Package ‘fda.usc’

December 16, 2019

Type Package

Title Functional Data Analysis and Utilities for Statistical Computing

Version 2.0.1

Date 2019-12-13

Depends R (>= 2.10), fda, splines, MASS, mgcv

Imports methods, grDevices, graphics, utils, stats, nlme, doParallel, parallel, iterators, foreach

Suggests rmarkdown

Description Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.

License GPL-2

URL https://github.com/movedo5/fda.usc,
 http://www.jstatsoft.org/v51/i04/

BugReports https://github.com/movedo5/fda.usc

LazyLoad yes

Author Manuel Febrero Bande [aut],
 Manuel Oviedo de la Fuente [aut, cre],
 Pedro Galeano [ctb],
 Alicia Nieto [ctb],
 Eduardo Garcia-Portugues [ctb]

Maintainer Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

NeedsCompilation yes

Repository CRAN

Encoding UTF-8

RoxygenNote 7.0.2

Date/Publication 2019-12-16 16:00:08 UTC
R topics documented:

- fda.usc-package .. 4
- accuracy ... 9
- aemet ... 10
- classif-DD .. 11
- classif.depth ... 15
- classif.gkam .. 17
- classif.glm .. 19
- classif.gsam .. 21
- classif.kfold ... 24
- classif.ML .. 26
- classif.np .. 30
- cond.F ... 32
- cond.mode .. 34
- cond.quantile .. 36
- create.fdata.basis .. 38
- CV.S .. 40
- dcor.xy .. 41
- depth.fdata .. 44
- depth.mdata .. 48
- depth.mfdata .. 51
- Descriptive ... 54
- dev.S .. 57
- dfv.test .. 60
- dis.cos.cor .. 63
- fanova.hetero .. 64
- fanova.onefactor .. 66
- fanova.RPm .. 67
- fda.usc.internal .. 70
- fdata .. 73
- fdata.bootstrap ... 74
- fdata.cen .. 76
- fdata.deriv .. 77
- fdata.methods .. 79
- fdata2fd ... 80
- fdata2pc ... 82
- fdata2pls ... 83
- FDR ... 85
- flm.Ftest .. 86
- flm.test .. 88
- fregre.basis ... 93
- fregre.basis.cv .. 96
- fregre.basis.fr .. 99
- fregre.bootstrap .. 102
- fregre.gkam .. 104
- fregre.glm .. 107
- fregre.gls .. 110
R topics documented:

- fregre.gsam .. 112
- fregre.gsam.vs ... 115
- fregre.igls .. 118
- fregre.lm .. 120
- fregre.np .. 123
- fregre.np.cv .. 125
- fregre.pc .. 128
- fregre.pc.cv ... 131
- fregre.plm .. 133
- fregre.pls .. 136
- fregre.pls.cv .. 139
- GCCV.S ... 141
- GCV.S ... 143
- h.default .. 145
- influence.fregre.fd ... 146
- influence_quan .. 147
- inprod.fdata .. 149
- int.simpson .. 150
- Kernel ... 151
- Kernel.asymmetric ... 153
- Kernel.integrate ... 154
- kmeans.center.ini ... 155
- lda ... 157
- LMDC.select .. 159
- MCO ... 162
- metric.dist .. 164
- metric.DTW ... 165
- metric.hausdorff ... 166
- metric.kl .. 167
- metric.ldata .. 169
- metric.lp .. 170
- na.omit.fdata .. 172
- norm.fdata .. 173
- ops.fda.usc .. 175
- optim.basis ... 176
- optim.np .. 178
- Outliers.fdata .. 181
- P.penalty .. 183
- PCVM.statistic .. 184
- phoneme .. 186
- plot.fdata .. 187
- poblenou .. 189
- predict.classif ... 191
- predict.classif.DD ... 192
- predict.fregre.fd .. 194
- predict.fregre.fr ... 196
- predict.fregre.gkam .. 198
- predict.fregre.glm .. 201
Description

This package carries out exploratory and descriptive analysis of functional data exploring its most important features: such as depth measurements or functional outliers detection, among others. It also helps to explain and model the relationship between a dependent variable and independent (regression models) and make predictions. Methods for supervised or unsupervised classification of a set of functional data regarding a feature of the data are also included. Finally, it can perform analysis of variance model (ANOVA) for functional data.

Details

Sections of fda.usc-package:

A.- Functional Data Representation
B.- Functional Outlier Detection
C.- Functional Regression Model
D.- Functional Supervised Classification
E.- Functional Non-Supervised Classification
F.- Functional ANOVA
G.- Auxiliary functions
A.- Functional Data Representation
The functions included in this section allow to define, transform, manipulate and represent a functional dataset in many ways including derivatives, non-parametric kernel methods or basis representation.

```
fdata
plot.fdata
fdata.deriv
CV.S
GCV.S
optim.np
optim.basis
S.NW
S.LLR
S.basis
Var.e
Var.y
```

B.- Functional Depth and Functional Outlier Detection
The functional data depth calculated by the different depth functions implemented that could be use as a measure of centrality or outlyingness.

B.1-Depth methods **Depth**:

```
depth.FM
depth.mode
depth.RP
depth.RT
depth.RPD
Descriptive
```

B.2-Functional Outliers detection methods:

```
outliers.depth.trim
outliers.depth.pond
outliers.thres.lrt
outliers.lrt
```

C.- Functional Regression Models
C.1. Functional explanatory covariate and scalar response
The functions included in this section allow the estimation of different functional regression models with a scalar response and a single functional explicative covariate.

```
fregre.pc
fregre.pc.cv
fregre.pls
fregre.pls.cv
fregre.basis
fregre.basis.cv
fregre.np
fregre.np.cv
```

C.2. Test for the functional linear model (FLM) with scalar response.
```
flm.Ftest, F-test for the FLM with scalar response
flm.test, Goodness-of-fit test for the FLM with scalar response
PCvM.statistic, PCvM statistic for the FLM with scalar response
```

C.3. Functional and non functional explanatory covariates.
The functions in this section extends those regression models in previous section in several ways.
```
fregre.plm: Semifunctional Partial Linear Regression (an extension of lm model)
fregre.lm: Functional Linear Regression (an extension of lm model)
fregre.glm: Functional Generalized Linear Regression (an extension of glm model)
fregre.gsam: Functional Generalized Spectral Additive Regression (an extension of gam model)
fregre.gkam: Functional Generalized Kernel Additive Regression (an extension of fregre.np model)
```


C.6. fregre.gsam.vs, Variable Selection using Functional Additive Models

D. Functional Supervised Classification
This section allows the estimation of the groups in a training set of functional data fdata class by different nonparametric methods of supervised classification. Once these classifiers have been trained, they can be used to predict on new functional data.

