Package ‘fastglm’

October 13, 2022

Type Package

Title Fast and Stable Fitting of Generalized Linear Models using 'RcppEigen'

Version 0.0.3

Maintainer Jared Huling <jaredhuling@gmail.com>

BugReports https://github.com/jaredhuling/fastglm/issues

License GPL (>= 2)

Encoding UTF-8

Imports Rcpp (>= 0.12.13), methods

Depends bigmemory

LinkingTo Rcpp, RcppEigen, BH, bigmemory

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, glm2

VignetteBuilder knitr

NeedsCompilation yes

Author Jared Huling [aut, cre],
 Douglas Bates [cph],
 Dirk Eddelbuettel [cph],
 Romain Francois [cph],
 Yixuan Qiu [cph]

Repository CRAN

Date/Publication 2022-05-23 16:50:02 UTC
\textbf{R topics documented:}

- deviance.fastglm .. 2
- family.fastglm ... 3
- fastglm ... 3
- fastGLMPure .. 5
- logLik.fastglm ... 8
- predict.fastglm ... 8
- print.fastglm ... 9
- residuals.fastglm .. 9
- summary.fastglm .. 10
- \%\%\%.big.matrix,vector-method 11

\textbf{Index}

\begin{center}
\begin{tabular}{ll}
\hline
deviance.fastglm & deviance method for fastglm fitted objects \\
\hline
\end{tabular}
\end{center}

\textbf{Description}

deviance method for fastglm fitted objects

\textbf{Usage}

\begin{verbatim}
S3 method for class 'fastglm'
deviance(object, ...)
\end{verbatim}

\textbf{Arguments}

- \texttt{object} fastglm fitted object
- \texttt{...} not used

\textbf{Value}

The value of the deviance extracted from the object
family.fastglm

family method for fastglm fitted objects

Description

family method for fastglm fitted objects

Usage

```r
## S3 method for class 'fastglm'
family(object, ...)
```

Arguments

- `object`: fastglm fitted object
- `...`: not used

Value

returns the family of the fitted object

fastglm

fast generalized linear model fitting

Description

fast generalized linear model fitting
bigLm default

Usage

```r
fastglm(x, ...)
```

Default S3 method:

```r
fastglm(
  x,
  y,
  family = gaussian(),
  weights = NULL,
  offset = NULL,
  start = NULL,
  etastart = NULL,
  mustart = NULL,
  method = 0L,
  tol = 1e-08,
```
maxit = 100L,

Arguments

x
input model matrix. Must be a matrix object

... not used

y numeric response vector of length nobs.

family a description of the error distribution and link function to be used in the model. For fastglm this can be a character string naming a family function, a family function or the result of a call to a family function. For fastglmPure only the third option is supported. (See family for details of family functions.)

weights an optional vector of 'prior weights' to be used in the fitting process. Should be a numeric vector.

offset this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be a numeric vector of length equal to the number of cases

start starting values for the parameters in the linear predictor.

etastart starting values for the linear predictor.

mustart values for the vector of means.

method an integer scalar with value 0 for the column-pivoted QR decomposition, 1 for the unpivoted QR decomposition, 2 for the LLT Cholesky, or 3 for the LDLT Cholesky

