Package ‘fasterElasticNet’

August 11, 2018

Type Package

Title An Amazing Fast Way to Fit Elastic Net

Version 1.1.2

Date 2018-08-01

Description
Fit Elastic Net, Lasso, and Ridge regression and do cross-validation in a fast way. We build the algorithm based on Least Angle Regression by Bradley Efron, Trevor Hastie, Iain Johnstone, etc. (2004)(<doi:10.1214/009053604000000067 >) and some algorithms like Givens rotation and Forward/Back Substitution. In this way, many matrices to be computed are retained as triangular matrices which can eventually speed up the computation. The fitting algorithm for Elastic Net is written in C++ using Armadillo linear algebra library.

Depends R (>= 3.1.0)

License GPL (>= 2)

Imports Rcpp (>= 0.12.16)

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown

URL https://github.com/CUFESAM/Elastic-Net

BugReports https://github.com/CUFESAM/Elastic-Net/issues

NeedsCompilation yes

Author Jingyi Ma [aut],
Quihong Lai [ctb],
Linyu Zuo [ctb, cre],
Yi Yang [ctb],
Meng Su [ctb],
Zhen Yu [ctb],
Gege Gao [ctb],
Xiao Liu [ctb],
Xueni Ruan [ctb],
Xinyuan Yang [ctb],
Yu Bai [ctb],
Zhijun Liao [ctb]
Maintainer Linyu Zuo <zuozhe5959@gmail.com>
Repository CRAN
Date/Publication 2018-08-11 16:30:10 UTC

R topics documented:

- fasterElasticNet-package .. 2
- elasticnet ... 3
- ElasticNetCV .. 4
- housing ... 6

Index 11

fasterElasticNet-package

Fitting ElasticNet in a fast way.

Description

FasterElasticNet uses some math algorithm such as cholesky decomposition and forward solve etc. to reduce the amount of computation. We also use Rcpp with Armadillo to improve our algorithm by speeding up almost 5 times compared by the R version.

Details

To use fasterElasticNet, dataset x(mxn) and y(mx1) should be put into the function to fit the model. Then, a completely trace of lambda1 and lambda2 can be computed if no lambda1 and lambda2 were input by using ElasticNet. Using cv.choosemodel with the number of folds will returns a best model with smallest MSE after cross-validation. Using output to print the output and predict function will return the prediction based on a new dataset.

Author(s)

Jingyi Ma
Maintainer: Linyu Zuo <zuozhe5959@gmail.com>

References

BRADLEY, EFRON, TREVOR, HASTIE, IAIN, JOHNSTONE, AND, ROBERT, TIBSHIRANI.

See Also

https://github.com/CUFESAM/Elastic-Net
elasticnet

Examples

```r
# Use R built-in datasets mtcars for a model fitting
x <- mtcars[, -1]
y <- mtcars[, 1]

# fit model
model <- ElasticNetCV(x, y)

# fit a elastic net with lambda2 = 1
model$Elasticnet_(lambda2 = 1)

# choose model using cv
model$cv.choosemodel(k = 31)  # Leave-one-out cross validation
model$output()  # See the output

# predict
pre <- mtcars[1:3, -1]
model$predict(pre)
```

Description

Elastic net is a regularization and variable selection method which linearly combines the L1 penalty of the lasso and L2 penalty of ridge methods. Based on this method, elastic net is designed to return the trace of finding the best linear regression model. Compared with the existed R version of ElasticNet, our version speeds up the algorithm by using Cholesky decomposition, Givens rotation and RcppArmadillo.

Usage

`elasticnet(XTX, XTY, lam2, lam1 = -1)`

Arguments

- `XTX`: The product of the transpose of independent variable X and itself.
- `XTY`: The product of the transpose of independent variable X and response variable Y
- `lam1`: Penalty of L1-norm. No L1 penalty when lam1 = -1
- `lam2`: Penalty of L2-norm, a hyper-paramater

Details

When only lambda2 is given, elasticnet will return the trace of variable selection with lambda1 decreasing from lambda1_0 to zero. lambda1_0 is a value for lambda1 when there is only one predictor (the one most correlated with the response variable) in the model.
If \(\lambda_1 \) and \(\lambda_2 \) are both given, it will also return a trace. But in this case, the trace will stop when \(\lambda_1 \) and \(\lambda_2 \) reach the given ones.

