Package ‘fclust’

October 15, 2018

Type Package

Title Fuzzy Clustering

Version 2.0

Date 2018-10-15

Author Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

Maintainer Paolo Giordani <paolo.giordani@uniroma1.it>

Description Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visualizing fuzzy clustering results.

Depends R (>= 3.3), base, stats, graphics, grDevices, utils

Imports Rcpp (>= 0.12.5), MASS (>= 7.3), cluster

LinkingTo Rcpp, RcppArmadillo (>= 0.7)

License GPL (>= 2)

ByteCompile true

Repository CRAN

NeedsCompilation yes

LazyLoad yes

Encoding UTF-8

Date/Publication 2018-10-15 18:10:03 UTC

R topics documented:

- ARI.F .. 3
- butterfly .. 4
- cl.memb .. 5
- cl.memb.H ... 6
- cl.memb.t .. 7
- cl.size .. 8
- cl.size.H .. 9
- Fclust .. 10
- Fclust.compare 11
R topics documented:

- Fclust.index ... 12
- FKM ... 13
- FKM.ent ... 15
- FKM.ent.noise .. 18
- FKM.gk ... 20
- FKM.gk.ent .. 22
- FKM.gk.ent.noise ... 25
- FKM.gk.noise ... 27
- FKM.gkb ... 29
- FKM.gkb.ent .. 32
- FKM.gkb.ent.noise .. 34
- FKM.gkb.noise ... 37
- FKM.med .. 39
- FKM.med.noise ... 41
- FKM.noise .. 43
- FKM.pf ... 46
- FKM.pf.noise .. 48
- houseVotes .. 50
- Hraw ... 51
- JACCARD.F .. 52
- Mc ... 54
- MPC ... 55
- NBA ... 57
- NEFRC .. 58
- NEFRC.noise ... 60
- PC ... 62
- PE ... 63
- plot.fclust .. 64
- print.fclust .. 65
- RI.F ... 66
- SIL ... 67
- SIL.F ... 69
- summary.fclust .. 70
- synt.data .. 71
- synt.data2 ... 72
- unemployment ... 73
- VAT ... 74
- VCV ... 75
- VCV2 ... 76
- VIFCR .. 78
- XB ... 79

Index 81
ARI.F

Fuzzy adjusted Rand index

Description

Produces the fuzzy version of the adjusted Rand index between a hard (reference) partition and a fuzzy partition.

Usage

ARI.F(parthard, partfuzzy, t_norm)

Arguments

parthard (Reference) partition matrix or data.frame
partfuzzy Fuzzy membership degree matrix or data.frame
t_norm Type of the triangular norm: "minimum" (minimum triangular norm), "triangular product" (product norm) (default: "minimum")

Details

parthard and partfuzzy must have the same number of rows, but, not necessarily, the same number of columns (i.e., the same number of clusters in the two partitions).

Value

ari.f Value of the fuzzy adjusted Rand index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

RI.F, JACCARD.F, Fclust.compare
Examples

```r
## Not run:
require("mclust")
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
    Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## fuzzy adjusted Rand index
classTrue=unmap(classification=Mc$Type)
classEst=unmap(classification=clust$clus[,1])
ari.F=ARI.F(partHard=classTrue,partFuzzy=classEst)
## End(Not run)
```

butterfly

Butterfly data

Description

Synthetic dataset with 2 clusters and some outliers.

Usage

data(butterfly)

Format

A matrix with 17 rows and 2 columns.

Details

The butterfly data motivate the need for the fuzzy approach to clustering. The presence of outliers can be handled using fuzzy k-means with noise cluster. In fact, differently from fuzzy k-means, the membership degrees of the outliers are low for all the clusters.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

`Fclust, FKM, FKM.noise`
Examples

```r
## butterfly data
data(butterfly)
plot(butterfly,type='n')
text(butterfly[,1],butterfly[,2],labels=rownames(butterfly),cex=0.7,lwd=2)
## membership degree matrix using fuzzy k-means (rounded)
round(FKM(butterfly)$U,2)
## membership degree matrix using fuzzy k-means with noise cluster (rounded)
round(FKM.noise(butterfly,delta=3)$U,2)
```

cl.memb

Cluster membership

Description

Produces a summary of the membership degree information.

Usage

```r
cl.memb (U)
```

Arguments

- **U** Membership degree matrix

Details

An object is assigned to a cluster according to the maximal membership degree. Therefore, it produces the closest hard clustering partition

Value

- **info.U** Matrix containing the indices of the clusters where the objects are assigned (row 1) and the associated membership degrees (row 2)

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

- `cl.memb.H`, `cl.memb.t`
Examples

```r
n=20
k=3  
## randomly generated membership degree matrix  
U=matrix(runif(n*k,0,1), nrow=n, ncol=k)  
U=U/apply(U,1,sum)  
info.U=cl memb(U)  
## objects assigned to cluster 2  
rownames(info.U[info.U[,1]==2,])
```

cl. memb.H

Cluster membership

Description

Produces a summary of the membership degree information in the hard clustering sense (objects are considered to be assigned to clusters only if the corresponding membership degree are >=0.5).

Usage

```r
cl. memb.H (U)
```

Arguments

- **U**
 - Membership degree matrix

Details

An object is assigned to a cluster according to the maximal membership degree provided that such a maximal membership degree is >=0.5, otherwise it is assumed that an object is not assigned to any cluster (denoted by cluster index = 0 in row 1).

Value

- **info.U**
 - Matrix containing the indices of the clusters where the objects are assigned (row 1) and the associated membership degrees (row 2)

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

`cl. memb`, `cl. memb.t`
Examples

n=20
k=3
randomly generated membership degree matrix
U=matrix(runif(n*k,0,1), nrow=n, ncol=k)
U=U/apply(U,1,sum)
info.U=cl.memb.H(U)
objects assigned to clusters in the hard clustering sense
rownames(info.U[info.U[,1]!=0,])

cl.memb.t Cluster membership

Description

Produces a summary of the membership degree information according to a threshold.

Usage

cl.memb.t (U, t)

Arguments

U Membership degree matrix

Arguments

U Membership degree matrix

t Threshold in [0,1] (default: 0)

Details

An object is assigned to a cluster according to the maximal membership degree provided that such a maximal membership degree is >= t. otherwise it is assumed that an object is not assigned to any cluster (denoted by cluster index = 0 in row 1). The function can be useful to select the subset of objects clearly assigned to clusters (objects with maximal membership degrees >= t).

Value

info.U Matrix containing the indices of the clusters where the objects are assigned (row 1) and the associated membership degrees (row 2)

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

c1.memb, cl.memb.H
Examples

n=20
k=3
randomly generated membership degree matrix
U=matrix(runif(n*k,0,1), nrow=n, ncol=k)
U=U/apply(U,1,sum)
threshold t=0.6
info.U=cl.memb.t(U,0.6)
objects clearly assigned to clusters
rownames(info.U[info.U[,1]!=0,])

cl.size

Description

Produces the sizes of the clusters.

Usage

cl.size (U)

Arguments

U Membership degree matrix

Details

An object is assigned to a cluster according to the maximal membership degree.

Value

clus.size Vector containing the sizes of the clusters

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

cl.size.H

Examples

n=20
k=3
randomly generated membership degree matrix
U=matrix(runif(n*k,0,1), nrow=n, ncol=k)
U=U/apply(U,1,sum)
clus.size=cl.size(U)
Description

Produces the sizes of the clusters in the hard clustering sense (objects are considered to be assigned to clusters only if the corresponding membership degree are >=0.5).

Usage

```r
cl.size.H (U)
```

Arguments

- `U` Membership degree matrix

Details

An object is assigned to a cluster according to the maximal membership degree provided that such a maximal membership degree is >=0.5, otherwise it is assumed that an object is not assigned to any cluster.

Value

- `clus.size` Vector containing the sizes of the clusters

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

- `cl.size`

Examples

```r
n=20
k=3
## randomly generated membership degree matrix
U=matrix(rnorm(n*k,0,1), nrow=n, ncol=k)
U=U/apply(U,1,sum)
## cluster size in the hard clustering sense
clus.size=cl.size.H(U)
```
Description

Performs a fuzzy clustering analysis using the algorithms available in the package.

Usage

\texttt{fclust (X)}

Arguments

\texttt{X} \hspace{1cm} \text{Matrix or data.frame}

Value

\texttt{clust} \hspace{1cm} \text{Object of class fclust}

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

\texttt{print.fclust, summary.fclust, plot.fclust, FKM, FKM.ent, FKM.gk, FKM.gk.ent, FKM.gkb, FKM.gkb.ent, FKM.med, FKM.pf, FKM.noise, FKM.ent.noise, FKM.gk.noise, FKM.gkb.ent.noise, FKM.gkb.noise, FKM.gk.ent.noise, FKM.med.noise, FKM.pf.noise, Fclust.index, Mc}

Examples

```r
## Not run:
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
  Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## interactive fuzzy clustering
## (excluded the factor column Type (last column))
#clust=fclust(Mc[,-1:(ncol(Mc)-1)])
## End(Not run)
```
Fclust.compare

Similarity between partitions

Description

Performs some measures of similarity between a hard (reference) partition and a fuzzy partition.

Usage

```r
Fclust.compare(partHard, partFuzzy, index, tnorm)
```

Arguments

- `partHard` (Reference) partition matrix or data.frame
- `partFuzzy` Fuzzy membership degree matrix or data.frame
- `index` Measures of similarity: "ARI.F" (fuzzy version of the adjuster Rand index), "RLF" (fuzzy version of the Rand index), "JACCARD.F" (fuzzy version of the Jaccard index), "ALL" for all the indices (default: "ALL")
- `tnorm` Type of the triangular norm: "minimum" (minimum triangular norm), "triangular product" (product norm) (default: "minimum")

Details

`partHard` and `partFuzzy` must have the same number of rows, but, not necessarily, the same number of columns (i.e., the same number of clusters in the two partitions).

`index` is not case-sensitive.

All the measures of similarity share the same properties of their non-fuzzy counterpart.

Value

- `outNindex` Vector containing the similarity measures

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

RI.F, ARI.F, JACCARD.F

Examples

Not run:
require("mclust")
McDonald's data
data(Mc)
names(Mc)
data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
 Mc[,j]=Mc[,j]/Mc[,1]
removing the column Serving Size
Mc=Mc[,-1]
fuzzy k-means
(excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
all measures of similarity
classTrue=unmap(classification=Mc$Type)
classEst=unmap(classification=clust$clus[,1])
all.indexes=Fclust.compare(partHard=classTrue,partFuzzy=classEst)
fuzzy adjusted Rand index
Fari.index=Fclust.compare(partHard=classTrue,partFuzzy=classEst,index="ARI.F")

End(Not run)

Fclust.index

Cluster validity indices

Description

Performs some cluster validity indices for choosing the optimal number of cluster \(k \).

Usage

Fclust.index (fclust.obj, index, alpha)

Arguments

- **fclust.obj**: Object of class fclust
- **index**: Cluster validity indices to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni), ALL for all the indices (default: "ALL")
- **alpha**: Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
Details

index is not case-sensitive.

Value

out.index Vector containing the index values

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

PC, PE, MPC, SIL, SILF, XB, Fclust, Mc

Examples

```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
    Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## cluster validity indexes
all.indexes=Fclust.index(clust)
## Xie and Beni cluster validity index
XB.index=Fclust.index(clust,'XB')
```

Description

Performs the fuzzy k-means clustering algorithm.

Usage

```r
FKM (X, k, m, RS, stand, startU, index, alpha, conv, maxit, seed)
```
FKM

Arguments

- **X**: Matrix or data.frame
- **k**: An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- **m**: Parameter of fuzziness (default: 2)
- **RS**: Number of (random) starts (default: 1)
- **stand**: Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
- **startU**: Rational starting point for the membership degree matrix U (default: no rational start)
- **index**: Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
- **alpha**: Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
- **conv**: Convergence criterion (default: 1e-9)
- **maxit**: Maximum number of iterations (default: 1e+6)
- **seed**: Seed value for random number generation (default: NULL)

Details

If `startU` is given, the argument `k` is ignored (the number of clusters is `ncol(startU)`).
If `startU` is given, the first element of `value`, `cput` and `iter` refer to the rational starting point.