Package allows the estimation of the groups in a training set of functional data by different methods
of supervised classification.

D.1 Univariate predictor (x,y arguments, fdata class)

classif.knn
classif.kernel

D.2 Multiple predictors (formula,data arguments, ldata class)

classif.glm
classif.gsam
classif.gkam

D.3 Depth classifiers (fdata or ldata class)

classif.DD
classif.depth

D.4 Functional Classification using k-fold CV

classif.kfold

E.- Functional Non-Supervised Classification
This section allows the estimation of the groups in a functional data set fdata class by kmeans method.

kmeans.fd

F.- Functional ANOVA

fanova.onefactor
fanova.RFm
fanova.hetero

G.- Utilities and auxiliary functions:

fdata.bootstrap
Package: fda.usc
Type: Package
Version: 2.0.1
Date: 2019-12-12
License: GPL-2
LazyLoad: yes

Authors: Manuel Febrero Bande <manuel.febrero@usc.es> and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Contributors: Pedro Galeano, Alicia Nieto-Reyes, Eduardo Garcia-Portugues <eduardo.garcia@usc.es> and STAPH group http://www.lsp.ups-tlse.fr/staph/ alicia.nieto@unican.es STAPH group maintaining the page http://www.lsp.ups-tlse.fr/staph/

Maintainer: Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

Performance measures for regression and classification models

Description

cat2meas and *tab2meas* calculate the measures for a multiclass classification model. *pred2meas* calculates the measures for a regression model.

Usage

```r
cat2meas(yobs, ypred, measure = "accuracy", cost = rep(1, nlevels(yobs)))

tab2meas(tab, measure = "accuracy", cost = rep(1, nrow(tab)))

pred.MSE(yobs, ypred)
pred.RMSE(yobs, ypred)
pred.MAE(yobs, ypred)

pred2meas(yobs, ypred, measure = "RMSE")
```

Arguments

- `yobs`: A vector of the labels, true class or observed response. Can be numeric, character, or factor.
- `ypred`: A vector of the predicted labels, predicted class or predicted response. Can be numeric, character, or factor.
- `measure`: Type of measure, see details section.
- `cost`: Cost value by class (only for input factors).
- `tab`: Confusion matrix (Contingency table: observed class by rows, predicted class by columns).

Details

- *cat2meas* compute \(\text{tab} = \text{table}(yobs, ypred) \) and calls *tab2meas* function.
- *tab2meas* function computes the following measures (see measure argument) for a binary classification model:
 - accuracy: the accuracy classification score
 - recall, sensitivity, \(\text{TPrate} = \frac{TP}{TP + FN} \)
 - precision: \(P = \frac{TP}{TP + FP} \)
 - specificity, \(\text{TNrate} = \frac{TN}{TN + FP} \)
 - \(\text{FPrate} = \frac{FP}{TN + FP} \)
 - \(\text{FNrate} = \frac{FN}{TP + FN} \)
- $F_{measure} = 2/(1/R + 1/P)$
- $G_{mean} = \sqrt{R \times TN/(TN + FP)}$
- kappa the kappa index
- $cost = \text{sum(diag(tab)/rowSums(tab) * cost)/sum(cost)}$

- `pred2meas` function computes the following measures of error, using the measure argument, for observed and predicted vectors:
 - MSE Mean squared error, $\frac{\sum (ypred - yobs)^2}{n}$
 - $RMSE$ Root mean squared error $\sqrt{\frac{\sum (ypred - yobs)^2}{n}}$
 - MAE Mean Absolute Error, $\frac{\sum |yobs - ypred|}{n}$

`See Also`

Other performance: `weights4class()`

aemet

aemet data

Description

Format

Elements of aemet:
- **df**: Data frame with information of each weather station:
 - `ind`: Indicated weather station.
 - `name`: Station Name. 36 marked UTF-8 strings.
 - `province`: Province (region) of Spain. 36 marked UTF-8 strings
 - `altitude`: Altitude of the station (in meters).
 - `year.ini`: Start year.
 - `year.end`: End year.
 - `longitude`: x geographic coordinate of the station (in decimal degrees).
 - `latitude`: y geographic coordinate of the station (in decimal degrees).

The functional variables:
- `...$temp$`: mean curve of the average daily temperature for the period 1980-2009 (in degrees Celsius, marked with UTF-8 string). In leap years temperatures for February 28 and 29 were averaged.
$wind.speed$: mean curve of the average daily wind speed for the period 1980-2009 (in m/s).

$logprec$: mean curve of the log precipitation for the period 1980-2009 (in log mm). Negligible precipitation (less than 1 tenth of mm) is replaced by 0.05 and no precipitation (0.0 mm) is replaced by 0.01. Then the logarithm is applied.

Details

Meteorological State Agency of Spain (AEMET), http://www.aemet.es/. Government of Spain. It marks 36 UTF-8 string of names of stations and 3 UTF-8 string names of provinces through the function iconv.

Author(s)

Manuel Febrero Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Source

The data were obtained from the FTP of AEMET in 2009.

Examples

```r
## Not run:
data(aemet)
names(aemet)
names(aemet$df)
pa(mfrow=c(3,1))
plot(aemet$temp)
plot(aemet$wind.speed)
plot(aemet$logprec)
## End(Not run)
```

classif.DD

DD-Classifier Based on DD-plot

Description

Fits Nonparametric Classification Procedure Based on DD–plot (depth-versus-depth plot) for G dimensions ($G = g \times h$, g levels and p data depth).