To speed up the algorithm, we use some calculational tricks:

In the consideration of the low efficiency of R dealing with high-dimensional matrix, we use lower triangular matrices during the iteration of the algorithm to avoid massive matrix calculations. When adding one predictor into the model, we update \(XTX \) by recalculating the lower triangular matrix in the Cholesky decomposition of it. While removing one predictor from the model, we update the lower triangular matrix with the help of Givens rotations.

Furthermore, due to the low efficiency of R dealing with loops, we rewrite the entire algorithm with RcppArmadillo, a C++ linear algebra library.

Value

A list will be returned. When only \(\lambda_2 \) is given, the returned list contains the trace of \(\lambda_1 \) (relamb) and the corresponding coefficients of the predictors (reb). If both \(\lambda_1 \) and \(\lambda_2 \) are given, the corresponding coefficients of the predictors will be returned.

Examples

```r
# Use R built-in datasets mtcars for a model fitting
x <- as.matrix(mtcars[, -1])
y <- as.matrix(mtcars[, 1])

XTX <- t(x) %% x
XTY <- t(x) %% y

# Prints the output of elastic net model with \( \lambda_2 = 0 \)
res <- elasticnet(XTX, XTY, lam2 = 0)
```

ElasticNetCV

Description

Computes k-fold cross-validation for elastic net.

Usage

```r
ElasticNetCV(x, y)
```

Arguments

- \(x \) A data.frame or matrix of predictors
- \(y \) A vector of response variables
Details

This function reads data into its environment and returns a list of three outcomes. To perform elastic net or cross-validation of elastic net, use the corresponding element of the returned list. See examples below. The penalty of L1-norm and L2-norm is denoted by lambda1 and lambda2 respectively.

Value

cv.choosemodel Given the parameter k folds and lambda2 (optional), cv.choosemodel performs cross-validation to select the optimal lambda1 and computes the corresponding coefficient of each variable. If lambda2 is NULL, cv.choosemodel selects the optimal lambda2 from a sequence going from 0 to 1 in steps of 0.1 and the corresponding optimal lambda1, then it returns the coefficient of each variable.

A list of three outcomes will be returned:

Elasticnet Given lambda1 (optional) and lambda2, Elasticnet calculates an elastic net-regularized regression and returns the coefficients of each variable. If lambda1 is NULL, Elasticnet prints out the trace of lambda1 and the corresponding coefficient of each variable.

output Prints the cross-validation outputs, including the minimum MSE, the coefficient of each variable, lambda1 and lambda2.

predict Reads a data.frame of the testing data set and returns predictions using the trained model.

Examples

Use R built-in datasets mtcars for a model fitting
x <- mtcars[, -1]
y <- mtcars[, 1]

Fit model
model <- ElasticNetCV(x, y)

Fit a elastic net with lambda2 = 1
model$Elasticnet_(lambda2 = 1)

Choose model using cv
model$cv.choosemodel(k = 31) # Leave-one-out cross validation
model$output() # See the output

Predict
pre <- mtcars[1:3, -1]
model$predict(pre)
Description

A subdata from kaggle "Get start" competition

Usage

data("housing")

Format

A data frame with 10153 observations on the following 140 variables.