Value

Object of class `fclust`, which is a list with the following components:

- **U**: Membership degree matrix
- **H**: Prototype matrix
- **F**: Array containing the covariance matrices of all the clusters (NULL for FKM)
- **clus**: Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
- **medoid**: Vector containing the indices of the medoid objects (NULL for FKM)
- **value**: Vector containing the loss function values for the RS starts
- **criterion**: Vector containing the values of clustering index
- **iter**: Vector containing the numbers of iterations for the RS starts
- **k**: Number of clusters
- **m**: Parameter of fuzziness
- **ent**: Degree of fuzzy entropy (NULL for FKM)
- **b**: Parameter of the polynomial fuzzifier (NULL for FKM)
- **vp**: Volume parameter (NULL for FKM)
- **delta**: Noise distance (NULL for FKM)
FKM.ent

Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also
FKM.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, Mc

Examples

```r
# McDonald's data
data(Mc)
names(Mc)
# data normalization by dividing the nutrition facts by the Servings Size (column 1)
for (j in 2:(ncol(Mc)-1))
  Mc[,j]=Mc[,j]/Mc[,1]
# removing the column Serving Size
Mc=Mc[,-1]
# fuzzy k-means (excluded the factor column Type (last column)), fixing the number of clusters
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
# fuzzy k-means (excluded the factor column Type (last column)), selecting the number of clusters
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=2:6,m=1.5,stand=1)
```

Description

Performs the fuzzy \(k\)-means clustering algorithm with entropy regularization. The entropy regularization allows us to avoid using the artificial fuzziness parameter \(m\). This is replaced by the degree of fuzzy entropy \(\text{ent}\), related to the concept of temperature in statistical physics. An interesting property of the fuzzy \(k\)-means with entropy regularization is that the prototypes are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of \(m\) as is for the fuzzy \(k\)-means).
Usage

```
FKM.ent (X, k, ent, RS, stand, startU, index, alpha, conv, maxit, seed)
```

Arguments

- **X**: Matrix or data.frame
- **k**: An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- **ent**: Degree of fuzzy entropy (default: 1)
- **RS**: Number of (random) starts (default: 1)
- **stand**: Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
- **startU**: Rational starting point for the membership degree matrix u (default: no rational start)
- **index**: Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
- **alpha**: Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
- **conv**: Convergence criterion (default: 1e-9)
- **maxit**: Maximum number of iterations (default: 1e+6)
- **seed**: Seed value for random number generation (default: NULL)

Details

- If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).
- If startU is given, the first element of value, cput and iter refer to the rational starting point.
- The default value for ent is in general not reasonable if FKM.ent is run using raw data.
- The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.ent using standardized data (stand=1).

Value

Object of class fclust, which is a list with the following components:

- **U**: Membership degree matrix
- **H**: Prototype matrix
- **F**: Array containing the covariance matrices of all the clusters (NULL for FKM.ent)
- **clus**: Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
- **medoid**: Vector containing the indices of the medoid objects (NULL for FKM.ent)
- **value**: Vector containing the loss function values for the RS starts
- **criterion**: Vector containing the values of clustering index
iter Vector containing the numbers of iterations for the RS starts
k Number of clusters
m Parameter of fuzziness (NULL for FKM. ent)
ent Degree of fuzzy entropy
b Parameter of the polynomial fuzzifier (NULL for FKM. ent)
vp Volume parameter (NULL for FKM. ent)
delta Noise distance (NULL for FKM. ent)
gam Weighting parameter for the fuzzy covariance matrices (NULL for FKM. ent)
mcn Maximum condition number for the fuzzy covariance matrices (NULL for FKM. ent)
stand Standardization (Yes if stand=1, No if stand=0)
xca Data used in the clustering algorithm (standardized data if stand=1)
x Raw data
D Dissimilarity matrix (NULL for FKM. ent)
call Matched call

Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also
FKM.ent.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, Mc

Examples
McDonald's data
data(Mc)
names(Mc)
data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
 Mc[,j]=Mc[,j]/Mc[,1]
removing the column Serving Size
Mc=Mc[,-1]
fuzzy k-means with entropy regularization, fixing the number of clusters
(excluded the factor column Type (last column))
clust=FKM.ent(Mc[,1:(ncol(Mc)-1)], k=6, ent=3, RS=10, stand=1)
fuzzy k-means with entropy regularization, selecting the number of clusters
(excluded the factor column Type (last column))
clust=FKM.ent(Mc[,1:(ncol(Mc)-1)], k=2:6, ent=3, RS=10, stand=1)
Description

Performs the fuzzy k-means clustering algorithm with entropy regularization and noise cluster. The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy ent, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the prototypes are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means).

The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

```
fkm.ent.noise (X, k, ent, delta, RS, stand, startU, index, alpha, conv, maxit, seed)
```

Arguments

- **X**: Matrix or data.frame
- **k**: An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- **ent**: Degree of fuzzy entropy (default: 1)
- **delta**: Noise distance (default: average squared Euclidean distance between objects and prototypes from FKM.ent using the same values of k and m)
- **RS**: Number of (random) starts (default: 1)
- **stand**: Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
- **startU**: Rational starting point for the membership degree matrix U (default: no rational start)
- **index**: Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPCI (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
- **alpha**: Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
- **conv**: Convergence criterion (default: 1e-9)
- **maxit**: Maximum number of iterations (default: 1e+6)
- **seed**: Seed value for random number generation (default: NULL)
Details

If startU is given, the argument \(k \) is ignored (the number of clusters is \(ncol(startU) \)). If startU is given, the first element of value, cput and iter refer to the rational starting point. The default value for ent is in general not reasonable if FKM.ent is run using raw data. The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.ent using standardized data (stand=1).

Value

Object of class fclust, which is a list with the following components:

- \(U \) Membership degree matrix
- \(H \) Prototype matrix
- \(F \) Array containing the covariance matrices of all the clusters (NULL for FKM.ent.noise)
- \(clus \) Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
- \(medoid \) Vector containing the indices of the medoid objects (NULL for FKM.ent.noise)
- \(value \) Vector containing the loss function values for the RS starts
- \(criterion \) Vector containing the values of clustering index
- \(iter \) Vector containing the numbers of iterations for the RS starts
- \(k \) Number of clusters
- \(m \) Parameter of fuzziness (NULL for FKM.ent.noise)
- \(ent \) Degree of fuzzy entropy
- \(b \) Parameter of the polynomial fuzzifier (NULL for FKM.ent.noise)
- \(vp \) Volume parameter (NULL for FKM.ent.noise)
- \(delta \) Noise distance
- \(gam \) Weighting parameter for the fuzzy covariance matrices (NULL for FKM.ent.noise)
- \(mcn \) Maximum condition number for the fuzzy covariance matrices (NULL for FKM.ent.noise)
- \(stand \) Standardization (Yes if stand=1, No if stand=0)
- \(Xca \) Data used in the clustering algorithm (standardized data if stand=1)
- \(X \) Raw data
- \(D \) Dissimilarity matrix (NULL for FKM.ent.noise)
- \(call \) Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
References

See Also

FKM.ent, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, butterfly

Examples

```r
## butterfly data
data(butterfly)
## fuzzy k-means with entropy regularization and noise cluster, fixing the number of clusters
clust<-=FKM.ent.noise(butterfly,k = 2, RS=5,delta=3)
## fuzzy k-means with entropy regularization and noise cluster, selecting the number of clusters
clust<-=FKM.ent.noise(butterfly,RS=5,delta=3)
```

Description

Performs the Gustafson and Kessel - like fuzzy k-means clustering algorithm. Differently from fuzzy k-means, it is able to discover non-spherical clusters.

Usage

FKM.gk (X, k, m, vp, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

- `X` Matrix or data.frame
- `k` An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- `m` Parameter of fuzziness (default: 2)
- `vp` Volume parameter (default: rep(1,k))
- `RS` Number of (random) starts (default: 1)
- `stand` Standardization: if `stand`=1, the clustering algorithm is run using standardized data (default: no standardization)
- `startU` Rational starting point for the membership degree matrix U (default: no rational start)
Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")

Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)

Convergence criterion (default: 1e-9)

Maximum number of iterations (default: 1e+6)

Seed value for random number generation (default: NULL)

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).
If startU is given, the first element of value, cput and iter refer to the rational starting point.
If a cluster covariance matrix becomes singular, then the algorithm stops and the element of value is NaN.
The Babuska et al. variant in FKM.gk is recommended.

Object of class fclust, which is a list with the following components:

- **u**: Membership degree matrix
- **h**: Prototype matrix
- **f**: Array containing the covariance matrices of all the clusters
- **clus**: Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
- **medoid**: Vector containing the indices of the medoid objects (NULL for FKM.gk)
- **value**: Vector containing the loss function values for the RS starts
- **criterion**: Vector containing the values of clustering index
- **iter**: Vector containing the numbers of iterations for the RS starts
- **k**: Number of clusters
- **m**: Parameter of fuzziness
- **ent**: Degree of fuzzy entropy (NULL for FKM.gk)
- **b**: Parameter of the polynomial fuzzifier (NULL for FKM.gk)
- **vp**: Volume parameter (default: rep(1, max(k))). If k is a vector, for each group the first k element of vp are considered.
- **delta**: Noise distance (NULL for FKM.gk)
- **gam**: Weighting parameter for the fuzzy covariance matrices (NULL for FKM.gk)
- **mcn**: Maximum condition number for the fuzzy covariance matrices (NULL for FKM.gk)
- **stand**: Standardization (Yes if stand=1, No if stand=0)
- **Xca**: Data used in the clustering algorithm (standardized data if stand=1)
- **X**: Raw data
- **D**: Dissimilarity matrix (NULL for FKM.gk)
- **call**: Matched call
Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

FKM.gkb, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

Examples

```r
## Not run:
## unemployment data
data(unemployment)
## Gustafson and Kessel-like fuzzy k-means, fixing the number of clusters
clust = FKM.gk(unemployment, k=3, RS=10)
## Gustafson and Kessel-like fuzzy k-means, selecting the number of clusters
clust = FKM.gk(unemployment, k=2:6, RS=10)
## End(Not run)
```

Description

Performs the Gustafson and Kessel - like fuzzy k-means clustering algorithm with entropy regularization. Differently from fuzzy k-means, it is able to discover non-spherical clusters. The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy ent, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the prototypes are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means).

Usage

```r
FKM.gk.ent (X, k, ent, vp, RS, stand, startU, index, alpha, conv, maxit, seed)
```
Arguments

- **X**: Matrix or data.frame
- **k**: An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- **ent**: Degree of fuzzy entropy (default: 1)
- **vp**: Volume parameter (default: rep(1,k))
- **RS**: Number of (random) starts (default: 1)
- **stand**: Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
- **startU**: Rational starting point for the membership degree matrix U (default: no rational start)
- **index**: Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
- **alpha**: Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
- **conv**: Convergence criterion (default: 1e-9)
- **maxit**: Maximum number of iterations (default: 1e+6)
- **seed**: Seed value for random number generation (default: NULL)

Details

If **startU** is given, the argument **k** is ignored (the number of clusters is **ncol(startU)**). If **startU** is given, the first element of **value**, **cput** and **iter** refer to the rational starting point. If a cluster covariance matrix becomes singular, the algorithm stops and the element of **value** is NaN. The default value for **ent** is in general not reasonable if FKM.gk.ent is run using raw data. The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.gk.ent using standardized data (stand=1). The Babuska et al. variant in FKM.gkb.ent is recommended.