Usage

```r
classif.DD(
    group,
    fdataobj,
    depth = "FM",
)```
classif = "glm",
  w,
  par.classif = list(),
  par.depth = list(),
  control = list(Verbose = FALSE, draw = TRUE, col = NULL, alpha = 0.25)
)

Arguments

  group  Factor of length n with g levels.
  fdataobj  data.frame, fdata or list with the multivariate, functional or both covariates respectively.
  depth  Character vector specifying the type of depth functions to use, see Details.
  classif  Character vector specifying the type of classifier method to use, see Details.
  w  Optional case weights, weights for each value of depth argument, see Details.
  par.classif  List of parameters for classif procedure.
  par.depth  List of parameters for depth function.
  control  List of parameters for controlling the process.

  If verbose=TRUE, report extra information on progress.
  If draw=TRUE print DD-plot of two samples based on data depth.
  col, the colors for points in DD–plot.
  alpha, the alpha transparency used in the background of DD–plot, a number in [0,1].

Details

Make the group classification of a training dataset using DD-classifier estimation in the following steps.

1. The function computes the selected depth measure of the points in fdataobj w.r.t. a subsample of each g level group and p data dimension \(G = g \times p\). The user can specify the parameters for depth function in par. depth.

   (i) Type of depth function from functional data, see Depth:

   • "FM": Fraiman and Muniz depth.
   • "mode": h–modal depth.
   • "RT": random Tukey depth.
   • "RP": random project depth.
   • "RPD": double random project depth.

   (ii) Type of depth function from multivariate functional data, see depth.mfdata:

   • "FMP": Fraiman and Muniz depth with common support. Suppose that all p–fdata objects have the same support (same rangevals), see depth.FMp.
   • "modep": h–modal depth using a p–dimensional metric, see depth.modep.
   • "RPp": random project depth using a p–variate depth with the projections, see depth.RPp.
If the procedure requires to compute a distance such as in "knn" or "np" classifier or "mode" depth, the user must use a proper distance function: `metric.lp` for functional data and `metric.dist` for multivariate data.

(iii) Type of depth function from multivariate data, see `Depth.Multivariate`:

- "SD": Simplicial depth (for bivariate data).
- "HS": Half-space depth.
- "MhD": Mahalanobis depth.
- "RD": random projections depth.
- "LD": Likelihood depth.

2. The function calculates the misclassification rate based on data depth computed in step (1) using the following classifiers.

- "MaxD": Maximum depth.
- "DD1": Search the best separating polynomial of degree 1.
- "DD2": Search the best separating polynomial of degree 2.
- "DD3": Search the best separating polynomial of degree 3.
- "glm": Logistic regression is computed using Generalized Linear Models `classif(glm)`.
- "gam": Logistic regression is computed using Generalized Additive Models `classif.gsam`.
- "lda": Linear Discriminant Analysis is computed using `lda`.
- "qda": Quadratic Discriminant Analysis is computed using `qda`.
- "knn": k-Nearest Neighbour classification is computed using `classif.knn`.
- "np": Non-parametric Kernel classifier is computed using `classif.np`.

The user can specify the parameters for classifier function in `par.classif` such as the smoothing parameter `par.classif[["h"]], if classif="np"` or the k-Nearest Neighbour `par.classif[["knn"]], if classif="knn"`. In the case of polynomial classifier ("DD1", "DD2" and "DD3") uses the original procedure proposed by Li et al. (2012), by default rotating the DD-plot (to exchange abscise and ordinate) using in `par.classif` argument `rotate=TRUE`. Notice that the maximum depth classifier can be considered as a particular case of DD1, fixing the slope with a value of 1 (par.classif=list(pol=1)).

The number of possible different polynomials depends on the sample size n and increases polynomially with order k. In the case of g groups, so the procedure applies some multiple-start optimization scheme to save time:

- generate all combinations of the elements of n taken k at a time: $g \times \text{combn}(N,k)$ candidate solutions, and, when this number is larger than $nmax=10000$, a random sample of 10000 combinations.
- smooth the empirical loss with the logistic function $1/(1 + e^{-tx})$. The classification rule is constructed optimizing the best `noptim` combinations in this random sample (by default `noptim=1` and `tt=50/\text{range(depth values)}`). Note that Li et al. found that the optimization results become stable for $t \in [50, 200]$ when the depth is standardized with upper bound 1.

The original procedure (Li et al. (2012)) not need to try many initial polynomials ($nmax=1000$) and that the procedure optimize the best ($noptim=1$), but we recommended to repeat the last step for different solutions, as for example $nmax=250$ and $noptim=25$. User can change the parameters `pol`, `rotate`, `nmax`, `noptim` and `tt` in the argument `par.classif`. 
The `classif.DD` procedure extends to multi-class problems by incorporating the method of \textit{majority voting} in the case of polynomial classifier and the method \textit{One vs the Rest} in the logistic case ("glm" and "gam").

\textbf{Value}

- `group.est` Estimated vector groups by classified method selected.
- `misclassification` Probability of misclassification.
- `prob.classification` Probability of correct classification by group level.
- `dep` Data frame with the depth of the curves for functional data (or points for multivariate data) in `fdataobj` w.r.t. each group level.
- `depth` Character vector specifying the type of depth functions used.
- `par.depth` List of parameters for depth function.
- `classif` Type of classifier used.
- `par.classif` List of parameters for classif procedure.
- `w` Optional case weights.
- `fit` Fitted object by classif method using the depth as covariate.

\textbf{Author(s)}

This version was created by Manuel Oviedo de la Fuente and Manuel Febrero Bande and includes the original version for polynomial classifier created by Jun Li, Juan A. Cuesta-Albertos and Regina Y. Liu.

\textbf{References}


\textbf{See Also}

See Also as `predict.classif.DD`

\textbf{Examples}

```r
Not run:
DD-classif for functional data
data(tecator)
ab=tecator$absorp.fdata
ab1=fdata.deriv(ab,nderiv=1)
ab2=fdata.deriv(ab,nderiv=2)
gfat=factor(as.numeric(tecatoryFat>=15))
DD-classif for p=1 functional data set
out01=classif.DD(gfat,ab,depth="mode",classif="np")
out02=classif.DD(gfat,ab2,depth="mode",classif="np")
DD-plot in gray scale
ctrl<-list(draw=T,col=gray(c(0,.5)),alpha=.2)
```
classif.depth

Classifier from Functional Data

Description
Classification of functional data using maximum depth.

Usage
classif.depth(
  group,
  fdataobj,
  newfdataobj,
  depth = "RP",
  par.depth = list(),
  CV = "none"
)
Arguments

- **group**: Factor of length \( n \)
- **fdataobj**: fdata, matrix or data.frame class object of train data.
- **newfdataobj**: fdata, matrix or data.frame class object of test data.
- **depth**: Type of depth function from functional data:
  - FM: Fraiman and Muniz depth.
  - mode: modal depth.
  - RT: random Tukey depth.
  - RP: random project depth.
  - RPD: double random project depth.
- **par.depth**: List of parameters for depth.
- **CV**: ="none" group.est=group.pred, =TRUE group.est is estimated by cross-validation, =FALSE group.est is estimated.

Value

- group.est Vector of classes of train sample data.
- group.pred Vector of classes of test sample data.
- prob.classification Probability of correct classification by group.
- max.prob Highest probability of correct classification.
- fdataobj fdata class object.
- group Factor of length \( n \).

Author(s)

Febrero-Bande, M. and Oviedo de la Fuente, M.

References


Examples