- **floor** for apartments, floor of the building
- **area_m** Area, sq.m.
- **green_zone_part** Proportion of area of greenery in the total area
- **indust_part** Share of industrial zones in area of the total area
- **preschool_quota** Number of seats in pre-school organizations
- **preschool_education_centers_raion** Number of pre-school institutions
- **school_quota** Number of high school seats in area
- **school_education_centers_raion** Number of high school institutions
- **school_education_centers_top_20_raion** Number of high schools of the top 20 best schools in Moscow
- **healthcare_centers_raion** Number of healthcare centers in district
- **university_top_20_raion** Number of higher education institutions in the top ten ranking of the Federal rank
- **sport_objects_raion** Number of higher education institutions
- **additional_education_raion** Number of additional education organizations
- **culture_objects_top_25_raion** Number of objects of cultural heritage
- **shopping_centers_raion** Number of malls and shopping centres in district
- **office_raion** Number of malls and shopping centres in district
- **build_count_block** Share of block buildings
- **build_count_wood** Share of wood buildings
- **build_count_frame** Share of frame buildings
- **build_count_brick** Share of brick buildings
- **build_count_monolith** Share of monolith buildings
- **build_count_panel** Share of panel buildings
- **build_count_foam** Share of foam buildings
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>build_count_slag</td>
<td>Share of slag buildings</td>
</tr>
<tr>
<td>build_count_before_1920</td>
<td>Share of before_1920 buildings</td>
</tr>
<tr>
<td>build_count_1921_1945</td>
<td>Share of 1921-1945 buildings</td>
</tr>
<tr>
<td>build_count_after_1995</td>
<td>Share of after_1995 buildings</td>
</tr>
<tr>
<td>kindergarten_km</td>
<td>Distance to kindergarten</td>
</tr>
<tr>
<td>school_km</td>
<td>Distance to high school</td>
</tr>
<tr>
<td>park_km</td>
<td>Distance to park</td>
</tr>
<tr>
<td>green_zone_km</td>
<td>Distance to green zone</td>
</tr>
<tr>
<td>industrial_km</td>
<td>Distance to industrial zone</td>
</tr>
<tr>
<td>water_treatment_km</td>
<td>Distance to water treatment</td>
</tr>
<tr>
<td>cemetery_km</td>
<td>Distance to the cemetery</td>
</tr>
<tr>
<td>incineration_km</td>
<td>Distance to the incineration</td>
</tr>
<tr>
<td>railroad_station_walk_min</td>
<td>Time to the railroad station (walk)</td>
</tr>
<tr>
<td>railroad_station_avto_km</td>
<td>Distance to the railroad station (avto)</td>
</tr>
<tr>
<td>railroad_station_avto_min</td>
<td>Time to the railroad station (avto)</td>
</tr>
<tr>
<td>public_transport_station_min_walk</td>
<td>Time to the public transport station (walk)</td>
</tr>
<tr>
<td>water_km</td>
<td>Distance to the water reservoir / river</td>
</tr>
<tr>
<td>mkad_km</td>
<td>Distance to MKAD (Moscow Circle Auto Road)</td>
</tr>
<tr>
<td>big_road1_km</td>
<td>Distance to Nearest major road</td>
</tr>
<tr>
<td>big_road2_km</td>
<td>The distance to next distant major road</td>
</tr>
<tr>
<td>railroad_km</td>
<td>Distance to the railway / Moscow Central Ring / open areas Underground</td>
</tr>
<tr>
<td>bus_terminal_avto_km</td>
<td>Distance to bus terminal (avto)</td>
</tr>
<tr>
<td>oil_chemistry_km</td>
<td>Distance to dirty industries</td>
</tr>
<tr>
<td>nuclear_reactor_km</td>
<td>Distance to nuclear reactor</td>
</tr>
<tr>
<td>radiation_km</td>
<td>Distance to burial of radioactive waste</td>
</tr>
<tr>
<td>power_transmission_line_km</td>
<td>Distance to power transmission line</td>
</tr>
<tr>
<td>thermal_power_plant_km</td>
<td>Distance to thermal power plant</td>
</tr>
<tr>
<td>ts_km</td>
<td>Distance to power station</td>
</tr>
<tr>
<td>big_market_km</td>