Value

Object of class `fclust`, which is a list with the following components:

- **U**: Membership degree matrix
- **H**: Prototype matrix
- **F**: Array containing the covariance matrices of all the clusters
- **clus**: Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
- **medoid**: Vector containing the indices of the medoid objects (NULL for FKM.gk.ent)
- **value**: Vector containing the loss function values for the RS starts
- **criterion**: Vector containing the values of clustering index
iter Vector containing the numbers of iterations for the RS starts
k Number of clusters
m Parameter of fuzziness (NULL for FKM.gk.ent)
ent Degree of fuzzy entropy
b Parameter of the polynomial fuzzifier (NULL for FKM.gk.ent)
vp Volume parameter (default: rep(1,max(k))). If k is a vector, for each group the first k element of vpare considered.
delta Noise distance (NULL for FKM.gk.ent)
gam Weighting parameter for the fuzzy covariance matrices (NULL for FKM.gk.ent)
mcn Maximum condition number for the fuzzy covariance matrices (NULL for FKM.gk.ent)
stand Standardization (Yes if stand=1, No if stand=0)
Xca Data used in the clustering algorithm (standardized data if stand=1)
X Raw data
D Dissimilarity matrix (NULL for FKM.gk.ent)
call Matched call

Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also
FKM.gkb.ent,Fclust,Fclust.index.print.fclust.summary.fclust.plot.fclust.unemployment

Examples

unemployment data
data(unemployment)
Gustafson and Kessel-like fuzzy k-means with entropy regularization,
##fixing the number of clusters
clust=FKM.gk.ent(unemployment,k=3,ent=0.2,RS=10,stand=1)
Not run:
Gustafson and Kessel-like fuzzy k-means with entropy regularization,
##selecting the number of clusters
clust=FKM.gk.ent(unemployment,k=2:6,ent=0.2,RS=10,stand=1)
End(Not run)
FKM.gk.ent.noise Gustafson and Kessel - like fuzzy k-means with entropy regularization and noise cluster

Description

Performs the Gustafson and Kessel - like fuzzy k-means clustering algorithm with entropy regularization and noise cluster. Differently from fuzzy k-means, it is able to discover non-spherical clusters. The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy ent, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the prototypes are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means). The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

FKM.gk.ent.noise (x, k, ent, vp, delta, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

x Matrix or data.frame
k An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
ent Degree of fuzzy entropy (default: 1)
v Volume parameter (default: rep(1,k))
delta Noise distance (default: average squared Euclidean distance between objects and prototypes from FKM.gk.ent using the same values of k and m)
RS Number of (random) starts (default: 1)
stand Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU Rational starting point for the membership degree matrix U (default: no rational start)
index Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
alpha Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv Convergence criterion (default: 1e-9)
maxit Maximum number of iterations (default: 1e+6)
seed Seed value for random number generation (default: NULL)
Details

If `startu` is given, the argument `k` is ignored (the number of clusters is `ncol(startu)`).
If `startu` is given, the first element of `value`, `cput` and `iter` refer to the rational starting point.
If a cluster covariance matrix becomes singular, the algorithm stops and the element of `value` is NaN.
The default value for `ent` is in general not reasonable if FKM.gk.ent is run using raw data.
The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.gk.ent.noise using standardized data (`stand=1`).
The Babuska et al. variant in FKM.gkb.ent.noise is recommended.

Value

Object of class `fclust`, which is a list with the following components:

- `U` Membership degree matrix
- `H` Prototype matrix
- `F` Array containing the covariance matrices of all the clusters
- `clus` Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
- `medoid` Vector containing the indices of the medoid objects (NULL for FKM.gk.ent.noise)
- `value` Vector containing the loss function values for the RS starts
- `criterion` Vector containing the values of clustering index
- `iter` Vector containing the numbers of iterations for the RS starts
- `k` Number of clusters
- `m` Parameter of fuzziness (NULL for FKM.gk.ent.noise)
- `ent` Degree of fuzzy entropy
- `b` Parameter of the polynomial fuzzifier (NULL for FKM.gk.ent.noise)
- `vp` Volume parameter (default: `rep(1,max(k))`). If `k` is a vector, for each group the first `k` element of `vp` are considered.
- `delta` Noise distance
- `gam` Weighting parameter for the fuzzy covariance matrices (NULL for FKM.ent.noise)
- `mcn` Maximum condition number for the fuzzy covariance matrices (NULL for FKM.ent.noise)
- `stand` Standardization (Yes if `stand=1`, No if `stand=0`)
- `Xca` Data used in the clustering algorithm (standardized data if `stand=1`)
- `X` Raw data
- `D` Dissimilarity matrix (NULL for FKM.ent.noise)
- `call` Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
References

See Also

FKM.gkb.ent.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

Examples

```r
## Not run:
## unemployment data
data(unemployment)
## Gustafson and Kessel-like fuzzy k-means with entropy regularization and noise cluster,
## fixing the number of clusters
clust=fkm.gk.ent.noise(unemployment,k=3,ent=0.2,delta=1,RS=10,stand=1)
## Gustafson and Kessel-like fuzzy k-means with entropy regularization and noise cluster,
## selecting the number of clusters
clust=fkm.gk.ent.noise(unemployment,k=2:6,ent=0.2,delta=1,RS=10,stand=1)
## End(Not run)
```

FKM.gk.noise

Gustafson and Kessel - like fuzzy k-means with noise cluster

Description

Performs the Gustafson and Kessel - like fuzzy k-means clustering algorithm with noise cluster. Differently from fuzzy k-means, it is able to discover non-spherical clusters. The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

```r
FKM.gk.noise (X, k, m, vp, delta, RS, stand, startU, index, alpha, conv, maxit, seed)
```

Arguments

- **X**: Matrix or data.frame
- **k**: An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- **m**: Parameter of fuzziness (default: 2)
- **vp**: Volume parameter (default: `rep(1,max(k))`). If k is a vector, for each group the first k element of vpare considered.
delta Noise distance (default: average squared Euclidean distance between objects and prototypes from FKM.gk using the same values of k and m)
RS Number of (random) starts (default: 1)
stand Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU Rational starting point for the membership degree matrix U (default: no rational start)
index Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPE (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
alpha Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv Convergence criterion (default: 1e-9)
maxit Maximum number of iterations (default: 1e+6)
seed Seed value for random number generation (default: NULL)

Details
If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).
If startU is given, the first element of value, cput and iter refer to the rational starting point.
If a cluster covariance matrix becomes singular, then the algorithm stops and the element of value is NaN.
The Babuska et al. variant in FKM.gkb.noise is recommended.

Value
Object of class fclust, which is a list with the following components:

U Membership degree matrix
H Prototype matrix
F Array containing the covariance matrices of all the clusters
clus Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid Vector containing the indices of the medoid objects (NULL for FKM.gk.noise)
value Vector containing the loss function values for the RS starts
criterion Vector containing the values of clustering index
iter Vector containing the numbers of iterations for the RS starts
k Number of clusters
m Parameter of fuzziness
ent Degree of fuzzy entropy (NULL for FKM.gk.noise)
b Parameter of the polynomial fuzzifier (NULL for FKM.gk.noise)
vp Volume parameter
delta Noise distance
Weighting parameter for the fuzzy covariance matrices (NULL for FKM.gk.noise)

Maximum condition number for the fuzzy covariance matrices (NULL for FKM.gk.noise)

Standardization (Yes if stand=1, No if stand=0)

Data used in the clustering algorithm (standardized data if stand=1)

Raw data

Dissimilarity matrix (NULL for FKM.gk.noise)

Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

FKM.gk.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

Examples

Not run:
unemployment data
data(unemployment)
Gustafson and Kessel-like fuzzy k-means with noise cluster, fixing the number of clusters
clust=FKM.gk.noise(unemployment,k=3, delta=20, RS=10)
Gustafson and Kessel-like fuzzy k-means with noise cluster, selecting the number of clusters
clust=FKM.gk.noise(unemployment,k=2:6, delta=20, RS=10)

End(Not run)

Description

Performs the Gustafson, Kessel and Babuska - like fuzzy k-means clustering algorithm. Differently from fuzzy k-means, it is able to discover non-spherical clusters. The Babuska et al. variant improves the computation of the fuzzy covariance matrices in the standard Gustafson and Kessel clustering algorithm.
Usage

FKM.gkb (X, k, m, vp, gam, mcn, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

x Matrix or data.frame
k An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m Parameter of fuzziness (default: 2)
vp Volume parameter (default: rep(1,k))
gam Weighting parameter for the fuzzy covariance matrices (default: 0)
mcn Maximum condition number for the fuzzy covariance matrices (default: 1e+15)
RS Number of (random) starts (default: 1)
stand Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU Rational starting point for the membership degree matrix U (default: no rational start)
index Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
alpha Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv Convergence criterion (default: 1e-9)
maxit Maximum number of iterations (default: 1e+2)
seed Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).
If startU is given, the first element of value, cput and iter refer to the rational starting point.
If a cluster covariance matrix becomes singular, then the algorithm stops and the element of value is NaN.

Value

Object of class fclust, which is a list with the following components:

U Membership degree matrix
H Prototype matrix
F Array containing the covariance matrices of all the clusters
clus Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid Vector containing the indices of the medoid objects (NULL for FKM.gkb)
value Vector containing the loss function values for the RS starts
criterion Vector containing the values of clustering index
iter Vector containing the numbers of iterations for the RS starts
k Number of clusters
m Parameter of fuzziness
ent Degree of fuzzy entropy (NULL for FKM.gkb)
b Parameter of the polynomial fuzzifier (NULL for FKM.gkb)
vp Volume parameter
delta Noise distance (NULL for FKM.gkb)
gam Weighting parameter for the fuzzy covariance matrices
mcn Maximum condition number for the fuzzy covariance matrices
stand Standardization (Yes if \text{stand}=1, No if \text{stand}=0)
Xca Data used in the clustering algorithm (standardized data if \text{stand}=1)
X Raw data
D Dissimilarity matrix (NULL for FKM.gkb)
call Matched call

Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also
\texttt{FKM.gk, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment}

Examples

\texttt{\# Not run:}
\texttt{\# unemployment data}
\texttt{data(unemployment)}
\texttt{\# Gustafson, Kessel and Babuska-like fuzzy k-means, fixing the number of clusters}
\texttt{clust=FKM.gkb(unemployment, k=3, RS=10)}
\texttt{\# Gustafson, Kessel and Babuska-like fuzzy k-means, selecting the number of clusters}
\texttt{clust=FKM.gkb(unemployment, k=2:6, RS=10)}
\texttt{\# End(Not run)}
FKM.gkb.ent | Gustafson, Kessel and Babuska - like fuzzy k-means with entropy regularization

Description

Performs the Gustafson, Kessel and Babuska - like fuzzy k-means clustering algorithm with entropy regularization.

Differently from fuzzy k-means, it is able to discover non-spherical clusters.

The Babuska et al. variant improves the computation of the fuzzy covariance matrices in the standard Gustafson and Kessel clustering algorithm.

The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy ent, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the prototypes are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means).

Usage

FKM.gkb.ent (X, k, ent, vp, gam, mcn, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Matrix or data.frame</td>
</tr>
<tr>
<td>k</td>
<td>An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)</td>
</tr>
<tr>
<td>ent</td>
<td>Degree of fuzzy entropy (default: 1)</td>
</tr>
<tr>
<td>vp</td>
<td>Volume parameter (default: rep(1,k))</td>
</tr>
<tr>
<td>gam</td>
<td>Weighting parameter for the fuzzy covariance matrices (default: 0)</td>
</tr>
<tr>
<td>mcn</td>
<td>Maximum condition number for the fuzzy covariance matrices (default: 1e+15)</td>
</tr>
<tr>
<td>RS</td>
<td>Number of (random) starts (default: 1)</td>
</tr>
<tr>
<td>stand</td>
<td>Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)</td>
</tr>
<tr>
<td>startU</td>
<td>Rational starting point for the membership degree matrix U (default: no rational start)</td>
</tr>
<tr>
<td>index</td>
<td>Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")</td>
</tr>
<tr>
<td>alpha</td>
<td>Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)</td>
</tr>
<tr>
<td>conv</td>
<td>Convergence criterion (default: 1e-9)</td>
</tr>
<tr>
<td>maxit</td>
<td>Maximum number of iterations (default: 1e+2)</td>
</tr>
<tr>
<td>seed</td>
<td>Seed value for random number generation (default: NULL)</td>
</tr>
</tbody>
</table>
Details

If `startU` is given, the argument `k` is ignored (the number of clusters is ncol(startU)).
If `startU` is given, the first element of `value`, `cput` and `iter` refer to the rational starting point.
If a cluster covariance matrix becomes singular, the algorithm stops and the element of `value` is NaN.
The default value for `ent` is in general not reasonable if `FKM.gkb.ent` is run using raw data.
The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running `FKM.gkb.ent` using standardized data (stand=1).