```r
Not run:
data(phoneme)
mlearn<-phoneme["learn"]
mtest<-phoneme["test"]
glearn<-phoneme["classlearn"]
gtest<-phoneme["classstest"]
a1<-classif.depth(glearn,mlearn,depth="RP")
table(a1$group.est,glearn)
a2<-classif.depth(glearn,mlearn,depth="RP",CV=TRUE)
a3<-classif.depth(glearn,mlearn,depth="RP",CV=FALSE)
a4<-classif.depth(glearn,mlearn,mtest,"RP")
```
classif.gkam

a5<-classif.depth(glearn,mlearn,mtest,"RP",CV=TRUE)
table(a5$group.est,glearn)
a6<-classif.depth(glearn,mlearn,mtest,"RP",CV=FALSE)
table(a6$group.est,glearn)

## End(Not run)

classif.gkam  
Classification Fitting Functional Generalized Kernel Additive Models

Description


Usage

classif.gkam(
  formula, 
  data, 
  weights = "equal", 
  family = binomial(), 
  par.metric = NULL, 
  par.np = NULL, 
  offset = NULL, 
  prob = 0.5, 
  type = "1vsall", 
  control = NULL, 
  ...
)

Arguments

formula  an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The procedure only considers functional covariates (not implemented for non-functional covariates). The details of model specification are given under Details.

data  List that containing the variables in the model.

weights  Weights:

  • if character string = 'equal' same weights for each observation (by default) and = 'inverse' for inverse-probability of weighting.
  • if numeric vector of length n, Weight values of each observation.

family  a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.)
par.metric List of arguments by covariable to pass to the metric function by covariable.
par.np List of arguments to pass to the fregre.np.cv function
offset this can be used to specify an a priori known component to be included in the linear predictor during fitting.
prob probability value used for binary discriminant.
type If type is "1vsall" (by default) a maximum probability scheme is applied: requires G binary classifiers. If type is "majority" (only for multiclass classification G > 2) a voting scheme is applied: requires G (G - 1) / 2 binary classifiers.
control a list of parameters for controlling the fitting process, by default: maxit, epsilon, trace and inverse.
... Further arguments passed to or from other methods.

Details

The first item in the data list is called "df" and is a data frame with the response, as glm. Functional covariates of class fdata are introduced in the following items in the data list.

Value

Return gam object plus:

- formula formula.
- data List that containing the variables in the model.
- group Factor of length n
- group.est Estimated vector groups
- prob.classification Probability of correct classification by group.
- prob.group Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
- max.prob Highest probability of correct classification.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: fregre.gkam.
Alternative method: classif.glm.
Examples

```r
Not run:
Time-consuming: selection of 2 levels
data(phoneme)
mlearn<-phoneme["learn"][1:150]
glearn<-factor(phoneme["classlearn"][1:150])
dat<-data.frame(glearn)
dat=list("df"=dat,"x"=mlearn)
a1<classif.gkam(glearn~x,data=dat)
summary(a1)
mtest<-phoneme["test"][1:150]
gtest<-factor(phoneme["classlearn"][1:150])
newdat<-list("x"=mtest)
p1<-predict(a1,newdat)
table(gtest,p1)
End(Not run)
```

classif.glm

### Classification Fitting Functional Generalized Linear Models

The function `classif.glm` computes functional classification using functional (and non functional) explanatory variables by basis representation.

#### Usage

```r
classif.glm(formula, data, family = binomial(), weights = "equal", basis.x = NULL, basis.b = NULL, type = "1vsall", prob = 0.5, CV = FALSE, ...)
```

#### Arguments

- **formula**: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under `Details`.
- **data**: List that containing the variables in the model.
family  a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions).

weights  Weights:

• if character string = 'equal' same weights for each observation (by default) and = 'inverse' for inverse-probability of weighting.
• if numeric vector of length n, Weight values of each observation.

basis.x List of basis for functional explanatory data estimation.
basis.b List of basis for functional beta parameter estimation.
type If type is "1vsall" (by default) a maximum probability scheme is applied: requires G binary classifiers. If type is "majority" (only for multiclass classification G > 2) a voting scheme is applied: requires G (G - 1) / 2 binary classifiers.
prob probability value used for binari discriminant.
CV = TRUE, Cross-validation (CV) is done.
... Further arguments passed to or from other methods.

Details

The first item in the data list is called "df" and is a data frame with the response and non functional explanatory variables, as glm.

Functional covariates of class fdata or fd are introduced in the following items in the data list. basis.x is a list of basis for represent each functional covariate. The basis object can be created by the function: create.pc.basis, pca.fd create.pc.basis, create.fdata.basis create.basis. basis.b is a list of basis for represent each functional beta parameter. If basis.x is a list of functional principal components basis (see create.pc.basis or pca.fd) the argument basis.b is ignored.

Value

Return glm object plus:

• formula formula.
• data List that containing the variables in the model.
• group Factor of length n
• group.est Estimated vector groups
• prob.classification Probability of correct classification by group.
• prob.group Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
• max.prob Highest probability of correct classification.

Note

If the formula only contains a non functional explanatory variables (multivariate covariates), the function compute a standard glm procedure.
classif.gsam

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: fregre.glm, classif.gsam and classif.gkam.

Examples

```r
Not run:
require(fda.usc)
data(phoneme)
mlearn<-phoneme[["learn"]]
glearn<-phoneme[["classlearn"]]
mtest<-phoneme[["test"]]
gtest<-phoneme[["classtest"]]
dataf<-data.frame(glearn)
dat=list("df"=dataf,"x"=mlearn)
a1<-classif.glm(glearn~x, data = dat)
newdat<-list("x"=mtest)
p1<-predict(a1,newdat)
table(gtest,p1)
sum(p1==gtest)/250
End(Not run)
```

classif.gsam

*Classification Fitting Functional Generalized Additive Models*

Description

Computes functional classification using functional (and non functional) explanatory variables by basis representation.
Usage

classif.gsam(
    formula,
    data,
    family = binomial(),
    weights = "equal",
    basis.x = NULL,
    CV = FALSE,
    prob = 0.5,
    type = "1vsall",
    ...
)

Arguments

formula: an object of class formula (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
under Details.

data: List that containing the variables in the model.

family: a description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or the
result of a call to a family function. (See family for details of family functions.)

weights: Weights:

  • if character string = 'equal' same weights for each observation (by de-
    fault) and = 'inverse' for inverse-probability of weighting.

  • if numeric vector of length n, Weight values of each observation.

basis.x: List of basis for functional explanatory data estimation.

CV: = TRUE, Cross-validation (CV) is done.

prob: probability value used for binari discriminant.

type: If type is "1vsall" (by default) a maximum probability scheme is applied: re-
quires G binary classifiers. If type is "majority" (only for multiclass classification
G > 2) a voting scheme is applied: requires G (G - 1) / 2 binary classifiers.

... Further arguments passed to or from other methods.

Details

The first item in the data list is called "df" and is a data frame with the response and non functional
explanatory variables, as glm.

Functional covariates of class fdata or fd are introduced in the following items in the data list.
basis.x is a list of basis for represent each functional covariate. The basis object can be created by
the function: create.pc.basis, pca.fd create.pc.basis, create.fdata.basis o create.basis.
Value

Return gam object plus:

- formula formula.
- data List that containing the variables in the model.
- group Factor of length \( n \)
- group.est Estimated vector groups
- prob.classification Probability of correct classification by group.
- prob.group Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
- max.prob Highest probability of correct classification.
- type Type of classification scheme: 1 vs all or majority voting.

Note

If the formula only contains a non functional explanatory variables (multivariate covariates), the function compute a standard \texttt{glm} procedure.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


Regression for R. R News 1(2):20-25

See Also

See Also as: \texttt{fregre.gsam}.
Alternative method: \texttt{classify.np, classify.glm} and \texttt{classify.gkam}.

Examples