tol threshold tolerance for convergence. Should be a positive real number

maxit maximum number of IRLS iterations. Should be an integer

Value

A list with the elements

coefficients a vector of coefficients

se a vector of the standard errors of the coefficient estimates

rank a scalar denoting the computed rank of the model matrix

df.residual a scalar denoting the degrees of freedom in the model

residuals the vector of residuals

s a numeric scalar - the root mean square for residuals

fitted.values the vector of fitted values
Examples

```r
x <- matrix(rnorm(10000 * 100), ncol = 100)
y <- 1 * (0.25 * x[,1] - 0.25 * x[,3] > rnorm(10000))

system.time(gl1 <- glm.fit(x, y, family = binomial()))

system.time(gf1 <- fastglm(x, y, family = binomial()))

system.time(gf2 <- fastglm(x, y, family = binomial(), method = 1))

system.time(gf3 <- fastglm(x, y, family = binomial(), method = 2))

system.time(gf4 <- fastglm(x, y, family = binomial(), method = 3))

max(abs(coef(gl1) - gf1$coef))
max(abs(coef(gl1) - gf2$coef))
max(abs(coef(gl1) - gf3$coef))
max(abs(coef(gl1) - gf4$coef))
```

```r
## Not run:
nrows <- 50000
ncols <- 50
bkFile <- "bigmat2.bk"
descFile <- "bigmatk2.desc"
bigmat <- filebacked.big.matrix(nrow=nrows, ncol=ncols, type="double",
                                backingfile=bkFile, backingpath=".",
                                descriptorfile=descFile,
                                dimnames=c(NULL,NULL))

for (i in 1:ncols) bigmat[,i] = rnorm(nrows)*i
y <- 1*(rnorm(nrows) + bigmat[,1] > 0)

system.time(gfb1 <- fastglm(bigmat, y, family = binomial(), method = 3))
## End(Not run)
```

Description

fast generalized linear model fitting

Usage

```r
fastglmPure(x,
```
y,
family = gaussian(),
weights = rep(1, NROW(y)),
offset = rep(0, NROW(y)),
start = NULL,
etastart = NULL,
mustart = NULL,
method = 0L,
tol = 1e-07,
maxit = 100L
)

Arguments

x input model matrix. Must be a matrix object
y numeric response vector of length nobs.
family a description of the error distribution and link function to be used in the model.
For fastglmPure this can only be the result of a call to a family function. (See
family for details of family functions.)
weights an optional vector of 'prior weights' to be used in the fitting process. Should be
a numeric vector.
offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be a numeric vector of length equal
to the number of cases
start starting values for the parameters in the linear predictor.
etastart starting values for the linear predictor.
mustart values for the vector of means.
method an integer scalar with value 0 for the column-pivoted QR decomposition, 1
for the unpivoted QR decomposition, 2 for the LLT Cholesky, 3 for the LDLT
Cholesky, 4 for the full pivoted QR decomposition, 5 for the Bidiagonal Divide
and Conquer SVD
tol threshold tolerance for convergence. Should be a positive real number
maxit maximum number of IRLS iterations. Should be an integer

Value

A list with the elements

coefficients a vector of coefficients
se a vector of the standard errors of the coefficient estimates
rank a scalar denoting the computed rank of the model matrix
df.residual a scalar denoting the degrees of freedom in the model
residuals the vector of residuals
s a numeric scalar - the root mean square for residuals
fitted.values the vector of fitted values
Examples

```r
set.seed(1)
x <- matrix(rnorm(1000 * 25), ncol = 25)
etta <- 0.1 + 0.25 * x[,1] - 0.25 * x[,3] + 0.75 * x[,5] -0.35 * x[,6] #0.25 * x[,1] - 0.25 * x[,3]
y <- 1 * (netta > rnorm(1000))

yp <- rpois(1000, netta^2)
yg <- rgamma(1000, exp(netta) * 1.75, 1.75)

# binomial
system.time(gl1 <- glm.fit(x, y, family = binomial()))
system.time(gf1 <- fastglmPure(x, y, family = binomial(), tol = 1e-8))
system.time(gf2 <- fastglmPure(x, y, family = binomial(), method = 1, tol = 1e-8))
system.time(gf3 <- fastglmPure(x, y, family = binomial(), method = 2, tol = 1e-8))
system.time(gf4 <- fastglmPure(x, y, family = binomial(), method = 3, tol = 1e-8))
max(abs(coef(gl1) - gf1$coef))
max(abs(coef(gl1) - gf2$coef))
max(abs(coef(gl1) - gf3$coef))
max(abs(coef(gl1) - gf4$coef))

# poisson
system.time(gl1 <- glm.fit(x, yp, family = poisson(link = "log")))
system.time(gf1 <- fastglmPure(x, yp, family = poisson(link = "log"), tol = 1e-8))
system.time(gf2 <- fastglmPure(x, yp, family = poisson(link = "log"), method = 1, tol = 1e-8))
system.time(gf3 <- fastglmPure(x, yp, family = poisson(link = "log"), method = 2, tol = 1e-8))
system.time(gf4 <- fastglmPure(x, yp, family = poisson(link = "log"), method = 3, tol = 1e-8))
max(abs(coef(gl1) - gf1$coef))
max(abs(coef(gl1) - gf2$coef))
max(abs(coef(gl1) - gf3$coef))
max(abs(coef(gl1) - gf4$coef))

# gamma
system.time(gl1 <- glm.fit(x, yg, family = Gamma(link = "log")))
system.time(gf1 <- fastglmPure(x, yg, family = Gamma(link = "log"), tol = 1e-8))
system.time(gf2 <- fastglmPure(x, yg, family = Gamma(link = "log"), method = 1, tol = 1e-8))
system.time(gf3 <- fastglmPure(x, yg, family = Gamma(link = "log"), method = 2, tol = 1e-8))
system.time(gf4 <- fastglmPure(x, yg, family = Gamma(link = "log"), method = 3, tol = 1e-8))
```
logLik.fastglm