Value

Object of class `fclust`, which is a list with the following components:

- `u`: Membership degree matrix
- `H`: Prototype matrix
- `F`: Array containing the covariance matrices of all the clusters
- `clus`: Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
- `medoid`: Vector containing the indices of the medoid objects (NULL for `FKM.gkb.ent`)
- `value`: Vector containing the loss function values for the RS starts
- `criterion`: Vector containing the values of clustering index
- `iter`: Vector containing the numbers of iterations for the RS starts
- `k`: A integer value or vector indicating the number of clusters. (default: 2:6)
- `m`: Parameter of fuzziness (NULL for `FKM.gkb.ent`)
- `ent`: Degree of fuzzy entropy
- `b`: Parameter of the polynomial fuzzifier (NULL for `FKM.gkb.ent`)
- `vp`: Volume parameter (default: `rep(1, max(k))`). If `k` is a vector, for each group the first `k` element of `vp` are considered.
- `delta`: Noise distance (NULL for `FKM.gkb.ent`)
- `gam`: Weighting parameter for the fuzzy covariance matrices
- `mcn`: Maximum condition number for the fuzzy covariance matrices
- `stand`: Standardization (Yes if `stand=1`, No if `stand=0`)
- `Xca`: Data used in the clustering algorithm (standardized data if `stand=1`)
- `X`: Raw data
- `D`: Dissimilarity matrix (NULL for `FKM.gkb.ent`)
- `call`: Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
References

See Also

FKM.gk.ent.Fclust,Fclust.index,print.fclust,summary.fclust.plot.fclust,unemployment

Examples

Not run:
unemployment data
data(unemployment)
Gustafson, Kessel and Babuska-like fuzzy k-means with entropy regularization,
fixing the number of clusters
clust=FKM.gkb.ent(unemployment,k=3,ent=0.2,RS=10,stand=1)
Gustafson, Kessel and Babuska-like fuzzy k-means with entropy regularization,
selecting the number of clusters
clust=FKM.gkb.ent(unemployment,k=2:6,ent=0.2,RS=10,stand=1)
End(Not run)

Description

Performs the Gustafson, Kessel and Babuska-like fuzzy k-means clustering algorithm with entropy regularization and noise cluster.

Differently from fuzzy k-means, it is able to discover non-spherical clusters.

The Babuska et al. variant improves the computation of the fuzzy covariance matrices in the standard Gustafson and Kessel clustering algorithm.

The entropy regularization allows us to avoid using the artificial fuzziness parameter m. This is replaced by the degree of fuzzy entropy ent, related to the concept of temperature in statistical physics. An interesting property of the fuzzy k-means with entropy regularization is that the prototypes are obtained as weighted means with weights equal to the membership degrees (rather than to the membership degrees at the power of m as is for the fuzzy k-means).

The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

FKM.gkb.ent.noise (X,k,ent,vp,delta,gam,mcn,RS,stand,startU,index,alpha,conv,maxit,seed)
FKM.gkb.ent.noise

Arguments

- **X** Matrix or data.frame
- **k** An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- **ent** Degree of fuzzy entropy (default: 1)
- **vp** Volume parameter (default: \texttt{rep(1, max(k))}). If k is a vector, for each group the first k element of vpare considered.
- **delta** Noise distance (default: average squared Euclidean distance between objects and prototypes from FKM.gk.ent using the same values of k and m)
- **gam** Weighting parameter for the fuzzy covariance matrices (default: 0)
- **mcn** Maximum condition number for the fuzzy covariance matrices (default: 1e+15)
- **RS** Number of (random) starts (default: 1)
- **stand** Standardization: if \texttt{stand=1}, the clustering algorithm is run using standardized data (default: no standardization)
- **startU** Rational starting point for the membership degree matrix \texttt{U} (default: no rational start)
- **index** Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: “SIL.F”)
- **alpha** Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
- **conv** Convergence criterion (default: 1e-9)
- **maxit** Maximum number of iterations (default: 1e+2)
- **seed** Seed value for random number generation (default: NULL)

Details

If \texttt{startU} is given, the argument \texttt{k} is ignored (the number of clusters is \texttt{ncol(startU)}).
If \texttt{startU} is given, the first element of \texttt{value}, \texttt{cput} and \texttt{iter} refer to the rational starting point.
If a cluster covariance matrix becomes singular, the algorithm stops and the element of \texttt{value} is NaN.
The default value for \texttt{ent} is in general not reasonable if FKM.gk.ent is run using raw data.
The update of the membership degrees requires the computation of exponential functions. In some cases, this may produce NaN values and the algorithm stops. Such a problem is usually solved by running FKM.gk.ent.noise using standardized data (\texttt{stand=1}).

Value

Object of class \texttt{fclust}, which is a list with the following components:

- **U** Membership degree matrix
- **H** Prototype matrix
- **F** Array containing the covariance matrices of all the clusters
- **clus** Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid Vector containing the indices of the medoid objects (NULL for FKM.gkb.ent.noise)
value Vector containing the loss function values for the RS starts
 criterion Vector containing the values of clustering index
iter Vector containing the numbers of iterations for the RS starts
k Number of clusters
m Parameter of fuzziness (NULL for FKM.gkb.ent.noise)
ent Degree of fuzzy entropy
b Parameter of the polynomial fuzzifier (NULL for FKM.gkb.ent.noise)
vp Volume parameter
delta Noise distance
gam Weighting parameter for the fuzzy covariance matrices
mcn Maximum condition number for the fuzzy covariance matrices
stand Standardization (Yes if stand=1, No if stand=0)
Xca Data used in the clustering algorithm (standardized data if stand=1)
X Raw data
D Dissimilarity matrix (NULL for FKM.gkb.ent.noise)
call Matched call

Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also
FKM.gk.ent.noise,Fclust,Fclust.index,print.fclust,summary.fclust,plot.fclust,unemployment

Examples
Not run:
unemployment data
data(unemployment)
Gustafson, Kessel and Babuska-like fuzzy k-means with entropy regularization and noise cluster,
fixing the number of clusters
clust=FKM.gkb.ent.noise(unemployment,k=3,ent=0.2,delta=1,RS=10,stand=1)
Gustafson, Kessel and Babuska-like fuzzy k-means with entropy regularization and noise cluster,
FKM.gkb.noise

##selecting the number of clusters
clust=FKM.gkb.ent.noise(unemployment,k=2:6,ent=0.2,delta=1,RS=10,stand=1)

End(Not run)

Description
Perform the Gustafson, Kessel and Babuska - like fuzzy k-means clustering algorithm with noise cluster.
Differently from fuzzy k-means, it is able to discover non-spherical clusters.
The Babuska et al. variant improves the computation of the fuzzy covariance matrices in the standard Gustafson and Kessel clustering algorithm.
The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

```r
FKM.gkb.noise (X,k,m,vp,delta,gam,mcn,RS,stand,startU,index,alpha,conv,maxit,seed)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Matrix or data.frame</td>
</tr>
<tr>
<td>k</td>
<td>An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)</td>
</tr>
<tr>
<td>m</td>
<td>Parameter of fuzziness (default: 2)</td>
</tr>
<tr>
<td>vp</td>
<td>Volume parameter (default: rep(1,k))</td>
</tr>
<tr>
<td>delta</td>
<td>Noise distance (default: average squared Euclidean distance between objects and prototypes from FKM.gk using the same values of k and m)</td>
</tr>
<tr>
<td>gam</td>
<td>Weighting parameter for the fuzzy covariance matrices (default: 0)</td>
</tr>
<tr>
<td>mcn</td>
<td>Maximum condition number for the fuzzy covariance matrices (default: 1e+15)</td>
</tr>
<tr>
<td>RS</td>
<td>Number of (random) starts (default: 1)</td>
</tr>
<tr>
<td>stand</td>
<td>Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)</td>
</tr>
<tr>
<td>startU</td>
<td>Rational starting point for the membership degree matrix U (default: no rational start)</td>
</tr>
<tr>
<td>index</td>
<td>Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")</td>
</tr>
<tr>
<td>alpha</td>
<td>Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)</td>
</tr>
<tr>
<td>conv</td>
<td>Convergence criterion (default: 1e-9)</td>
</tr>
<tr>
<td>maxit</td>
<td>Maximum number of iterations (default: 1e+2)</td>
</tr>
<tr>
<td>seed</td>
<td>Seed value for random number generation (default: NULL)</td>
</tr>
</tbody>
</table>
Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).
If startU is given, the first element of value, cput and iter refer to the rational starting point.
If a cluster covariance matrix becomes singular, then the algorithm stops and the element of value is NaN.

Value

Object of class fclust, which is a list with the following components:

U Membership degree matrix
H Prototype matrix
F Array containing the covariance matrices of all the clusters
clus Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid Vector containing the indices of the medoid objects (NULL for FKM.gkb.noise)
value Vector containing the loss function values for the RS starts
criterion Vector containing the values of clustering index
iter Vector containing the numbers of iterations for the RS starts
k Number of clusters
m Parameter of fuzziness
ent Degree of fuzzy entropy (NULL for FKM.gkb.noise)
b Parameter of the polynomial fuzzifier (NULL for FKM.gkb.noise)
vp Volume parameter (default: rep(1, max(k)). If k is a vector, for each group the first k element of vp are considered.
delta Noise distance
gam Weighting parameter for the fuzzy covariance matrices
mcn Maximum condition number for the fuzzy covariance matrices
stand Standardization (Yes if stand=1, No if stand=0)
Xca Data used in the clustering algorithm (standardized data if stand=1)
X Raw data
D Dissimilarity matrix (NULL for FKM.gkb.noise)
call Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
References

See Also

FKM.gk.noise, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, unemployment

Examples

```r
## Not run:
## unempoyer data
data(unemployment)
## Gustafson, Kessel and Babuska-like fuzzy k-means with noise cluster,
## fixing the number of clusters
clust=fkm.gkb.noise(unemployment,k=3,delta=20,RS=10)
## Gustafson, Kessel and Babuska-like fuzzy k-means with noise cluster,
## selecting the number of clusters
clust=fkm.gkb.noise(unemployment,k=2:6,delta=20,RS=10)
## End(Not run)
```

FKM.med

Fuzzy k-medoids

Description

Performs the fuzzy k-medoids clustering algorithm. Differently from fuzzy k-means where the cluster prototypes (centroids) are artificial objects computed as weighted means, in the fuzzy k-medoids the cluster prototypes (medoids) are a subset of the observed objects.

Usage

FKM.med (X, k, m, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

- **X**: Matrix or data.frame
- **k**: An integer value or vector indicating the number of clusters (default: 2:6)
- **m**: Parameter of fuzziness (default: 1.5)
- **RS**: Number of (random) starts (default: 1)
stand: Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)

startU: Rational starting point for the membership degree matrix U (default: no rational start)

index: Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: “SIL.F”)

alpha: Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)

conv: Convergence criterion (default: 1e-9)

maxit: Maximum number of iterations (default: 1e+6)

seed: Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).

If startU is given, the first element of value, cput and iter refer to the rational starting point.

In FKM.med the parameter of fuzziness is usually lower than the one used in FKM.

Value

Object of class fclust, which is a list with the following components:

- U: Membership degree matrix
- H: Prototype matrix
- F: Array containing the covariance matrices of all the clusters (NULL for FKM.med)
- clus: Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
- medoid: Vector containing the indices of the medoid objects
- value: Vector containing the loss function values for the RS starts
- criterion: Vector containing the values of clustering index
- iter: Vector containing the numbers of iterations for the RS starts
- k: Number of clusters
- m: Parameter of fuzziness
- ent: Degree of fuzzy entropy (NULL for FKM.med)
- b: Parameter of the polynomial fuzzifier (NULL for FKM.med)
- vp: Volume parameter (NULL for FKM.med)
- delta: Noise distance (NULL for FKM.med)
- gam: Weighting parameter for the fuzzy covariance matrices (NULL for FKM.med)
- mcn: Maximum condition number for the fuzzy covariance matrices (NULL for FKM.med)
- stand: Standardization (Yes if stand=1, No if stand=0)
- Xca: Data used in the clustering algorithm (standardized data if stand=1)
- X: Raw data
- D: Dissimilarity matrix (NULL for FKM.med)
- call: Matched call
FKM.med.noise

Description

Performs the fuzzy k-medoids clustering algorithm with noise cluster.
Differently from fuzzy k-means where the cluster prototypes (centroids) are artificial objects computed as weighted means, in the fuzzy k-medoids the cluster prototypes (medoids) are a subset of the observed objects.
The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