<td>Distance to grocery / wholesale markets</td>
</tr>
<tr>
<td>market_shop_km</td>
<td>Distance to markets and department stores</td>
</tr>
<tr>
<td>fitness_km</td>
<td>Distance to fitness</td>
</tr>
<tr>
<td>swim_pool_km</td>
<td>Distance to swimming pool</td>
</tr>
<tr>
<td>ice_rink_km</td>
<td>Distance to ice palace</td>
</tr>
<tr>
<td>stadium_km</td>
<td>Distance to stadium</td>
</tr>
<tr>
<td>basketball_km</td>
<td>Distance to the basketball courts</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>hospice_morgue_km</td>
<td>Distance to hospice/morgue</td>
</tr>
<tr>
<td>detention_facility_km</td>
<td>Distance to detention facility</td>
</tr>
<tr>
<td>public_healthcare_km</td>
<td>Distance to public healthcare</td>
</tr>
<tr>
<td>university_km</td>
<td>Distance to universities</td>
</tr>
<tr>
<td>workplaces_km</td>
<td>Distance to workplaces</td>
</tr>
<tr>
<td>shopping_centers_km</td>
<td>Distance to shopping centers</td>
</tr>
<tr>
<td>office_km</td>
<td>Distance to business centers/offices</td>
</tr>
<tr>
<td>additional_education_km</td>
<td>Distance to additional education</td>
</tr>
<tr>
<td>preschool_km</td>
<td>Distance to preschool education organizations</td>
</tr>
<tr>
<td>big_church_km</td>
<td>Distance to large church</td>
</tr>
<tr>
<td>church_synagogue_km</td>
<td>Distance to Christian churches and Synagogues</td>
</tr>
<tr>
<td>mosque_km</td>
<td>Distance to mosques</td>
</tr>
<tr>
<td>theater_km</td>
<td>Distance to theater</td>
</tr>
<tr>
<td>museum_km</td>
<td>Distance to museums</td>
</tr>
<tr>
<td>exhibition_km</td>
<td>Distance to exhibition</td>
</tr>
<tr>
<td>catering_km</td>
<td>Distance to catering</td>
</tr>
<tr>
<td>green_part_500</td>
<td>The share of green zones in 500 meters zone</td>
</tr>
<tr>
<td>prom_part_500</td>
<td>The share of industrial zones in 500 meters zone</td>
</tr>
<tr>
<td>office_count_500</td>
<td>The number of office space in 500 meters zone</td>
</tr>
<tr>
<td>office_sqm_500</td>
<td>The square of office space in 500 meters zone</td>
</tr>
<tr>
<td>trc_count_500</td>
<td>The number of shopping malls in 500 meters zone</td>
</tr>
<tr>
<td>trc_sqm_500</td>
<td>The square of shopping malls in 500 meters zone</td>
</tr>
<tr>
<td>cafe_count_500_naprice</td>
<td>Cafes and restaurant bill N/A in 500 meters zone</td>
</tr>
<tr>
<td>cafe_count_500_price_500</td>
<td>Cafes and restaurant bill, average under 500 in 500 meters zone</td>
</tr>
<tr>
<td>cafe_count_500_price_1000</td>
<td>Cafes and restaurant bill, average 500-1000 in 500 meters zone</td>
</tr>
<tr>
<td>cafe_count_500_price_1500</td>
<td>Cafes and restaurant bill, average 1000-1500 in 500 meters zone</td>
</tr>
<tr>
<td>cafe_count_500_price_2500</td>
<td>Cafes and restaurant bill, average 1500-2500 in 500 meters zone</td>
</tr>
<tr>
<td>cafe_count_500_price_4000</td>
<td>Cafes and restaurant bill, average 2500-4000 in 500 meters zone</td>
</tr>
<tr>
<td>cafe_count_500_price_high</td>
<td>Cafes and restaurant bill, average over 4000 in 500 meters zone</td>
</tr>
<tr>
<td>big_church_count_500</td>
<td>The number of big churches in 500 meters zone</td>
</tr>
<tr>
<td>church_count_500</td>
<td>The number of churches in 500 meters zone</td>
</tr>
<tr>
<td>mosque_count_500</td>
<td>The number of mosques in 500 meters zone</td>
</tr>
<tr>
<td>leisure_count_500</td>
<td>The number of leisure facilities in 500 meters zone</td>
</tr>
<tr>
<td>sport_count_500</td>
<td>The number of sport facilities in 500 meters zone</td>
</tr>
<tr>
<td>market_count_500</td>
<td>The number of markets in 500 meters zone</td>
</tr>
<tr>
<td>green_part_1000</td>
<td>The share of green zones in 1000 meters zone</td>
</tr>
<tr>
<td>prom_part_1000</td>
<td>The share of industrial zones in 1000 meters zone</td>
</tr>
</tbody>
</table>
housing

