Package ‘fastpos’
February 17, 2020

Type Package
Title Finds the Critical Sequential Point of Stability for a Pearson Correlation
Version 0.3.0
Date 2020-02-12
Description Finds the critical sample size ("critical point of stability") for a correlation to stabilize in Schoenbrodt and Perugini's definition of sequential stability (see <doi:10.1016/j.jrp.2013.05.009>).
License GPL-3
Imports Rcpp (>= 1.0.1), plyr, MASS
LinkingTo Rcpp, RcppArmadillo, RcppProgress
URL https://github.com/johannes-titz/fastpos
BugReports https://github.com/johannes-titz/fastpos/issues
Encoding UTF-8
RoxygenNote 7.0.2
Suggests knitr, rmarkdown, testthat (>= 2.1.0), covr
VignetteBuilder knitr
NeedsCompilation yes
Author Johannes Titz [aut, cre, cph]
Maintainer Johannes Titz <johannes.titz@gmail.com>
Repository CRAN
Date/Publication 2020-02-17 10:30:02 UTC

R topics documented:

 create_pop .. 2
 find_critical_pos ... 2
 simulate_pos ... 3

Index 5

create_pop

Creates a population with a specified correlation.

Description

The correlation will be exactly the one specified. The used method is described here: https://stats.stackexchange.com/questions/15011/generate-a-random-variable-with-a-defined-correlation-to-an-existing-variables/15040#15040

Usage

```r
create_pop(rho, size)
```

Arguments

- **rho**: Population correlation.
- **size**: Population size.

Value

Two-dimensional population matrix with a specific correlation.

Examples

```r
pop <- create_pop(0.5, 100000)
cor(pop)
```

find_critical_pos

Find the critical point of stability

Description

Run simulations for one or several population correlations and return the critical points of stability (POS). The critical point of stability is the sample size at which a certain percentage of studies will fall into an a priori specified interval and stay in this interval if the sample size is increased further.

Usage

```r
find_critical_pos(
    rhos,
    precision = 0.1,
    precision_rel = FALSE,
    sample_size_min = 20,
    sample_size_max = 1000,
    n_studies = 10000,
    confidence_levels = c(0.8, 0.9, 0.95),
    pop_size = 1e+06
)
```
simulate_pos

Arguments

- **rhos** Vector of population correlations (can also be a single correlation).
- **precision** Precision around the correlation which is acceptable (defaults to 0.1). The precision will determine the corridor of stability which is just rho+-precision.
- **precision_rel** Whether the precision is absolute (rho+-precision or relative rho+-rho*precision), boolean (defaults to FALSE).
- **sample_size_min** Minimum sample size for each study (defaults to 20).
- **sample_size_max** Maximum sample size for each study (defaults to 1e3).
- **n_studies** Number of studies to run for each rho (defaults to 10e3).
- **confidence_levels** Confidence levels for point of stability. This corresponds to the quantile of the distribution of all found critical sample sizes (defaults to c(.8, .9, .95)).
- **pop_size** Population size (defaults to 1e6).

Value

A data frame containing all the above information, as well as the points of stability.

Examples

```r
find_critical_pos(rhos = 0.5)
find_critical_pos(rhos = c(0.4, 0.5), n_studies = 1e3)
```

simulate_pos

Simulate several points of stability

Description

Runs several simulations and returns the points of stability, which can then be further processed to calculate the critical point of stability.

Usage

```r
simulate_pos(
  x_pop,
  y_pop,
  n_studies,
  sample_size_min,
  sample_size_max,
  replace,
  lower_limit,
  upper_limit
)
```
simulate_pos

Arguments

- `x_pop`
 First vector of population.
- `y_pop`
 Second vector of population.
- `n_studies`
 How many studies to conduct.
- `sample_size_min`
 Minimum sample size to start in corridor of stability.
- `sample_size_max`
 How many participants to draw at maximum.
- `replace`
 Whether drawing samples is with replacement or not.
- `lower_limit`
 Lower limit of corridor of stability.
- `upper_limit`
 Upper limit of corridor of stability.

Value

Vector of sample sizes at which corridor of stability was reached.

Examples

```r
pop <- fastpos::create_pop(0.5, 1000000)
simulate_pos(pop[,1], pop[,2], 100, 20, 1000, TRUE, 0.4, 0.6)
```
Index

create_pop, 2
find_critical_pos, 2
simulate_pos, 3