```
FKM.med.noise (X, k, m, delta, RS, stand, startU, index, alpha, conv, maxit, seed)
```
Arguments

X Matrix or data.frame
k An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
m Parameter of fuzziness (default: 1.5)
delta Noise distance (default: average squared Euclidean distance between objects and prototypes from FKM.med using the same values of k and m)
RS Number of (random) starts (default: 1)
stand Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
startU Rational starting point for the membership degree matrix U (default: no rational start)
index Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
alpha Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv Convergence criterion (default: 1e-9)
maxit Maximum number of iterations (default: 1e+6)
seed Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).
If startU is given, the first element of value, cput and iter refer to the rational starting point.
As for FKM.med, in FKM.med.noise the parameter of fuzziness is usually lower than the one used in FKM.

Value

Object of class fclust, which is a list with the following components:

U Membership degree matrix
H Prototype matrix
F Array containing the covariance matrices of all the clusters (NULL for FKM.med.noise)
clus Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid Vector containing the indices of the medoid objects
value Vector containing the loss function values for the RS starts
criterion Vector containing the values of clustering index
iter Vector containing the numbers of iterations for the RS starts
k Number of clusters
m Parameter of fuzziness
Description

Performs the fuzzy k-means clustering algorithm with noise cluster. The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.
Usage

FKM.noise (X, k, m, delta, RS, stand, startU, index, alpha, conv, maxit, seed)

Arguments

x Matrix or data.frame
k An integer value or vector specifying the number of clusters for which the index
 is to be calculated (default: 2:6)
m Parameter of fuzziness (default: 2)
delta Noise distance (default: average squared Euclidean distance between objects
 and prototypes from FKM using the same values of k and m)
RS Number of (random) starts (default: 1)
stand Standardization: if stand=1, the clustering algorithm is run using standardized
 data (default: no standardization)
startU Rational starting point for the membership degree matrix U (default: no rational
 start)
index Cluster validity index to select the number of clusters: PC (partition coefficient),
 PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette),
 SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
alpha Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
conv Convergence criterion (default: 1e-9)
maxit Maximum number of iterations (default: 1e+6)
seed Seed value for random number generation (default: NULL)

Details

If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).
If startU is given, the first element of value, cput and iter refer to the rational starting point.

Value

Object of class fclust, which is a list with the following components:

U Membership degree matrix
H Prototype matrix
F Array containing the covariance matrices of all the clusters (NULL for FKM.noise)
clus Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid Vector containing the indices of the medoid objects (NULL for FKM.noise)
value Vector containing the loss function values for the RS starts
criterion Vector containing the values of clustering index
iter Vector containing the numbers of iterations for the RS starts
Number of clusters

Parameter of fuzziness

Degree of fuzzy entropy (NULL for FKM.noise)

Parameter of the polynomial fuzzifier (NULL for FKM.noise)

Volume parameter (NULL for FKM.noise)

Noise distance

Weighting parameter for the fuzzy covariance matrices (NULL for FKM.noise)

Maximum condition number for the fuzzy covariance matrices (NULL for FKM.noise)

Standardization (Yes if stand=1, No if stand=0)

Data used in the clustering algorithm (standardized data if stand=1)

Raw data

Dissimilarity matrix (NULL for FKM.noise)

Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

FKM, Fclust, Fclust.index, print.Fclust, summary.Fclust, plot.Fclust, butterfly

Examples

```r
## butterfly data
data(butterfly)
## fuzzy k-means with noise cluster, fixing the number of clusters
clust=FKM.noise(butterfly, k = 2, RS=5, delta=3)
## fuzzy k-means with noise cluster, selecting the number of clusters
clust=FKM.noise(butterfly, RS=5, delta=3)
```
Description

Performs the fuzzy k-means clustering algorithm with polynomial fuzzifier function. The polynomial fuzzifier creates areas of crisp membership degrees around the prototypes while, outside of these areas of crisp membership degrees, fuzzy membership degrees are given. Therefore, the polynomial fuzzifier produces membership degrees equal to one for objects clearly assigned to clusters, that is, very close to the cluster prototypes.

Usage

```r
FKM.pf (X, k, b, RS, stand, startU, index, alpha, conv, maxit, seed)
```

Arguments

- **X** Matrix or data.frame
- **k** An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- **b** Parameter of the polynomial fuzzifier (default: 0.5)
- **RS** Number of (random) starts (default: 1)
- **stand** Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
- **startU** Rational starting point for the membership degree matrix U (default: no rational start)
- **index** Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")
- **alpha** Weighting coefficient for the fuzzy silhouette index $SIL.F$ (default: 1)
- **conv** Convergence criterion (default: 1e-9)
- **maxit** Maximum number of iterations (default: 1e+6)
- **seed** Seed value for random number generation (default: NULL)

Details

If `startU` is given, the argument `k` is ignored (the number of clusters is `ncol(startU)`). If `startU` is given, the first element of `value`, `cput` and `iter` refer to the rational starting point.
Value

Object of class fclust, which is a list with the following components:

- **U**: Membership degree matrix
- **H**: Prototype matrix
- **F**: Array containing the covariance matrices of all the clusters (NULL for FKM.pf)
- **clus**: Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
- **medoid**: Vector containing the indices of the medoid objects (NULL for FKM.pf)
- **value**: Vector containing the loss function values for the RS starts
- **criterion**: Vector containing the values of clustering index
- **iter**: Vector containing the numbers of iterations for the RS starts
- **k**: Number of clusters
- **m**: Parameter of fuzziness (NULL for FKM.pf)
- **ent**: Degree of fuzzy entropy (NULL for FKM.pf)
- **b**: Parameter of the polynomial fuzzifier
- **vp**: Volume parameter (NULL for FKM.pf)
- **delta**: Noise distance (NULL for FKM.pf)
- **gam**: Weighting parameter for the fuzzy covariance matrices (NULL for FKM.pf)
- **mcn**: Maximum condition number for the fuzzy covariance matrices (NULL for FKM.pf)
- **stand**: Standardization (Yes if stand=1, No if stand=0)
- **Xca**: Data used in the clustering algorithm (standardized data if stand=1)
- **X**: Raw data
- **D**: Dissimilarity matrix (NULL for FKM.pf)
- **call**: Matched call

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

FKM.pf.noise,Fclust,Fclust.index,print.fclust,summary.fclust,plot.fclust,Mc
Examples

```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
    Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means with polynomial fuzzifier, fixing the number of clusters
## (excluded the factor column Type (last column))
clust=fkm.pf(Mc[,1:(ncol(Mc)-1)],k=6,stand=1)
## fuzzy k-means with polynomial fuzzifier, selecting the number of clusters
## (excluded the factor column Type (last column))
clust=fkm.pf(Mc[,1:(ncol(Mc)-1)],k=2:6,stand=1)
```

FKM.pf.noise
Fuzzy k-means with polynomial fuzzifier and noise cluster

Description

Performs the fuzzy k-means clustering algorithm with polynomial fuzzifier function and noise cluster.

The polynomial fuzzifier creates areas of crisp membership degrees around the prototypes while, outside of these areas of crisp membership degrees, fuzzy membership degrees are given. Therefore, the polynomial fuzzifier produces membership degrees equal to one for objects clearly assigned to clusters, that is, very close to the cluster prototypes.

The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

```r
FKM.pf.noise (X, k, b, delta, RS, stand, startU, index, alpha, conv, maxit, seed)
```

Arguments

- `X`: Matrix or data.frame
- `k`: An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- `b`: Parameter of the polynomial fuzzifier (default: 0.5)
- `delta`: Noise distance (default: average squared Euclidean distance between objects and prototypes from FKM.pf using the same values of k and m)
- `RS`: Number of (random) starts (default: 1)
- `stand`: Standardization: if stand=1, the clustering algorithm is run using standardized data (default: no standardization)
Rational starting point for the membership degree matrix \(U \) (default: no rational start)

Cluster validity index to select the number of clusters: PC (partition coefficient), PE (partition entropy), MPC (modified partition coefficient), SIL (silhouette), SIL.F (fuzzy silhouette), XB (Xie and Beni) (default: "SIL.F")

Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)

Convergence criterion (default: 1e-9)

Maximum number of iterations (default: 1e+6)

Seed value for random number generation (default: NULL)

If \(\text{startU} \) is given, the argument \(k \) is ignored (the number of clusters is \(\text{ncol(startU)} \)).

If \(\text{startU} \) is given, the first element of \(\text{value} \), \(\text{cput} \) and \(\text{iter} \) refer to the rational starting point.

Object of class \(\text{fclust} \), which is a list with the following components:

- \(U \): Membership degree matrix
- \(H \): Prototype matrix
- \(F \): Array containing the covariance matrices of all the clusters (NULL for \(\text{FKM.pf.noise} \))
- \(\text{clus} \): Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
- \(\text{medoid} \): Vector containing the indices of the medoid objects (NULL for \(\text{FKM.pf.noise} \))
- \(\text{value} \): Vector containing the loss function values for the RS starts
- \(\text{criterion} \): Vector containing the values of clustering index
- \(\text{iter} \): Vector containing the numbers of iterations for the RS starts
- \(k \): Number of clusters
- \(m \): Parameter of fuzziness (NULL for \(\text{FKM.pf.noise} \))
- \(\text{ent} \): Degree of fuzzy entropy (NULL for \(\text{FKM.pf.noise} \))
- \(b \): Parameter of the polynomial fuzzifier
- \(\text{vp} \): Volume parameter (NULL for \(\text{FKM.pf.noise} \))
- \(\text{delta} \): Noise distance
- \(\text{gam} \): Weighting parameter for the fuzzy covariance matrices (NULL for \(\text{FKM.pf.noise} \))
- \(\text{mcn} \): Maximum condition number for the fuzzy covariance matrices (NULL for \(\text{FKM.pf.noise} \))
- \(\text{stand} \): Standardization (Yes if \(\text{stand}=1 \), No if \(\text{stand}=0 \))
- \(\text{Xca} \): Data used in the clustering algorithm (standardized data if \(\text{stand}=1 \))
- \(X \): Raw data
- \(D \): Dissimilarity matrix (NULL for \(\text{FKM.pf.noise} \))
- \(\text{call} \): Matched call
Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also
FKM.pf, Fclust, Fclust.index, print.fclust, summary.fclust, plot.fclust, Mc

Examples
```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
  Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means with polynomial fuzzifier and noise cluster, fixing the number of clusters
## (excluded the factor column Type (last column))
clust=FKM.pf.noise(Mc[,-(ncol(Mc)-1)],k=6,stand=1)
## fuzzy k-means with polynomial fuzzifier and noise cluster, selecting the number of clusters
## (excluded the factor column Type (last column))
clust=FKM.pf.noise(Mc[,-(ncol(Mc)-1)],k=2:6,stand=1)
```

houseVotes

Congressional Voting Records Data

Description
1984 United Stated Congressional Voting Records for each of the U.S. House of Representatives Congressmen on the 16 key votes identified by the Congressional Quarterly Almanac.

Usage
data(houseVotes)

Format
A data.frame with 435 rows on 17 columns (16 qualitative variables and 1 classification variable).
Details

The data collect 1984 United Stated Congressional Voting Records for each of the 435 U.S. House of Representatives Congressmen on the 16 key votes identified by the Congressional Quarterly Almanac (CQA). The variable class splits the observations in democrat and republican. The qualitative variables refer to the votes on handicapped-infants, water-project-cost-sharing, adoption-of-the-budget-resolution, physician-fee-freeze, el-salvador-aid, religious-groups-in-schools, anti-satellite-test-ban, aid-to-nicaraguan-contras, mx-missile, immigration, synfuels-corporation-cutback, education-spending, superfund-right-to-sue, crime, duty-free-exports, and export-administration-act-south. All these 16 variables are objects of class factor with three levels according to the CQA scheme: y refers to the types of votes "voted for", "paired for" and "announced for"; n to "voted against", "paired against" and "announced against"; codeyn to "voted present", "voted present to avoid conflict of interest" and "did not vote or otherwise make a position known".

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

Source

https://archive.ics.uci.edu/ml/datasets/congressional+voting+records

References

See Also

NEFRC, NEFRC.noise

Examples

data(houseVotes)
X=houseVotes[,-1]
class=houseVotes[,1]

Hraw Raw prototypes

Description

Produces prototypes using the original units of measurement of X (useful if the clustering algorithm is run using standardized data).

Usage

Hraw (X, H)
Arguments

- **X**: Matrix or data.frame
- **H**: Prototype matrix

Value

- **Hraw**: Prototypes matrix using the original units of measurement of X

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

- `fclust`, `unemployment`

Examples