```r
Not run:
require(fda.usc)
data(phoneme)
mlearn<-.phoneme["learn"]
glearn<-.phoneme["classlearn"]
mtest<-.phoneme["test"]
gtest<-.phoneme["classtest"]
data<-.data.frame(glearn)
dat=list("df"=data,"x"=mlearn)
a1<-.classify.gsam(glearn~s(x,k=3),data=dat)
```
summary(a1)  
newdat<-list("x"=mtest)  
p1<-predict(a1,newdat)  
table(gtest,p1)  
sum(p1==gtest)/250

## End(Not run)

classif.kfold  

**Functional Classification using k-fold CV**

description

Computes Functional Classification using k-fold cross-validation

**Usage**

classif.kfold(
  formula,  
data,  
classif = "classif.glm",  
par.classif,  
kfold = 10,  
param.kfold = NULL,  
measure = "accuracy",  
cost,  
models = FALSE,  
verbose = FALSE
)

**Arguments**

- formula: an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The procedure only considers functional covariates (not implemented for non-functional covariates).
- data: list, it contains the variables in the model.
- classif: character, name of classification method to be used in fitting the model, see Details section.
- par.classif: list of arguments used in the classification method.
- kfold: integer, number of k-fold.
- param.kfold: list, arguments related to number of k-folds for each covariate, see Details section.
- measure: character, type of measure of accuracy used, see cat2meas function.
- cost: numeric, see cat2meas function.
- models: logical. If TRUE, return a list of the fitted models used, (k-fold -1) X (number of parameters)
classif.kfold

verbose logical. If TRUE, print some internal results.

... Further arguments passed to or from other methods.

Details

Parameters for k-fold cross validation:

1. Number of basis elements:
   • Data-driven basis such as Functional Principal Components (PC). No implemented for PLS basis yet.
   • Fixed basis (bspline, fourier, etc.).
   Option used in some classifiers such as classif.glm, classif.gsam, classif.svm, etc.
2. Bandwidth parameter. Option used in non-parametric classification models such as classif.np and classif.gkam.

Value

Best fitted model computed by the k-fold CV using the method indicated in the classif argument and also returns:

1. param.min, value of parameter (or parameters) selected by k-fold CV.
2. params.error, k-fold CV error for each parameter combination.
3. pred.kfold, predicted response computed by k-fold CV.
4. model, if TRUE, list of models for each parameter combination.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Examples

## Not run:
data(tecator)
cutpoint <- 18
tecator$y$class <-factor(ifelse(tecator$y$Fat<cutpoint,0,1))
table(tecator$y$class )
x<-tecator[[1]]
x2<-fdata.deriv(tecator[[1]],2)
data<- list("df"=tecator$y,x=x,x2=x2)
formula<- formula(class~x+x2)

# ex: default execution of classifier (no k-fold CV)
classif="classif.glm";
out.default<-classif.kfold(formula, data, classif = classif)
out.default
out.default$param.min
out.default$params.error
summary(out.default)
# ex: Number of PC basis elements selected by 10-fold CV
# Logistic classifier
kfold = 10
param.kfold <- list("x"=list("pc"=c(1:8)),"x2"=list("pc"=c(1:8)))
out.kfold1 <- classif.kfold(formula, data, classif = classif,
                           kfold = kfold,param.kfold = param.kfold)
min(out.kfold1$params.error)
summary(out.kfold1)

# ex: Number of PC basis elements selected by 10-fold CV
# Logistic classifier with inverse weighting
out.kfold2 <- classif.kfold(formula, data, classif = classif,
                           par.classif=list("weights"="inverse"),
                           kfold = kfold,param.kfold = param.kfold)
min(out.kfold2$params.error)
summary(out.kfold2)

# ex: Number of fourier basis elements selected by 10-fold CV
# Logistic classifier
ibase = seq(5,15,by=2)
param.kfold <- list("x"=list("fourier"=ibase),
                    "x2"=list("fourier"=ibase))
out.kfold3 <- classif.kfold(formula, data, classif = classif,
                            kfold = kfold,param.kfold = param.kfold)
min(out.kfold3$params.error)
summary(out.kfold3)

# ex: Number of k-nearest neighbors selected by 10-fold CV
# non-parametric classifier (only for a functional covariate)
output<-classif.kfold( class ~ x, data, classif = "classif.knn",
                       param.kfold= list("x"=list("knn"=c(1,3,5,9))))
output$param.min
output$params.error

output<-classif.kfold( class ~ x2, data, classif = "classif.knn",
                       param.kfold= list("x2"=list("knn"=c(1,3,5,9))))
output$param.min
output$params.error

## End(Not run)
Description
Computes functional classification using functional (and non functional) explanatory variables by rpart, nnet, svm or random forest model

Usage
classif.nnet(formula, data, basis.x = NULL, weights = "equal", size, ...)

classif.rpart(
  formula,
  data,
  basis.x = NULL,
  weights = "equal",
  type = "1vsall",
  ...
)

classif.svm(
  formula,
  data,
  basis.x = NULL,
  weights = "equal",
  type = "1vsall",
  ...
)

classif.ksvm(formula, data, basis.x = NULL, weights = "equal", ...)

classif.randomForest(
  formula,
  data,
  basis.x = NULL,
  weights = "equal",
  type = "1vsall",
  ...
)

classif.lda(
  formula,
  data,
  basis.x = NULL,
  weights = "equal",
  type = "1vsall",
  ...
)

classif.qda(
  formula,
classif.ML

data,
basis.x = NULL,
weights = "equal",
type = "1vsall",
...
)

classif.naiveBayes(formula, data, basis.x = NULL, laplace = 0, ...)

Arguments

formula  an object of class formula (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
under Details.

data  List that containing the variables in the model.
basis.x  List of basis for functional explanatory data estimation.
weights  Weights:
  • if character string = 'equal' same weights for each observation (by de-
default) and = 'inverse' for inverse-probability of weighting.
  • if numeric vector of length n, Weight values of each observation.
size  number of units in the hidden layer. Can be zero if there are skip-layer units.
...
Further arguments passed to or from other methods.
type  If type is "1vsall" (by default) a maximum probability scheme is applied: re-
quires G binary classifiers. If type is "majority" (only for multiclass classification
G > 2) a voting scheme is applied: requires G (G - 1) / 2 binary classifiers.
laplace  value used for Laplace smoothing (additive smoothing). Defaults to 0 (no Laplace
smoothing).

Details

The first item in the data list is called "df" and is a data frame with the response and non functional
explanatory variables, as glm.

Functional covariates of class fdata or fd are introduced in the following items in the data list.
basis.x is a list of basis for represent each functional covariate. The b object can be created by the
function: create.pc.basis, pca.fd create.pc.basis, create.fdata.basis or create.basis.basis.b is a list of basis for represent each functional beta parameter. If basis.x is a list of
functional principal components basis (see create.pc.basis or pca.fd) the argument basis.b is
ignored.

Value

Return classif object plus:
  • formula formula.
  • data List that containing the variables in the model.
• group Factor of length \( n \)
• group.est Estimated vector groups
• prob.classification Probability of correct classification by group.
• prob.group Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
• max.prob Highest probability of correct classification.
• type Type of classification scheme: 1 vs all or majority voting.
• fit list of binary classification fitted models.

Note

Wrapper versions for multivariate and functional classification:
• classif.lda, classif.qda: uses lda and qda functions and requires MASS package.
• classif.nnet: uses nnet function and requires nnet package.
• classif.rpart: uses nnet function and requires rpart package.
• classif.svm, classif.naiveBayes: uses svm and naiveBayes functions and requires e1071 package.
• classif.ksvm: uses weighted.ksvm function and requires personalized package.
• classif.randomForest: uses randomForest function and requires randomForest package.

Author(s)
Febrero-Bande, M. and Oviedo de la Fuente, M.

References


See Also

See Also as: rpart.
Alternative method: classif.np, classif.glm, classif.gsam and classif.gkam.

Examples

