The user may want to increase \(n_{\lambda} \) in `fastclime` in order to find the required solution path.

Author(s)

Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang<hpang@princeton.edu>

See Also

`fastclime` and `fastclime-package`

Examples

```r
# generate data
L = fastclimeNgenerator(n = 100, d = 20)

# graph path estimation
out1 = fastclime(l$dataLPN1I
outR = fastclimeNselector(out1$lambdamtxL out1$icovlistLPNRI
fastclimeNplot(outR$adaj)
```

fastlp

A generic LP solver

Description

A generic linear programming solver using parametric simplex method

Usage

`fastlp(obj, mat, rhs, lambda=0)`
Arguments

- **obj**: The objective vector of the coefficient with length n.
- **mat**: The constraint matrix of the linear programming with dimension m*n. Note this argument must be in matrix form even it is a vector.
- **rhs**: The right hand side vector of the constraint with length m.
- **lambda**: The parametric simplex method will stop when the calculated parameter is smaller than lambda. The default value is zero and it corresponds to the optimal value.

Details

This function is used to solve a general linear programming in standard inequality form: "maximize obj*x, subject to: mat*x<=rhs, x>=0"

Value

The optimal value will be returned if it exists. Otherwise the function will indicate the problem is infeasible or unbounded.

Note

The linear programming should be in the form "maximize obj*x, subject to: mat*x<=rhs, x>=0". If the original problem is not in this form. The user has to convert it into this form. For example, the equality constraints can be separated into two inequality constraints.

Author(s)

Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang<hpang@princeton.edu>

See Also

- `fastclime`
- `fastclime-package`

Examples

```r
# generate an LP problem and solve it
A=matrix(c(-1,-1,0,1,-2,1),nrow=3)
b=c(-1,-2,1)
c=c(-2,1)
fastlp(c,A,b)
```
paralp

A solver for parameterized LP problems

Description

A parameterized linear programming solver using parametric simplex method

Usage

paralp(obj, mat, rhs, obj_bar, rhs_bar, lambda=0)

Arguments

obj The objective vector of the coefficient with length n.
mat The constraint matrix of the linear programming with dimension m*n. Note this argument must be in matrix form even it is a vector.
rhs The right hand side vector of the constraint with length m.
obj_bar The vector used to time the parameter and added to the objective vector, with length n. This perturbation vector must be nonnegative.
rhs_bar The vector used to time the parameter and added to the right hand side vector, with length m. This perturbation vector must be nonnegative.
lambda The parametric simplex method will stop when the calculated parameter is smaller than lambda. The default value is zero and it corresponds to the optimal value.

Details

This function is used to solve a general linear programming in standard inequality form: "maximize obj*x+obj_bar*lambda, subject to: mat*x<=rhs+rhs_bar*lambda, x>=0"

Value

The optimal value will be returned if it exists with a proper value of chosen lambda. Otherwise the function will indicate the problem is infeasible or unbounded.

Author(s)

Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang<hpang@princeton.edu>

See Also

fastclime and fastclime-package
Examples

generate an LP problem and solve it
A <- matrix(c(-1, -1, 0, 1, -2, 1), nrow = 3)
b <- c(-1, -2, 1)
c <- c(-2, 3)
b_bar <- c(1, 1)
c_bar <- c(1, 1)
paralp(c, A, b, c_bar, b_bar)

plot.fastclime

Plot function for S3 class "fastclime"

Description

Plot sparsity level information (the first column) from the graph path

Usage

S3 method for class 'fastclime'
plot(x, ...)

Arguments

x
An object with S3 class "fastclime"

... System reserved (No specific usage)

Author(s)

Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang <hpang@princeton.edu>

See Also

fastclime

plot.sim

Plot function for S3 class "sim"

Description

Visualize the covariance matrix, the empirical covariance matrix, the adjacency matrix and the graph pattern of the true graph structure

Usage

S3 method for class 'sim'
plot(x, ...)

Arguments

x An object with S3 class "sim"

... System reserved (No specific usage)

Author(s)

Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang<hpang@princeton.edu>

See Also

fastclime.generator and fastclime

print.fastclime

Print function for S3 class "fastclime"

Description

Print the information about the model usage, the graph path length, graph dimension, sparsity level

Usage

S3 method for class 'fastclime'
print(x, ...)

Arguments

x An object with S3 class "fastclime"

... System reserved (No specific usage)

Author(s)

Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang<hpang@princeton.edu>

See Also

fastclime and fastclime
print.sim

Print function for S3 class "sim"

Description
Print the information about the sample size, the dimension, the pattern and sparsity of the true graph structure.

Usage
S3 method for class 'sim'
print(x, ...)

Arguments
x An object with S3 class "sim"
...
... System reserved (No specific usage)

Author(s)
Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang<hpang@princeton.edu>

See Also
fastclime.generator and fastclime.generator

stockdata

Stock price of S&P 500 companies from 2003 to 2008

Description
This data set consists of stock price and company information.

Usage
data(stockdata)

Format
The format is a list containing contains two matrices. 1. data - 1258x452, represents the 452 stocks’ close prices for 1258 trading days. 2. info - 452x3: The 1st column: the query symbol for each company. The 2nd column: the category for each company. The 3rd column: the full name of each company.
Details

This data set can be used to perform high-dimensional graph estimation to analyze the relationships between S&P 500 companies.

Author(s)

Haotian Pang, Han Liu and Robert Vanderbei
Maintainer: Haotan Pang<hpang@princeton.edu>

Source

It is publicly available at http://ichart.finance.yahoo.com

Examples

data(stockdata)
image(stockdata$data)
stockdata$info
Index

*Topic **datasets**
 stockdata, 17

dantzig, 2, 3, 5, 6
dantzig.generator, 2, 4
dantzig.selector, 2, 4, 5

fastclime, 2, 6, 9, 11–16
fastclime-package, 2
fastclime.generator, 2, 7, 8, 16, 17
fastclime.plot, 2, 7, 10
fastclime.selector, 2, 7, 11
fastlp, 2, 12

paralp, 2, 14
plot.fastclime, 15
plot.sim, 15
print.fastclime, 16
print.sim, 17

stockdata, 17