```r
# example n.1 (k-means case)
# unemployment data
data(unemployment)
# fuzzy k-means
unempFKM=FKM(unemployment,k=3,stand=1)
# standardized prototypes
unempFKM$H
# prototypes using the original units of measurement
unempFKM$Hraw=Hraw(unempFKM$X,unempFKM$H)
# example n.2 (k-medoids case)
# unemployment data
data(unemployment)
# fuzzy k-medoids
# Not run:
# It may take more than a few seconds
unempFKM.med=FKM.med(unemployment,k=3,RS=10,stand=1)
# prototypes using the original units of measurement:
# in fuzzy k-medoids one can equivalently use
unempFKM.med$Hraw1=Hraw(unempFKM.med$X,unempFKM.med$H)
unempFKM.med$Hraw2=unempFKM.med$X[unempFKM.med$medoid,]
# End(Not run)
```

Description

Produces the fuzzy version of the Jaccard index between a hard (reference) partition and a fuzzy partition.
JACCARD.F

Usage

JACCARD.F(partHard, partFuzzy, t_norm)

Arguments

partHard (Reference) partition matrix or data.frame
partFuzzy Fuzzy membership degree matrix or data.frame
t_norm Type of the triangular norm: "minimum" (minimum triangular norm), "triangular product" (product norm) (default: "minimum")

Details

partHard and partFuzzy must have the same number of rows, but, not necessarily, the same number of columns (i.e., the same number of clusters in the two partitions).

Value

jaccard.fValue of the fuzzy Jaccard index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

ARI.F,R.I.F,Fclust.compare

Examples

```r
## Not run:
require("mclust")
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
  Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,-:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## fuzzy Jaccard index
```
McDonald’s data

Description
Nutrition analysis of McDonald’s menu items.

Usage
data(Mc)

Format
A data.frame with 81 rows and 16 columns.

Details
Data are from McDonald’s USA Nutrition Facts for Popular Menu Items. A subset of menu items is reported. Beverages are excluded. In case of duplications, regular size or medium size information is reported. The variable Type is a factor the levels of which specify the kind of the menu items. Although some menu items could be well described by more than one level, only one level of the variable Type specifies each menu item. Percent Daily Values (%DV) are based on a 2,000 calorie diet. Some menu items are registered trademarks.

Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also
Fclust, FKM, FKM.ent, FKM.med

Examples
McDonald’s data
data(Mc)
names(Mc)
data normalization by dividing the nutrition facts by the Serving Size (column 1) for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
removing the column Serving Size
Mc=Mc[,-1]
p=(ncol(Mc)-1)
fuzzy k-means (excluded the factor column Type (last column))
```
clust.FKM=FKM(Mc[,1:p],k=6,m=1.5,stand=1)
```
new factor column `Cluster.FKM` containing the cluster assignment information
using fuzzy k-means
```
Mc[,ncol(Mc)+1]=factor(clust.FKM$clus[,1])
colnames(Mc)[ncol(Mc)]=("Cluster.FKM")
levels(Mc$Cluster.FKM)=paste("Clus FKM",1:clust.FKM$k,sep= " ")
```
contingency table (`Cluster.FKM` vs `Type`)
to assess whether clusters can be interpreted in terms of the levels of `Type`
```
table(Mc$Type,Mc$Cluster.FKM)
```
prototypes using the original units of measurement
```
clust.FKM$hraw=Hraw(clust.FKM$x,clust.FKM$H)
```
```
clust.FKM$hraw # fuzzy k-means with entropy regularization
# (excluded the factor column Type (last column))
```
It may take more than a few seconds
```
clust.FKM.ent=FKM.ent(Mc[,1:p],k=6,ent=3,RS=10,stand=1)
```
new factor column `Cluster.FKM.ent` containing the cluster assignment information
using fuzzy k-medoids with entropy regularization
```
Mc[,ncol(Mc)+1]=factor(clust.FKM.ent$clus[,1])
colnames(Mc)[ncol(Mc)]=("Cluster.FKM.ent")
levels(Mc$Cluster.FKM.ent)=paste("Clus FKM.ent",1:clust.FKM.ent$k,sep= " ")
```
contingency table (`Cluster.FKM.ent` vs `Type`)
to assess whether clusters can be interpreted in terms of the levels of `Type`
```
table(Mc$Type,Mc$Cluster.FKM.ent)
```
prototypes using the original units of measurement
```
clust.FKM.ent$hraw=Hraw(clust.FKM.ent$x,clust.FKM.ent$H)
```
```
clust.FKM.ent$hraw # End(Not run)
```
fuzzy k-medoids
(excluded the factor column Type (last column))
```
clust.FKM.med=FKM.med(Mc[,1:p],k=6,m=1.1,RS=10,stand=1)
```
new factor column `Cluster.FKM.med` containing the cluster assignment information
using fuzzy k-medoids with entropy regularization
```
Mc[,ncol(Mc)+1]=factor(clust.FKM.med$clus[,1])
colnames(Mc)[ncol(Mc)]=("Cluster.FKM.med")
levels(Mc$Cluster.FKM.med)=paste("Clus FKM.med",1:clust.FKM.med$k,sep= " ")
```
contingency table (`Cluster.FKM.med` vs `Type`)
to assess whether clusters can be interpreted in terms of the levels of `Type`
```
table(Mc$Type,Mc$Cluster.FKM.med)
```
prototypes using the original units of measurement
```
clust.FKM.med$hraw=Hraw(clust.FKM.med$x,clust.FKM.med$H)
```
```
clust.FKM.med$hraw # or, equivalently,
Mc[,cluster.FKM.med$medoid,1:p]
```
Description

Produces the modified partition coefficient index. The optimal number of cluster \(k \) is achieved when the index value is maximized.

Usage

\[
\text{MPC} \ (U)
\]

Arguments

\(U \) Membership degree matrix

Value

\(mpc \) Value of the modified partition coefficient index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

PC, PE, SIL, SIL.F, XB, Fclust, Mc

Examples

```
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
  Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,-1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## modified partition coefficient
mpc=MP(MPC(clust$U))
```
Description

NBA team statistics from the 2017-2018 regular season.

Usage

data(NBA)

Format

A data.frame with 30 rows and 22 columns.

Details

Data refer to some statistics of the NBA teams for the regular season 2017-2018. The teams are distinguished according to two classification variables.

The statistics are: number of wins (W), field goals made (FGM), field goals attempted (FGA), field goals percentage (FGP), 3 point field goals made (3PM), 3 point field goals attempted (3PA), 3 point field goals percentage (3PP), free throws made (FTM), free throws attempted (FTA), free throws percentage (FTP), offensive rebounds (OREB), defensive rebounds (DREB), assists (AST), turnovers (TOV), steals (STL), blocks (BLK), blocked field goal attempts (BLKA), personal fouls (PF), personal fouls drawn (PFD) and points (PTS). Moreover, reported are the conference (Conference) and the playoff appearance (Playoff).

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

Source

https://stats.nba.com/teams/traditional/

See Also

FKM

Examples

```r
## Not run:
data(NBA)
## A subset of variables is considered
X <- NBA[,c(4,7,10,11,12,13,14,15,16,17,20)]
clust.FKM=FKM(X,k=2:6,m=1.5,RS=50,stand=1,index="SIL.F",alpha=1)
summary(clust.FKM)
```
Description

Performs the Non-Euclidean Fuzzy Relational data Clustering algorithm.

Usage

```r
NEFRC(D, k, m, RS, startU, index, alpha, conv, maxit, seed)
```

Arguments

- `D` : Dissimilarity matrix
- `k` : An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- `m` : Parameter of fuzziness (default: 2)
- `RS` : Number of (random) starts (default: 1)
- `startU` : Rational starting point for the membership degree matrix `U` (default: no rational start)
- `conv` : Convergence criterion (default: 1e-9)
- `index` : Cluster validity index to select the number of clusters: `PC` (partition coefficient), `PE` (partition entropy), `MPC` (modified partition coefficient), `SIL` (silhouette), `SIL.F` (fuzzy silhouette) (default: "SIL.F")
- `alpha` : Weighting coefficient for the fuzzy silhouette index `SIL.F` (default: 1)
- `maxit` : Maximum number of iterations (default: 1e+6)
- `seed` : Seed value for random number generation (default: NULL)

Details

If `startU` is given, the argument `k` is ignored (the number of clusters is `ncol(startU)`).
If `startU` is given, the first element of `value`, `cput` and `iter` refer to the rational starting point.

Value

Object of class `fclust`, which is a list with the following components:

- `U` : Membership degree matrix
- `H` : Prototype matrix (NULL for NEFRC)
- `F` : Array containing the covariance matrices of all the clusters (NULL for NEFRC)
- `clus` : Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid Vector containing the indices of the medoid objects (NULL for NEFRC).
value Vector containing the loss function values for the RS starts
criterion Vector containing the values of clustering index
iter Vector containing the numbers of iterations for the RS starts
k Number of clusters
m Parameter of fuzziness
ent Degree of fuzzy entropy (NULL for NEFRC)
b Parameter of the polynomial fuzzifier (NULL for NEFRC)
vp Volume parameter (NULL for NEFRC)
delta Noise distance (NULL for NEFRC)
stand Standardization (Yes if stand=1, No if stand=0) (NULL for NEFRC)
Xca Data used in the clustering algorithm (NULL for NEFRC, D is used)
X Raw data (NULL for NEFRC)
D Dissimilarity matrix
call Matched call

Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also
NEFRC.noise, print.fclust, summary.fclust, plot.fclust

Examples
Not run:
require(cluster)
data("houseVotes")
X <- houseVotes[, -1]
D <- daisy(x = X, metric = "gower")
clust.NEFR <- NEFRC(D = D, k = 2:6, m = 2, index = "SIL.F")
summary(clust.NEFR)
plot(clust.NEFR)

End(Not run)
Description

Performs the Non-Euclidean Fuzzy Relational data Clustering algorithm. The noise cluster is an additional cluster (with respect to the \(k \) standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.

Usage

\[
\text{NEFRC.noise}(D, k, m, \delta, RS, \text{startU}, \text{index}, \alpha, \text{conv}, \text{maxit}, \text{seed})
\]

Arguments

- **D**
 Dissimilarity matrix
- **k**
 An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
- **m**
 Parameter of fuzziness (default: 2)
- **\delta**
 Noise distance (default: 2)
- **RS**
 Number of (random) starts (default: 1)
- **startU**
 Rational starting point for the membership degree matrix \(u \) (default: no rational start)
- **index**
 Cluster validity index to select the number of clusters: \(PC \) (partition coefficient), \(PE \) (partition entropy), \(MPC \) (modified partition coefficient), \(SIL \) (silhouette), \(SIL.F \) (fuzzy silhouette), (default: "SIL.F")
- **alpha**
 Weighting coefficient for the fuzzy silhouette index \(SIL.F \) (default: 1)
- **conv**
 Convergence criterion (default: 1e-9)
- **maxit**
 Maximum number of iterations (default: 1e+6)
- **seed**
 Seed value for random number generation (default: NULL)

Details

If \(\text{startU} \) is given, the argument \(k \) is ignored (the number of clusters is \(ncol(\text{startU}) \)).

If \(\text{startU} \) is given, the first element of value, \(cput \) and \(iter \) refer to the rational starting point.

Value

Object of class \texttt{fclust}, which is a list with the following components:

- **U**
 Membership degree matrix
- **H**
 Prototype matrix (NULL for \texttt{NEFRC.noise})
- **F**
 Array containing the covariance matrices of all the clusters (NULL for \texttt{NEFRC.noise})
clus Matrix containing the indices of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
medoid Vector containing the indices of the medoid objects (NULL for NEFRC.noise)
value Vector containing the loss function values for the RS starts
iter Vector containing the numbers of iterations for the RS starts
k Number of clusters
m Parameter of fuzziness
ent Degree of fuzzy entropy (NULL for NEFRC.noise)
b Parameter of the polynomial fuzzifier (NULL for NEFRC.noise)
vp Volume parameter (NULL for NEFRC.noise)
delta Noise distance (NULL for NEFRC.noise).
stand Standardization (Yes if stand=1, No if stand=0) (NULL for NEFRC.noise).
xca Data used in the clustering algorithm (NULL for NEFRC.noise), D is used
X Raw data (NULL for NEFRC.noise)
D Dissimilarity matrix
call Matched call

Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also
NEFRC.print.fclust, summary.fclust, plot.fclust

Examples
Not run:
require(cluster)
data("houseVotes")
X <- houseVotes[, -1]
D <- daisy(x = X, metric = "gower")
clust.NEFRC.noise <- NEFRC.noise(D = D, k = 2:6, m = 2, index = "SIL.F")
summary(clust.NEFRC.noise)
plot(clust.NEFRC.noise)
End(Not run)
Description

Produces the partition coefficient index. The optimal number of cluster \(k \) is achieved when the index value is maximized.

Usage

PC (U)

Arguments

U
Membership degree matrix

Value

pc
Value of the partition coefficient index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

PE, MPC, SIL, SIL.F, XB, Fclust, Mc

Examples