office_sqm_1000 The square of office space in 1000 meters zone
trc_count_1000 The number of shopping malls in 1000 meters zone
trc_sqm_1000 The square of shopping malls in 1000 meters zone
cafe_count_1000_na_price Cafes and restaurant bill N/A in 1000 meters zone
cafe_count_1000_price_high Cafes and restaurant bill, average over 4000 in 1000 meters zone
big_church_count_1000 The number of big churches in 1000 meters zone
mosque_count_1000 The number of mosques in 1000 meters zone
leisure_count_1000 The number of leisure facilities in 1000 meters zone
sport_count_1000 The number of sport facilities in 1000 meters zone
market_count_1000 The number of markets in 1000 meters zone
green_part_1500 The share of green zones in 1500 meters zone
prom_part_1500 The share of industrial zones in 1500 meters zone
office_sqm_1500 The square of office space in 1500 meters zone
trc_count_1500 The number of shopping malls in 1500 meters zone
trc_sqm_1500 The square of shopping malls in 1500 meters zone
cafe_count_1500_price_high Cafes and restaurant bill, average over 4000 in 1500 meters zone
mosque_count_1500 The number of mosques in 1500 meters zone
sport_count_1500 The number of sport facilities in 1500 meters zone
market_count_1500 The number of markets in 1500 meters zone
green_part_2000 The share of green zones in 2000 meters zone
prom_part_2000 The share of industrial zones in 2000 meters zone
office_sqm_2000 The square of office space in 2000 meters zone
trc_count_2000 The number of shopping malls in 2000 meters zone
trc_sqm_2000 The square of shopping malls in 2000 meters zone
mosque_count_2000 The number of mosques in 2000 meters zone
sport_count_2000 The number of sport facilities in 2000 meters zone
market_count_2000 The number of markets in 2000 meters zone
green_part_3000 The share of green zones in 3000 meters zone
prom_part_3000 The share of industrial zones in 3000 meters zone
office_sqm_3000 The share of office space in 3000 meters zone
trc_count_3000 The number of shopping malls in 3000 meters zone
trc_sqm_3000 The square of shopping malls in 3000 meters zone
mosque_count_3000 The number of mosques in 3000 meters zone
sport_count_3000 The number of sport facilities in 3000 meters zone
market_count_3000 The number of markets in 3000 meters zone
green_part_5000 The share of green zones in 5000 meters zone
prom_part_5000 The share of industrial zones in 5000 meters zone
trc_count_5000 The number of shopping malls in 5000 meters zone
trc_sqm_5000 The square of shopping malls in 5000 meters zone
mosque_count_5000 The number of mosques in 5000 meters zone
sport_count_5000 The number of sport facilities in 5000 meters zone
market_count_5000 The number of markets in 5000 meters zone
price_doc I don't know

Source

www.kaggle.com

Examples

data(housing)
Index

*Topic datasets
 housing, 6
*Topic package
 fasterElasticNet-package, 2

elasticnet, 3
ElasticNetCV, 4

fasterElasticNet
 (fasterElasticNet-package), 2
fasterElasticNet-package, 2

housing, 6