```r
Not run:
data(phoneme)
mlearn<-phoneme["learn"]
glearn<-phoneme["classlearn"]
mtest<-phoneme["test"]
gtest<-phoneme["classtest"]
```
classif.np<-data.frame(glearn)
dat=list("df"=dataf,"x"=mlearn)
a1<-classif.rpart(glearn~x,data=dat)
summary(a1)
newdat<-list("x"=mtest)
p1<-predict(a1,newdat,type="class")
table(gtest,p1)
sum(p1==gtest)/250

## End(Not run)

---

**classif.np**  
*Kernel Classifier from Functional Data*

**Description**

Fits Nonparametric Supervised Classification for Functional Data.

**Usage**

```r
classif.np(
 group,
 fdataobj,
 h = NULL,
 Ker = AKer.norm,
 metric,
 weights = "equal",
 type.S = S.NW,
 par.S = list(),
 ...
)
```

```r
classif.knn(
 group,
 fdataobj,
 knn = NULL,
 metric,
 weights = "equal",
 par.S = list(),
 ...
)
```

```r
classif.kernel(
 group,
 fdataobj,
 h = NULL,
 Ker = AKer.norm,
 ...
)
```
metric, weights = "equal", par.S = list(), ...
)

Arguments

- **group**: Factor of length n
- **fdataobj**: `fdata` class object.
- **h**: Vector of smoothing parameter or bandwidth.
- **Ker**: Type of kernel used.
- **metric**: Metric function, by default `metric.lp`.
- **weights**: weights.
- **type.S**: Type of smoothing matrix S. By default S is calculated by Nadaraya-Watson kernel estimator (S.NW).
- **par.S**: List of parameters for `type.S`: w, the weights.
- ... Arguments to be passed for `metric.lp` or other metric function and `Kernel` function.
- **knn**: Vector of number of nearest neighbors considered.

Details

Make the group classification of a training dataset using kernel or KNN estimation: `Kernel`. Different types of metric functions can be used.

Value

- `fdataobj` `fdata` class object.
- `group` Factor of length n.
- `group.est` Estimated vector groups
- `prob.group` Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
- `max.prob` Highest probability of correct classification.
- `h.opt` Optimal smoothing parameter or bandwidth estimated.
- `D` Matrix of distances of the optimal quantile distance `hopt`.
- `prob.classification` Probability of correct classification by group.
- `misclassification` Vector of probability of misclassification by number of neighbors `knn`.
- `h` Vector of smoothing parameter or bandwidth.
- `C` A call of function `classif.kernel`.  

cond.F

Conditional Distribution Function

Description

Calculate the conditional distribution function of a scalar response with functional data.

Note

If fdataobj is a data.frame the function considers the case of multivariate covariates. metric.dist function is used to compute the distances between the rows of a data matrix (as dist function).

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as predict.classif

Examples

```r
Not run:
data(phoneme)
mlearn<-'phoneme["learn"]
glearn<-'phoneme["classlearn"]

h=9:19
classif.np(glearn,mlearn,h=h)
summary(out)
round(out$prob.group,4)

End(Not run)
```
cond.F

Usage

cond.F(
    fdata0,
    y0,
    fdataobj,
    y,
    h = 0.15,
    g = 0.15,
    metric = metric.lp,
    Ker = list(AKer = AKer.epa, IKer = IKer.epa),
    ...
)

Arguments

fdata0 Conditional explanatory functional data of fdata class.
y0 Vector of conditional response with length n.
fdataobj fdata class object.
y Vector of scalar response with length nn.
h Smoothing parameter or bandwidth of response y.
g Smoothing parameter or bandwidth of explanatory functional data fdataobj.
metric Metric function, by default metric.lp.
Ker List of 2 arguments. The fist argument is a character string that determines the type of asymmetric kernel (see Kernel.asymmetric). Asymmetric Epanechnikov kernel is selected by default. The second argument is a string that determines the type of integrated kernel (see Kernel.integrate). Integrate Epanechnikov kernel is selected by default.
...
... Further arguments passed to or from other methods.

Details

If x.dist=NULL the distance matrix between fdata objects is calculated by function passed in metric argument.

Value

• Fc Conditional distribution function.
• y0 Vector of conditional response.
• g Smoothing parameter or bandwidth of explanatory functional data (fdataobj).
• h Smoothing parameter or bandwidth of response, y.
• x.dist Distance matrix between curves of fdataobj object.
• xy.dist Distance matrix between curves of fdataobj and fdata0 objects.
cond.mode

Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as: cond.mode and cond.quantile.

Examples
```r
Not run:
Read data
n = 500
t = seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y = numeric(n)
x0 <- rproc2fdata(n, seq(0,1,len=101), sigma="wiener")
x1 <- rproc2fdata(n, seq(0,1,len=101), sigma=0.1)
x <- x0 + x1
fbeta = fdata(beta, t)
y <- inprod.fdata(x, fbeta) + rnorm(n, sd=0.1)
prx = x[1:100]; pry = y[1:100]
ind = 101; ind2 = 102:110
pr0 = x[ind]; pr10 = x[ind2,]
ndist = 61
gridy = seq(-1.598069, 1.598069, len=ndist)

