Package ‘fastpos’

October 13, 2022

Type Package
Title Finds the Critical Sequential Point of Stability for a Pearson Correlation
Version 0.5.1
Date 2022-08-15
Description Finds the critical sample size ("critical point of stability") for a correlation to stabilize in Schoenbrodt and Perugini’s definition of sequential stability (see <doi:10.1016/j.jrp.2013.05.009>).
License GPL-3
Imports Rcpp, plyr, MASS, lifecycle, tibble, stats, pbmcapply
LinkingTo Rcpp, RcppArmadillo, RcppProgress
URL https://github.com/johannes-titz/fastpos
BugReports https://github.com/johannes-titz/fastpos/issues
Encoding UTF-8
RoxygenNote 7.2.1
Suggests knitr, rmarkdown, testthat (>= 2.1.0), covr, microbenchmark
NeedsCompilation yes
Author Johannes Titz [aut, cre, cph] (<https://orcid.org/0000-0002-1102-5719>)
Maintainer Johannes Titz <johannes.titz@gmail.com>
Repository CRAN
Date/Publication 2022-08-15 18:30:06 UTC

R topics documented:

create_pop ... 2
find_critical_pos .. 2
simulate_pos .. 4

Index 6
create_pop

Creates a population with a specified correlation.

Description

The correlation will be exactly the one specified. The used method is described here: https://stats.stackexchange.com/questions/15011/generate-a-random-variable-with-a-defined-correlation-to-an-existing-variables/15040#15040

Usage

```r
create_pop(rho, size)
```

Arguments

- `rho`
 Population correlation.
- `size`
 Population size.

Value

Two-dimensional population matrix with a specific correlation.

Examples

```r
pop <- create_pop(rho = 0.5, size = 1e6)
cor(pop)
```

find_critical_pos

Find the critical point of stability

Description

Run simulations for one or several population correlations and return the critical points of stability (POS). The critical point of stability is the sample size at which a certain percentage of studies will fall into an a priori specified interval and stay in this interval if the sample size is increased further.

Usage

```r
find_critical_pos(  
  rho,  
  precision_absolute = 0.1,  
  confidence_levels = c(0.8, 0.9, 0.95),  
  sample_size_min = 20,  
  sample_size_max = 1000,  
  n_studies = 10000,  
  n_cores = 1,  
  pop_size = 1e+06,
```

replace = TRUE,
precision_relative = NA,
lower_limit = NA,
upper_limit = NA,
progress = show_progress(),
precision = lifecycle::deprecated(),
precision_rel = lifecycle::deprecated(),
rhos = lifecycle::deprecated()
)

Arguments
rho Vector of population correlations (can also be a single correlation).

precision_absolute
 Precision around the correlation which is acceptable (defaults to 0.1). The pre-
 cision will determine the corridor of stability which is just rho+-precision. Can
 be a single value or a vector (different values for different rhos).

confidence_levels
 Confidence levels for point of stability. This corresponds to the quantile of the
distribution of all found critical sample sizes (defaults to c(.8, .9, .95)). A single
value can also be used. Note that this value is fixed for all rhos! You cannot
specify different levels for different rhos.

sample_size_min
 Minimum sample size for each study (defaults to 20). A vector can be used
(different values for different rhos).

sample_size_max
 Maximum sample size for each study (defaults to 1e3). A vector can be used
(different values for different rhos). If you get a warning that the corridor of
stability was not reached, you should increase this value. But note that this will
increase the time for the simulation.

n_studies
 Number of studies to run for each rho (defaults to 1e4). A vector can be used
(different values for different rhos).

n_cores
 Number of cores to use for simulation. Defaults to 1. Under Windows only 1
core is supported because forking is used.

pop_size
 Population size (defaults to 1e6). This is the size of the population from which
value pairs for correlations are drawn. This value should usually not be de-
creased as it can lead to less accurate results.

replace
 Whether drawing samples is with replacement or not. Default is TRUE, which
usually should not be changed. This parameter is mainly of interest for re-
searchers studying the method in more detail. A vector can be used (different
values for different rhos).

precision_relative
 Relative precision around the correlation (rho+-rho*precision), if set, it will
overwrite precision_absolute. A vector can be used (different values for dif-
ferent rhos).

lower_limit
 Lower limit of corridor, overrides precision parameters. A vector can be used
(different values for different rhos). If used, upper_limit must also be set.
simulate_pos

upper_limit Upper limit of corridor, overrides precision parameters. A vector can be used (different values for different rhos). If used, lower_limit must also be set.

progress Should progress bar be displayed? Logical, default is to show progress when run in interactive mode.

precision Deprecated, use precision_absolute instead

precision_rel Deprecated, use precision_relative instead

rhos Deprecated, use rho instead

Value

A data frame containing all the above information, as well as the critical points of stability.

The critical points of stability follow directly after the first column (rho) and are named pos.confidence-level, e.g. pos.80, pos.90, pos.95 for the default confidence levels.

Examples

find_critical_pos(rho = 0.5, n_studies = 1e3)
find_critical_pos(rho = c(0.4, 0.5), n_studies = 1e3)

simulate_pos Simulate several points of stability

Description

Runs several simulations and returns the points of stability, which can then be further processed to calculate the critical point of stability. This function should only be used if you need the specific points of stability. For instance, if you want to study the method in more detail and the higher level functions are not sufficient.

Usage

simulate_pos(
 x_pop,
 y_pop,
 n_studies,
 sample_size_min,
 sample_size_max,
 replace,
 lower_limit,
 upper_limit,
 progress
)
simulate_pos

Arguments

- **x_pop**: First vector of population.
- **y_pop**: Second vector of population.
- **n_studies**: How many studies to conduct.
- **sample_size_min**: Minimum sample size to start in corridor of stability.
- **sample_size_max**: How many participants to draw at maximum.
- **replace**: Whether drawing samples is with replacement or not.
- **lower_limit**: Lower limit of corridor of stability.
- **upper_limit**: Upper limit of corridor of stability.
- **progress**: Should progress bar be displayed? Boolean, default is FALSE.

Details

If you just want to calculate a quantile of the distribution, use the main function of the package `find_critical_pos()`.

Value

Vector of sample sizes at which corridor of stability was reached.

Examples

```r
# set up a population
pop <- fastpos::create_pop(rho = 0.5, size = 1e6)
# create a distribution of points of stability
pos <- simulate_pos(x_pop = pop[,1], y_pop = pop[,2], n_studies = 100,
                     sample_size_min = 20, sample_size_max = 1e3,
                     replace = TRUE, lower_limit = 0.4, upper_limit = 0.6,
                     progress = TRUE)
# calculate quantiles or any other parameter of the distribution
quantile(pos, c(.8, .9, .95))
```
Index

create_pop, 2
find_critical_pos, 2
find_critical_pos(), 5
simulate_pos, 4