```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
  Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## partition coefficient
pc=PC(clust$U)
```
Description

Produces the partition entropy index. The optimal number of cluster k is achieved when the index value is minimized.

Usage

PE (U, b)

Arguments

U Membership degree matrix
b Logarithmic base (default: exp(1))

Value

pe Value of the partition entropy index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

PC, MPC, SIL, SIL.F, XB, Fclust, Mc

Examples

```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
  Mc[,j]=Mc[,j]/Mc[,,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## partition entropy index
pe=PE(clust$U)
```
Description

Plot method for class `fclust`. The function creates a scatter plot visualizing the cluster structure. The objects are represented by points in the plot using observed variables or principal components.

Usage

```r
## S3 method for class fclust
## S3 method for class 'fclust'
plot(x, v1v2, colclus, umin, ucex, pca, ...)
```

Arguments

- `x` Object of class `fclust`
- `v1v2` Vector with two elements specifying the numbers of the variables (or of the principal components) to be plotted (default: `1:2`); in case of relational data, the argument is ignored
- `colclus` Vector specifying the color palette for the clusters (default: `palette(rainbow(k))`)
- `umin` Lowest maximal membership degree such that an object is assigned to a cluster (default: `0`)
- `ucex` Logical value specifying if the points are magnified according to the maximal membership degree (if `ucex=TRUE`) (default: `ucex=FALSE`)
- `pca` Logical value specifying if the objects are represented using principal components (if `pca=TRUE`) (default: `pca=FALSE`); in case of relational data, the argument is ignored
- `...` Additional arguments arguments for `plot`

Details

In the scatter plot the objects are represented by circles (pch=16) and the prototypes by stars (pch=8) using observed variables (if `pca=FALSE`) or principal components (if `pca=TRUE`), the numbers of which are specified in `v1v2`. Their colors differ for every cluster according to `colclus`. Objects such that their maximal membership degrees are lower than `umin` are in black. The sizes of the circles depends on the maximal membership degrees of the corresponding objects if `ucex=TRUE`. Also note that principal components are extracted using standardized data.

In case of relational data, the first two components resulting from Non-metric Multidimensional Scaling performed using the package `MASS` are used.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
See Also

VIFCR, VAT, VCV, VCV2, Fclust, print.fclust, summary.fclust, Mc

Examples

```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
  Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## Scatter plot of Calories vs Cholesterol (mg)
names(Mc)
plot(clust,v1v2=c(1,5))
## Scatter plot of Calories vs Cholesterol (mg) using gray levels for the clusters
plot(clust,v1v2=c(1,5),colclus=gray.colors(6))
## Scatter plot of Calories vs Cholesterol (mg)
## coloring in black objects with maximal membership degree lower than 0.5
plot(clust,v1v2=c(1,5),umin=0.5)
## Scatter plot of Calories vs Cholesterol (mg)
## coloring in black objects with maximal membership degree lower than 0.5
## and magnifying the points according to the maximal membership degree
plot(clust,v1v2=c(1,5),umin=0.5,ucex=TRUE)
## Scatter plot using the first two principal components and
## coloring in black objects with maximal membership degree lower than 0.3
plot(clust,v1v2=1:2,umin=0.3,pca=TRUE)
```

Description

Print method for class fclust.

Usage

```r
## S3 method for class fclust
## S3 method for class 'fclust'
print(x, ...)
```

Arguments

- `x` Object of class fclust
- `...` Additional arguments for `print`
Details

The function displays the number of objects, the number of clusters, the closest hard clustering partition (objects assigned to the clusters with the highest membership degree) and the membership degree matrix (rounded).

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

fclust, summary.fclust, plot.fclust, unemployment

Examples

unemployment data
data(unemployment)
fuzzy k-means
unempFKM=FKM(unemployment,k=3,stand=1)
unempFKM

RI.F

Fuzzy Rand index

Description

Produces the fuzzy version of the Rand index between a hard (reference) partition and a fuzzy partition.

Usage

RI.F(partHard, partFuzzy, t_norm)

Arguments

partHard (Reference) partition matrix or data.frame
partFuzzy Fuzzy membership degree matrix or data.frame
 t_norm Type of the triangular norm: "minimum" (minimum triangular norm), "triangular product" (product norm) (default: "minimum")

Details

partHard and partFuzzy must have the same number of rows, but, not necessarily, the same number of columns (i.e., the same number of clusters in the two partitions).

Value

ri.f Value of the fuzzy adjusted Rand index
Silhouette index

Description

Produces the silhouette index. The optimal number of cluster \(k \) is achieved when the index value is maximized.

Usage

\[
\text{SIL} (\text{Xca, U, distance})
\]
Arguments

\(X_{ca}\) Matrix or data.frame
\(U\) Membership degree matrix
\(\text{distance}\) If \(\text{distance}=\text{TRUE}\), \(X_{ca}\) is assumed to be a distance matrix (default: \text{FALSE})

Details

\(X_{ca}\) should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then \(SIL\) should be computed using the same standardized data. Set \(\text{distance}=\text{TRUE}\) if \(X_{ca}\) is a distance matrix.

Value

\(\text{sil.obj}\) Vector containing the silhouette indices for all the objects
\(\text{sil}\) Value of the silhouette index (mean of \(\text{sil.obj}\))

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

\(\text{PC, PE, MPC, SIL.F, XB, Fclust, Mc}\)

Examples

```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
    Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## silhouette index
sil=SIL(clust$Xca,clust$U)
```
Description

Produces the fuzzy silhouette index. The optimal number of cluster \(k \) is achieved when the index value is maximized.

Usage

```r
SIL.F(xca, U, alpha, distance)
```

Arguments

- `xca`: Matrix or data.frame
- `U`: Membership degree matrix
- `alpha`: Weighting coefficient (default: 1)
- `distance`: If `distance=TRUE`, `xca` is assumed to be a distance matrix (default: FALSE)

Details

`xca` should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then `SIL.F` should be computed using the same standardized data. Set `distance=TRUE` if `xca` is a distance matrix.

Value

`sil.f` Value of the fuzzy silhouette index

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

`PC`, `PE`, `MPC`, `SIL`, `XB`, `Fclust`, `Mc`
Examples

```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1) for (j in 2: (nrow(Mc)-1)) Mc[, j] = Mc[, j] / Mc[, 1]
## removing the column Serving Size
Mc = Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust = FKM(Mc[, 1: (nrow(Mc)-1)], k = 6, m = 1.5, stand = 1)
## fuzzy silhouette index
sil.f = SIL.F(clust$Xca, clust$U)
```

Description

Summary method for class `fclust`.

Usage

```r
## S3 method for class fclust
## S3 method for class 'fclust'
summary(object, ...)
```

Arguments

- **object**: Object of class `fclust`
- **...**: Additional arguments for `summary`

Details

The function displays the number of objects, the number of clusters, the cluster sizes, the closest hard clustering partition (objects assigned to the clusters with the highest membership degree), the cluster memberships (using the closest hard clustering partition), the number of objects with unclear assignment (when the maximal membership degree is lower than 0.5), the objects with unclear assignment and the cluster sizes without unclear assignments (only if objects with unclear assignment are present), the cluster summary (for every cluster: size, minimal membership degree, maximal membership degree, average membership degree, number of objects with unclear assignment) and the Euclidean distance matrix for the cluster prototypes.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
synt.data

See Also

Fclust, print.fclust, plot.fclust, unemployment

Examples

```r
## unemployment data
data(unemployment)
## fuzzy k-means
unempFKM=FKM(unemployment,k=3,stand=1)
summary(unempFKM)
```

```

```

synt.data Synthetic data

Description

Synthetic dataset with 2 non-spherical clusters.

Usage

data(synt.data)

Format

A matrix with 302 rows and 2 columns.

Details

Although two clusters are clearly visible, fuzzy k-means fails to discover them. The Gustafson and Kessel-like fuzzy k-means should be used for finding the known-in-advance clusters.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

Fclust, FKM, FKM.gk, plot.fclust

Examples

```r
## Not run:
## synthetic data
data(synt.data)
plot(synt.data)
## fuzzy k-means
syntFKM=FKM(synt.data)
## Gustafson and Kessel-like fuzzy k-means
syntFKM.gk=FKM.gk(synt.data)
```
synt.data2

Description

Synthetic dataset with 2 non-spherical clusters.

Usage

```r
data(synt.data2)
```

Format

A matrix with 240 rows and 2 columns.

Details

Although three clusters are clearly visible, Gustafson and Kessel-like fuzzy k-means clustering algorithm `fkm.gk` fails due to singularity of some covariance matrix. The Gustafson, Kessel and Babuska-like fuzzy k-means clustering algorithm `fkm.gkb` should be used to avoid singularity problem.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

`fclust`, `fkm.gk`, `fkm.gkb`, `plot.fclust`
Examples

```r
data(synt.data2)
plot(synt.data2)

## Gustafson and Kessel-like fuzzy k-means
syntFKM.gk=FKM.gk(synt.data2, k = 3, RS = 1, seed = 123)
## Gustafson, Kessel and Babuska-like fuzzy k-means
syntFKM.gkb=FKM.gkb(synt.data2, k = 3, RS = 1, seed = 123)
```

unemployment

Unemployment data

Description

Unemployment data about some European countries in 2011.

Usage

`data(unemployment)`

Format

A data.frame with 32 rows and 3 columns.

Details

The source is Eurostat news-release 104/2012 - 4 July 2012. The 32 observations are European countries: BELGIUM, BULGARIA, CZECHREPUBLIC, DENMARK, GERMANY, ESTONIA, IRELAND, GREECE, SPAIN, FRANCE, ITALY, CYPRUS, LATVIA, LITHUANIA, LUXEMBOURG, HUNGARY, MALTA, NETHERLANDS, AUSTRIA, POLAND, PORTUGAL, ROMANIA, SLOVENIA, SLOVAKIA, FINLAND, SWEDEN, UNITED KINGDOM, ICELAND, NORWAY, SWITZERLAND, CROATIA, TURKEY. The 3 variables are: the total unemployment rate, defined as the percentage of unemployed persons aged 15-74 in the economically active population (Variable 1); the youth unemployment rate, defined as the unemployment rate for young people aged between 15 and 24 (Variable 2); the long-term unemployment share, defined as the Percentage of unemployed persons who have been unemployed for 12 months or more (Variable 3). Non-spherical clusters seem to be present in the data. The Gustafson and Kessel-like fuzzy k-means should be used for finding them.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

See Also

`Fclust, FKM, FKM.gk`
Examples

```r
## unemployment data
data(unemployment)
## fuzzy k-means (only spherical clusters)
unempFKM=FKM(unemployment,k=3)
## Gustafson and Kessel-like fuzzy k-means (non-spherical clusters)
unempFKM.gk=FKM.gk(unemployment,k=3,RS=10)
```

VAT

Visual Assessment of (Cluster) Tendency

Description

Digital intensity image to inspect the number of clusters

Usage