Description

logLik method for fastglm fitted objects

Usage

```r
## S3 method for class 'fastglm'
logLik(object, ...)
```

Arguments

- `object` : fastglm fitted object
- `...` : not used

Value

Returns an object of class `logLik`

predict.fastglm

Description

Obtains predictions and optionally estimates standard errors of those predictions from a fitted generalized linear model object.

Usage

```r
## S3 method for class 'fastglm'
predict(
  object,
  newdata = NULL,
  type = c("link", "response"),
  se.fit = FALSE,
  dispersion = NULL,
  ...)
```
Arguments

object
newdata
type
se.fit
dispersion
...

Arguments

x
...

Description

Description

print.fastglm
print method for fastglm objects

Usage

S3 method for class 'fastglm'
print(x, ...)

Arguments

x
...

Description

residuals.fastglm
residuals method for fastglm fitted objects
Usage

S3 method for class 'fastglm'
residuals(
 object,
 type = c("deviance", "pearson", "working", "response", "partial"),
 ...
)

Arguments

object fastglm fitted object

.type type of residual to be returned

... not used

Value

a vector of residuals

summary.fastglm

summary method for fastglm fitted objects

Description

summary method for fastglm fitted objects

Usage

S3 method for class 'fastglm'
summary(object, dispersion = NULL, ...)

Arguments

object fastglm fitted object
dispersion the dispersion parameter for the family used. Either a single numerical value or NULL (the default), when it is inferred from object.

... not used

Value

a summary.fastglm object
Examples

```r
x <- matrix(rnorm(10000 * 10), ncol = 10)
y <- 1 * (0.25 * x[,1] - 0.25 * x[,3] > rnorm(10000))
fit <- fastglm(x, y, family = binomial())
summary(fit)
```

Description

big.matrix prod

Usage

```r
## S4 method for signature 'big.matrix,vector'
x %*% y
```

```r
## S4 method for signature 'vector, big.matrix'
x %*% y
```

Arguments

- `x` : big.matrix
- `y` : numeric vector
Index

\%
\%\%, vector, big.matrix-method
 (%\%
\%\%, big.matrix, vector-method), 11
\%
\%\%, big.matrix, vector-method, 11

deviance.fastglm, 2

family, 4, 6
family.fastglm, 3
fastglm, 3
fastglmPure, 5

logLik.fastglm, 8

predict.fastglm, 8
print.fastglm, 9

residuals.fastglm, 9

summary.fastglm, 10