Package ‘fcr’

March 13, 2018

Title Functional Concurrent Regression for Sparse Data
Version 1.0
Author Andrew Leroux [aut, cre],
 Luo Xiao [aut, cre],
 Ciprian Crainiceanu [aut],
 William Checkly [aut]
Maintainer Andrew Leroux <aleroux2@jhu.edu>
Description Dynamic prediction in functional concurrent regression with an application to child growth. Extends the pffr() function from the 'refund' package to handle the scenario where the functional response and concurrently measured functional predictor are irregularly measured. Leroux et al. (2017), Statistics in Medicine, <doi:10.1002/sim.7582>.
Depends R (>= 3.2.4), face (>= 0.1), mgcv (>= 1.7), fields (>= 9.0)
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2018-03-13 15:45:22 UTC

R topics documented:

 fcr-package ... 2
 content ... 2
 fcr ... 3
 plot.fcr .. 6
 predict.fcr ... 7

Index

 8
Dynamic prediction in functional concurrent regression with sparse functional covariates

Description
This package contains the functions for fitting dynamic functional concurrent regression with sparse data.

Notation
Let y_{ij} denote some outcome measured at t_{ij} on the functional domain (e.g. time) for subject i at observation j. We focus on fitting models of the form

$$y_{ij} = f_0(t_{ij}) + f_1(t_{ij})X_{ij} + \cdots + b_i(t_{ij}) + \epsilon_{ij}$$

Estimation
Estimation is performed using an iterative procedure described in Leroux et. al (2017). Initially, a model is fit without $b_i(t_{ij})$. Using the residuals from this initial fit, the covariance function is estimated. The model is then re-fit using this covariance function. This procedure can be iterated as many times as desired.

References

Example dataset
Description
Simulated data from the CONTENT dataset. Data contains information on child growth as measured by WHO defined Z-scores as well as gender.

Format
A dataframe with 8 variables:

- Y Observed HAZ score
- Ytrue True HAZ score
- waz.true True WAZ score
- waz Observed WAZ score
Male Sex. 1 if male, 0 if female.

argvals time of observations standardized to be in the interval [0,1]

subj Subject ID

include Indicator for out of sample prediction used in the vignette

References

Description

This function implements functional concurrent regression for sparse functional responses with both functional and scalar covariates. This function is a wrapper for mgcv's `gam/bam`.

Usage

```r
fcr(formula, argvals, subj, argvals.new = NULL, data = NULL, niter = 1,
    sp = FALSE, nPhi = NULL, use_bam = FALSE, discrete = FALSE,
    face.args = list(knots = 12, lower = -3, pve = 0.95), ...)
```

Arguments

- **formula** formula will accept any input formula which is valid for `gam`. The formula should only include terms not associated with the random function intercept $b_i(t_{ij})$. See Examples.
- **argvals** a string indicating the functional domain variable name in data
- **subj** a string indicating the unique subject identifier name in data
- **argvals.new** new values of the functional domain in to predict using `face.sparse`, optional if one desires to predict at points of the functional domain not included in the data fitting procedure, they must be supplied in this argument.
- **data** dataframe including all variables of interest. Must not have any missing data for variables used in model fitting. data must also not contain any variables named: "g", "phi" followed by any numbers, or "sp" followed by any numbers. These names are reserved for the fitting procedure.
- **niter** number of times to iterate the covariance estimation
- **sp** logical argument indicating whether smoothing parameters for random effects should be supplied to `gam` or `bam` using estimates from `face.sparse` (TRUE), or whether smoothing parameters for random effects should be estimated by mgcv (FALSE). Defaults to FALSE.
number of random effects to include in final model (i.e., number of eigenfunctions of the covariance function). Default value (NULL) results in the use of all estimated random effects.

logical argument indicating whether to use \texttt{gam} or \texttt{bam}. For moderate or large number of eigenfunctions it is recommended to use \texttt{bam}.

logical argument indicating whether whether to supple discrete = TRUE argument to \texttt{bam}. This argument may reduce computation time, but is currently listed as “experimental”. Not available when use_bam = FALSE. Defaults to FALSE.

list of arguments to pass to \texttt{faceNsparse}. Can not pass the arguments “data”, “newdata”, “center” or “argvals.new” as these are determined by the procedure.

arguments to be passed to \texttt{mgcv::gam()}/\texttt{bam()}

The models fit are of the form

\[y = f_0(t_{ij}) + f_1(t_{ij})X_{ij} + ... + b_i(t_{ij}) + \epsilon_{ij} \]

Note that this function will accept any valid formula for \texttt{gam}/\texttt{bam}. However, only the identity link function is available at this time. See the package vignettes for additional descriptions of dynamic prediction and the class of models fit by this function.