Conditional Function
res1 = cond.F(pr10, gridy, prx, pry, p=1)
res2 = cond.F(pr10, gridy, prx, pry, h=0.3)
res3 = cond.F(pr10, gridy, prx, pry, g=0.25, h=0.3)

plot(res1$Fc[,1], type="l", ylim=c(0,1))
lines(res2$Fc[,1], type="l", col=2)
lines(res3$Fc[,1], type="l", col=3)
End(Not run)
```

Description
Computes the mode for conditional distribution function.
cond.mode

**Usage**

```r
cond.mode(Fc, method = "monoH.FC", draw = TRUE)
```

**Arguments**

- **Fc**
  Object estimated by `cond.F` function.
- **method**
  Specifies the type of spline to be used. Possible values are "diff", "fmm", "natural", "periodic" and "monoH.FC".
- **draw**
  =TRUE, plots the conditional distribution and density function.

**Details**

The conditional mode is calculated as the maximum argument of the derivative of the conditional distribution function (density function $f$).

**Value**

Return the mode for conditional distribution function.

- **mode.cond** Conditional mode.
- **x** Grid of length $n$ where the the conditional density function is evaluated.
- **f** The conditional density function evaluated in $x$.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**


**See Also**

See Also as: `cond.F`, `cond.quantile` and `splinefun`.

**Examples**

```r
Not run:
n = 500
t = seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y = numeric(n)
x0 <- rproc2fdata(n, seq(0,1,len=101), sigma="wiener")
x1 <- rproc2fdata(n, seq(0,1,len=101), sigma=0.1)
x <- x0*3 + x1
fbeta = fdata(beta,t)
y <- inprod.fdata(x, fbeta) + rnorm(n, sd=0.1)
prx = x[1:100]; pry = y[1:100]
```
cond.quantile

**Description**

Computes the quantile for conditional distribution function.

**Usage**

```r
cond.quantile(
 qua = 0.5,
 fdata0,
 fdataobj,
 y,
 fn,
 a = min(y),
 b = max(y),
 tol = 10^floor(log10(max(y) - min(y)) - 3),
 iter.max = 100,
 ...
)
```

**Arguments**

- `qua` Quantile value, by default the median (qua=0.5).
- `fdata0` Conditional functional explanatory data of `fdata` class object.
- `fdataobj` Functional explanatory data of `fdata` class object.
- `y` Scalar Response.
- `fn` Conditional distribution function.
- `a` Lower limit.
- `b` Upper limit.
- `tol` Tolerance.
- `iter.max` Maximum iterations allowed, by default 100.
- `...` Further arguments passed to or from other methods.
cond.quantile

Value

Return the quantile for conditional distribution function.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: *cond.F* and *cond.mode*.

Examples

```r
Not run:
n = 100
t = seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y = numeric(n)
x0 <- rproc2fdata(n, seq(0,1,len=101), sigma = "wiener")
x1 <- rproc2fdata(n, seq(0,1,len=101), sigma = 0.1)
x <- x0 * 3 + x1
fbeta = fdata(beta, t)
y <- inprod.fdata(x, fbeta) + rnorm(n, sd = 0.1)

prx = x[1:50]; pry = y[1:50]
ind = 50 + 1; ind2 = 51:60
pr0 = x[ind]; pr10 = x[ind2]
ndist = 161
gridy = seq(-1.598069, 1.598069, len = ndist)
ind4 = 5
y0 = gridy[ind4]

Conditional median
med = cond.quantile(qua = 0.5, fdata0 = pr0, fdataobj = prx, y = pry, fn = cond.F, h = 1)

Conditional CI 95% conditional
lo = cond.quantile(qua = 0.025, fdata0 = pr0, fdataobj = prx, y = pry, fn = cond.F, h = 1)
up = cond.quantile(qua = 0.975, fdata0 = pr0, fdataobj = prx, y = pry, fn = cond.F, h = 1)
print(c(lo, med, up))

End(Not run)
```
Create Basis Set for Functional Data of fdata class

Description

Compute basis for functional data.

Usage

create.fdata.basis(
  fdataobj,
  l = 1:5,
  maxl = max(l),
  type.basis = "bspline",
  rangeval = fdataobj$rangeval,
  class.out = "fd"
)

create.pc.basis(
  fdataobj,
  l = 1:5,
  norm = TRUE,
  basis = NULL,
  lambda = 0,
  P = c(0, 0, 1),
  ...
)

create.pls.basis(
  fdataobj,
  y,
  l = 1:5,
  norm = TRUE,
  lambda = 0,
  P = c(0, 0, 1),
  ...
)

create.raw.fdata(fdataobj, l = 1:ncol(fdataobj))

Arguments

fdataobj  fdata class object.
l  Vector of basis index.
maxl  maximum number of basis
type.basis  Type of basis (see create.basis function).
create.fdata.basis

rangeval A vector of length 2 giving the lower and upper limits of the range of permissible values for the function argument.
class.out =="fd" basisfd class, =="fdata" fdata class.
norm If TRUE the norm of eigenvectors basis is 1.
basis "fd" basis object.
lambda Amount of penalization. Default value is 0, i.e. no penalization is used.
P If P is a vector: coefficients to define the penalty matrix object. By default P=c(0,0,1) penalize the second derivative (curvature) or acceleration. If P is a matrix: the penalty matrix object.
... Further arguments passed to or from other methods.
y Vector of response (scalar).

Value

• basis basis
• x if TRUE the value of the rotated data (the centred data multiplied by the rotation matrix) is returned
• mean functional mean of fdataobj
• df degree of freedom
• type type of basis

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as create.basis and fdata2pc.

Examples

## Not run:
data(tecator)
basis.pc<-create.pc.basis(tecator$absorp.fdata,c(1,4,5))
plot(basis.pc$basis,col=1)
basis.pls<-create.pls.basis(tecator$absorp.fdata,y=tecator$y[,1],c(1,4,5))
lines(basis.pls$basis,col=2)
CV.S

The cross-validation (CV) score

Description
Compute the leave-one-out cross-validation score.

Usage
CV.S(y, S, W = NULL, trim = 0, draw = FALSE, metric = metric.lp, ...)

Arguments
y Matrix of set cases with dimension (n x m), where n is the number of curves and m are the points observed in each curve.
S Smoothing matrix, see S.NW, S.LLR or S.KNN.
W Matrix of weights.
trim The alpha of the trimming.
draw =TRUE, draw the curves, the sample median and trimmed mean.
metric Metric function, by default metric.lp.
... Further arguments passed to or from other methods.

Details
A.-If trim=0:

\[
CV(h) = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{y_i - r_i(x_i)}{1 - S_{ii}} \right)^2 w(x_i)
\]

$S_{ii}$ is the ith diagonal element of the smoothing matrix $S$.

B.-If trim>0:

\[
CV(h) = \frac{1}{l} \sum_{i=1}^{l} \left( \frac{y_i - r_i(x_i)}{1 - S_{ii}} \right)^2 w(x_i)
\]

$S_{ii}$ is the ith diagonal element of the smoothing matrix $S$ and $l$ the index of (1-trim) curves with less error.
**Value**

Returns CV score calculated for input parameters.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**


**See Also**

See Also as `optim.np`

Alternative method: `GCV.S`

**Examples**