```r
VAT (Xca)
```

Arguments

- **Xca**: Matrix or data.frame (usually data to be used in the clustering algorithm)

Details

Each cell refers to a dissimilarity between a pair of objects. Small dissimilarities are represented by dark shades and large dissimilarities are represented by light shades. In the plot the dissimilarities are reorganized in such a way that, roughly speaking, (darkly shaded) diagonal blocks correspond to clusters in the data. Therefore, k dark blocks along its main diagonal suggest that the data contain k (as yet unfound) clusters and the size of each block represents the approximate size of the cluster.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

- `plot.fclust`, `VIFCR`, `VCV`, `VCV2`, `Mc`
Examples

```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
  Mc[,j]=Mc[,j]/Mc[,1]
## data standardization (after removing the column Serving Size)
Mc=scale(Mc[,1:(ncol(Mc)-1)],center=TRUE,scale=TRUE)[,]
## plot of VAT
VAT(Mc)
```

VCV

Visual Cluster Validity

Description

Digital intensity image generated using the prototype matrix (and the membership degree matrix) to do cluster validation. The function also plots the VAT image.

Usage

```
VCV (Xca, U, H, which)
```

Arguments

- **Xca**
 Matrix or data.frame (usually data used in the clustering algorithm)
- **U**
 Membership degree matrix
- **H**
 Prototype matrix
- **which**
 If a subset of the plots is required, specify a subset of the numbers 1:2 (default: 1:2).

Details

Plot 1 (which=1): VAT. Each cell refers to a dissimilarity between a pair of objects. Small dissimilarities are represented by dark shades and large dissimilarities are represented by light shades. In the plot the dissimilarities are reorganized in such a way that, roughly speaking, (darkly shaded) diagonal blocks correspond to clusters in the data. Therefore, \(k \) dark blocks along its main diagonal suggest that the data contain \(k \) (as yet unfound) clusters and the size of each block represents the approximate size of the cluster.

Plot 2 (which=2): VCV. Each cell refers to a dissimilarity between a pair of objects computed with respect to the cluster prototypes. Small dissimilarities are represented by dark shades and large dissimilarities are represented by light shades. In the plot the dissimilarities are organized by reordering the clusters (the original first cluster is the first reordered cluster and the remaining clusters are reordered so that (new) cluster \(c+1 \) is the nearest of the remaining clusters to (newly indexed) cluster \(c \) and the objects (in accordance with decreasing membership degrees). If \(k \) dark blocks
along its main diagonal are visible, then a k-cluster structure is revealed. Note that the actual number of clusters can be revealed even when a larger number of clusters is used. This suggests that the correct value of k can sometimes be found by running the algorithm with a large value of k, and then ascertaining its correct value from the visual evidence in the VCV image.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

plot.fclust, VIFCR, VAT, VCV2, Mc

Examples

```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)], k=6, m=1.5, stand=1)
## plots of VAT and VCV
VCV(clust$Xca, clust$U, clust$H)
## plot of VCV
VCV(clust$Xca, clust$U, clust$H, 2)
```

VCV2

(New) Visual Cluster Validity

Description

Digital intensity image generated using the membership degree matrix to do cluster validation. The function also plots the VAT image.

Usage

VCV2 (Xca, U, which)
Arguments

Xca Matrix or data.frame (usually data used in the clustering algorithm)
U Membership degree matrix
which If a subset of the plots is required, specify a subset of the numbers 1:2 (default: 1:2).

Details

Plot 1 (which=1): VAT. Each cell refers to a dissimilarity between a pair of objects. Small dissimilarities are represented by dark shades and large dissimilarities are represented by light shades. In the plot the dissimilarities are reorganized in such a way that, roughly speaking, (darkly shaded) diagonal blocks correspond to clusters in the data. Therefore, \(k \) dark blocks along its main diagonal suggest that the data contain \(k \) (as yet unfound) clusters and the size of each block represents the approximate size of the cluster.

Plot 2 (which=2): VCV2. Each cell refers to a dissimilarity between a pair of objects computed with respect to the cluster membership degrees. Small dissimilarities are represented by dark shades and large dissimilarities are represented by light shades. In the plot the dissimilarities are reorganized by using the VAT reordering. If \(k \) dark blocks along its main diagonal are visible, then a \(k \)-cluster structure is revealed. Note that the actual number of clusters can be revealed even when a larger number of clusters is used. This suggests that the correct value of \(k \) can sometimes be found by running the algorithm with a large value of \(k \), and then ascertaining its correct value from the visual evidence in the VCV2 image.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also

plot.fclust, VIFCR, VAT, VCV, Mc

Examples

```r
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(nrow(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
```
VIFCR

Visual inspection of fuzzy clustering results

Description

Plots for validation of fuzzy clustering results. Three plots (selected by `which`) are available.

Usage

```r
VIFCR (fclust.obj, which)
```

Arguments

- **fclust.obj**: Object of class `fclust`
- **which**: If a subset of the plots is required, specify a subset of the numbers `1:3` (default: `1:3`).

Details

1. **Plot 1** (`which=1`). Histogram of the membership degrees setting `breaks=seq(from=0, to=1, by=0.1)`. The frequencies are scaled so that the heights of the first and the latter rectangles are the same in the ideal case of crisp (non-fuzzy) memberships. The fuzzy clustering solution should be such that the heights of the first and the latter rectangles are high and those of the rectangles in the middle are low. High heights of rectangles in the middle denote the presence of ambiguous membership degrees. This is an indicator for a non-optimal clustering result.

2. **Plot 2** (`which=2`). Scatter plot of the objects at the co-ordinates `(u1,u2)`. For each object, `u1` and `u2` denote, respectively, the highest and the second highest membership degrees. All points lie within the triangle with vertices `(0,0), (0.5,0.5) and (1,0)`. In the ideal case of (almost) crisp membership degrees all points are near the vertex `(1,0)`. Points near the vertex `(0.5,0.5)` highlight ambiguous objects shared by two clusters. Points near the vertex `(0,0)` are usually outliers characterized by low membership degrees to all clusters (provided that the noise approach is considered).

3. **Plot 3** (`which=3`). For each cluster, scatter plot of the of the objects at the co-ordinates `(dc,uc)`. For each object, `dc` is the squared Euclidean distance between the object and the cluster prototype and `uc` is the membership degree of the object to the cluster. The ideal case is such that points are in the upper left area or in the lower right area. In fact, this highlights high membership degrees for small distances and low membership degrees for large distances.

Author(s)

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
XB

References

See Also
plot.fclust, VAT, VCV, VCV2, unemployment

Examples
unemployment data
data(unemployment)
fuzzy k-means
unempFKM=FKM(unemployment,k=3,stand=1)
all plots
VIFCR(unempFKM)
plots 1 and 3
VIFCR(unempFKM,c(1,3))

XB Xie and Beni index

Description
Produces the Xie and Beni index. The optimal number of cluster k is achieved when the index value is minimized.

Usage
XB (Xca, U, H, m)

Arguments
- Xca: Matrix or data.frame
- U: Membership degree matrix
- H: Prototype matrix
- m: Parameter of fuzziness (default: 2)

Details
Xca should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then XB should be computed using the same standardized data. m should be the same parameter of fuzziness used in the clustering algorithm.

Value
xb Value of the Xie and Beni index
Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

References

See Also
PC, PE, MPC, SIL, SIL.F, Fclust, Mc

Examples

```r
### McDonald's data
data(Mc)
names(Mc)
### data normalization by dividing the nutrition facts by the Serving Size (column 1) for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
### removing the column Serving Size
Mc=Mc[,-1]
### fuzzy k-means
### (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
### Xie and Beni index
xb=XB(clust$Xca,clust$U,clust$H,clust$m)
```
Index

Topic datasets
- synt.data2, 72

Topic data
- butterfly, 4
- houseVotes, 50
- Mc, 54
- NBA, 57
- synt.data, 71
- unemployment, 73

Topic multivariate
- ARI.F, 3
- butterfly, 4
- cl.memb, 5
- cl.memb.H, 6
- cl.memb.t, 7
- cl.size, 8
- cl.size.H, 9
- Fclust, 10
- Fclust.compare, 11
- Fclust.index, 12
- FKM, 13
- FKM.ent, 15
- FKM.ent.noise, 18
- FKM.gk, 20
- FKM.gk.ent, 22
- FKM.gk.ent.noise, 25
- FKM.gk.noise, 27
- FKM.gkb, 29
- FKM.gkb.ent, 32
- FKM.gkb.ent.noise, 34
- FKM.gkb.noise, 37
- FKM.med, 39
- FKM.med.noise, 41
- FKM.noise, 43
- FKM.pf, 46
- FKM.pf.noise, 48
- houseVotes, 50
- Hraw, 51
- JACCARD.F, 52

- Mc, 54
- MPC, 55
- NBA, 57
- NEFRC, 58
- NEFRC.noise, 60
- PC, 62
- PE, 63
- plot.fclust, 64
- print.fclust, 65
- RI.F, 66
- SIL, 67
- SIL.F, 69
- summary.fclust, 70
- synt.data, 71
- unemployment, 73
- VAT, 74
- VCV, 75
- VCV2, 76
- VIFCR, 78
- XB, 79

- ARI.F, 3, 12, 53, 67
- butterfly, 4, 20, 43, 45
- cl.memb, 5, 6, 7
- cl.memb.H, 5, 6, 7
- cl.memb.t, 5, 6, 7
- cl.size, 8, 9
- cl.size.H, 8, 9

- Fclust, 4, 10, 13, 15, 17, 20, 22, 24, 27, 29, 31, 34, 36, 39, 41, 43, 45, 47, 50, 52, 54, 56, 62, 63, 65, 66, 68, 69, 71–73, 80
- Fclust.compare, 3, 11, 53, 67
- Fclust.index, 10, 12, 15, 17, 20, 22, 24, 27, 29, 31, 34, 36, 39, 41, 43, 45, 47, 50, 54

- FKM, 4, 10, 13, 45, 54, 57, 71, 73
- FKM.ent, 10, 15, 20, 54
FKM.ent.noise, 10, 17, 18
FKM.gk, 10, 20, 31, 71–73
FKM.gk.ent, 10, 22, 34
FKM.gk.ent.noise, 10, 25, 36
FKM.gk.noise, 10, 27, 39
FKM.gkb, 10, 22, 29, 72
FKM.gkb.ent, 10, 24, 32
FKM.gkb.ent.noise, 10, 27, 34
FKM.gkb.noise, 10, 29, 37
FKM.med, 10, 39, 43, 54
FKM.med.noise, 10, 41, 41
FKM.noise, 10, 43, 43
FKM.pf, 10, 46, 50
FKM.pf.noise, 10, 47, 48

houseVotes, 50
Hraw, 51

JACCARD.F, 3, 12, 52, 67

Mc, 10, 13, 15, 17, 41, 47, 50, 54, 56, 62, 63, 65, 68, 69, 74, 76, 77, 80
MPC, 13, 55, 62, 63, 68, 69, 80

NBA, 57
NEFRC, 51, 58, 61
NEFRC.noise, 51, 59, 60

PC, 13, 56, 62, 63, 68, 69, 80
PE, 13, 56, 62, 63, 68, 69, 80
plot, 64
plot.fclust, 10, 15, 17, 20, 22, 24, 27, 29, 31, 34, 36, 39, 41, 43, 45, 47, 50, 59, 61, 64, 66, 71, 72, 74, 76, 77, 79
print, 65
print.fclust, 10, 15, 17, 20, 22, 24, 27, 29, 31, 34, 36, 39, 41, 43, 45, 47, 50, 59, 61, 63, 65, 71

RI.F, 3, 12, 53, 66

SIL, 13, 56, 62, 63, 67, 69, 80
SIL.F, 13, 56, 62, 63, 68, 69, 80
summary, 70
summary.fclust, 10, 15, 17, 20, 22, 24, 27, 29, 31, 34, 36, 39, 41, 43, 45, 47, 50, 59, 61, 63, 65, 66, 70
synt.data, 71
synt.data2, 72