An object of class \texttt{fcr} containing five elements

fit An object corresponding to the fitted model from the mgcv package

\texttt{face.object} An object corresponding to the estimated covariance features

runtime Model fitting time

argvals Character scalar corresponding the name of the functional domain variable

runtime logical scalar corresponding to sp argument used in model fitting

Examples

data <- content
smoothing parameters
k <- 12 # number of interior knots for fpca (results in k + 3 basis functions)
K <- 15 # dimension of smooth for time varying coefficients

functional domain where we need predictions
tnew <- sort(unique(data$argvals))

###
Step 1: Smooth time-varying covariate
###
dat.waz <- data.frame('y' = data$waz, "subj" = data$subj, argvals = data$argvals)
fit.waz <- face.sparse(dat.waz, newdata = dat.waz, knots = k, argvals.new = tnew)
data$wazPred <- fit.waz$y.pred

#######################################
Step 2: Fit fcr
#######################################
fit <- fcr(formula = y ~ s(argvals, k=K, bs="ps") +
 s(argvals, by=male, k=K, bs="ps") +
 s(argvals, by=wazPred, bs="ps"),
 argvals = "argvals", subj="subj", data=data, use_bam=TRUE, argvals.new=tnew,
 face.args = list(knots=k, pve=0.99))

plot covariance features
plot(fit, plot.covariance=TRUE)

plot coefficient functions and qq plots for random effects
plot(fit)

#####################################
Step 3: Prediction
#####################################
data frames for in-sample and dynamic predictions
data_dyn <- data_in <- data

change subject IDs to values not used in model fitting
for dynamic prediction
data_dyn$subj <- data_dyn$subj + 1000

make all observations beyond 0.5 NA in both data frames
and dynamically predict the concurrent covariate in
dynamic prediction
inx_na <- which(data_dyn$argvals > 0.5)
data_dyn$wazPred <- predict(fit.waz,
 newdata= data.frame("subj" = data_dyn$subj,
 "argvals" = data_dyn$argvals,
 "y" = data_dyn$Y)$y.pred

data_in$Y[inx_na] <- NA

in sample and dynamic predictions on the same subjects
insample_preds <- predict(fit, newdata = data)
dynamic_preds <- predict(fit, newdata = data_dyn)

plot.fcr

Plotting an fcr model fit

Description

Plot method for fcr. Takes a fitted fcr object and plots either the features of the covariance function, or the smooth terms and qqplots for random effects. See plot.gam for further details.

Usage

S3 method for class 'fcr'
plot(x, plot.covariance = FALSE, ...)

Arguments

x
 object of class fcr.
plot.covariance
 logical argument, indicates whether to plot features of the covariance function (correlation function, variance function, and eigenfunctions of the covariance function). If FALSE, will call plot.gam on the fitted gam/bam object. See plot.gam for additional details. Defaults to FALSE.
...
 additional arguments to be passed to plot.gam.

Value

If plot.covariance is FALSE, this function will silently return a list of the data used to create the plots.

Examples

see examples in fcr
Description

Predict method for fcr

Usage

S3 method for class 'fcr'
predict(object, newdata, type = "link", ...)

Arguments

- **object**: object of class fcr.
- **newdata**: data frame including all predictors used in the model fitting procedure. Missing values for the responses are OK. Missing covariate values will result in pairwise deletion with a warning message.
- **type**: defaults to link (i.e. response). See predict.gam for additional information.
- **...**: additional arguments to be passed to predict.gam

Value

An object containing two elements

- **dynamic_predictions** Predictions corresponding to dynamic predictions (i.e. subject ids not included in the original fitting). Note that these predictions are slower and do not incorporate the estimated covariance between random effects and fixed effects in making predictions. This is different than the in sample predictions which account for this estimated covariance. See predict.gam for more information.
 - fitted.values
 - y.pred fitted \hat{y}
 - se.fit standard errors used to create confidence intervals for \hat{y}, $\sqrt{\text{var}(\hat{y})}$
 - se.fit.p standard errors used for creating prediction intervals for \hat{y}, $\sqrt{\text{var}(\hat{y}) + \sigma^2}$
 - random subject specific random effects b_i
 - scores matrix of BLUPs for subjects’ eigenscores
 - data newdata supplied to the function

- **insample_predictions** Predictions for subject ids included in the original fitting. This returns all output from the relevant predict.gam/predict.bam call.

Examples

see examples in fcr
Index

bam, 3, 4
content, 2
dynfcr (fcr-package), 2
face.sparse, 3, 4
fcr, 3, 6, 7
fcr-package, 2
gam, 3, 4
plot.fcr, 6
plot.gam, 6
predict.bam, 7
predict.fcr, 7
predict.gam, 7