```r
Not run:
data(tecator)
x <- tecator$absorp.fdata
np <- ncol(x)
t1 <- 1:np
S1 <- S.NW(tt, 3, Ker.epa)
S2 <- S.LLR(tt, 3, Ker.epa)
S3 <- S.NW(tt, 5, Ker.epa)
S4 <- S.LLR(tt, 5, Ker.epa)
cv1 <- CV.S(x, S1)
cv2 <- CV.S(x, S2)
cv3 <- CV.S(x, S3)
cv4 <- CV.S(x, S4)
cv5 <- CV.S(x, S4, trim=0.1, draw=TRUE)
cv1; cv2; cv3; cv4; cv5
S6 <- S.KNN(tt, 1, Ker.unif, cv=TRUE)
S7 <- S.KNN(tt, 5, Ker.unif, cv=TRUE)
cv6 <- CV.S(x, S6)
cv7 <- CV.S(x, S7)
cv6; cv7
End(Not run)
```

---

**dcor.xy**

*Distance Correlation Statistic and t-Test*

**Description**

Distance correlation t-test of multivariate and functional independence (wrapper functions of energy package).
Usage

dcor.xy(x, y, test = TRUE, metric.x, metric.y, par.metric.x, par.metric.y, n)
dcor.dist(D1, D2)
bcdcor.dist(D1, D2, n)
dcor.test(D1, D2, n)

Arguments

x data (fdata, matrix or data.frame class) of first sample.
y data (fdata, matrix or data.frame class) of second sample.
test if TRUE, compute bias corrected distance correlation statistic and the corresponding t-test, else compute distance correlation statistic.
metric.x, metric.y Name of metric or semi-metric function used for compute the distances of x and y object respectively. By default, metric.lp for functional data and metric.dist for multivariate data.
par.metric.x, par.metric.y List of parameters for the corresponding metric function.
n The sample size used in bias corrected version of distance correlation, by default is the number of rows of x.
D1 Distances of first sample (x data).
D2 Distances of second sample (y data).

Details

These wrapper functions extend the functions of the energy package for multivariate data to functional data. Distance correlation is a measure of dependence between random vectors introduced by Szekely, Rizzo, and Bakirov (2007). dcor.xy performs a nonparametric t-test of multivariate or functional independence in high dimension. The distribution of the test statistic is approximately Student t with $n(n - 3)/2 - 1$ degrees of freedom and for $n \geq 10$ the statistic is approximately distributed as standard normal. Wrapper function of energy:::dcor.ttest. The t statistic is a transformation of a bias corrected version of distance correlation (see SR 2013 for details). Large values (upper tail) of the t statistic are significant.
dcor.test similar to dcor.xy but only for distance matrix. dcor.dist compute distance correlation statistic. Wrapper function of energy:::dcor but only for distance matrix bcdcor.dist compute bias corrected distance correlation statistic. Wrapper function of energy:::bcdcor but only for distance matrix.

Value

dcor.test returns a list with class htest containing
- method description of test
- statistic observed value of the test statistic
• parameter degrees of freedom
• estimate bias corrected distance correlation \texttt{bcdcor(x,y)}
• \texttt{p.value} p-value of the t-test
• \texttt{data.name} description of data

dcor.xy returns the previous list with class \texttt{htest} and

• \texttt{D1} the distance matrix of \texttt{x}
• \texttt{D2} the distance matrix of \texttt{y}

dcor.dist returns the distance correlation statistic.

bcdcor.dist returns the bias corrected distance correlation statistic.

Author(s)
Manuel Oviedo de la Fuente <manuel.oviedo@usc.es> and Manuel Febrero Bande

References


See Also
\texttt{metric.lp} and \texttt{metric.dist}.

Examples

```r
Not run:
x<-rproc2fdata(100,1:50)
y<-rproc2fdata(100,1:50)
dcor.xy(x, y,test=TRUE)
dx <- metric.lp(x)
dy <- metric.lp(y)
dcor.test(dx, dy)
bcdcor.dist(dx, dy)
dcor.xy(x, y,test=FALSE)
dcor.dist(dx, dy)

End(Not run)
```
depth.fdata  

Computation of depth measures for functional data

Description

Several depth measures can be computed for functional data for descriptive or classification purposes.

Usage

```r
depth.mode(
 fdataobj,
 fdataori = fdataobj,
 trim = 0.25,
 metric = metric.lp,
 h = NULL,
 scale = FALSE,
 draw = FALSE,
 ...
)
```

```r
depth.RP(
 fdataobj,
 fdataori = fdataobj,
 trim = 0.25,
 nproj = 50,
 proj = "vexponential",
 dfunc = "TD1",
 par.dfunc = list(),
 scale = FALSE,
 draw = FALSE,
 ...
)
```

```r
depth.RPD(
 fdataobj,
 fdataori = fdataobj,
 nproj = 20,
 proj = 1,
 deriv = c(0, 1),
 trim = 0.25,
 dfunc2 = mdepth.LD,
 method = "fmm",
 draw = FALSE,
 ...
)
```
```r
depth.RT(
 fdataobj,
 fdataori = fdataobj,
 trim = 0.25,
 nproj = 10,
 proj = 1,
 xeps = 1e-07,
 draw = FALSE,
 ...
)

depth.KFSD(
 fdataobj,
 fdataori = fdataobj,
 trim = 0.25,
 h = NULL,
 scale = FALSE,
 draw = FALSE
)

depth.FSD(
 fdataobj,
 fdataori = fdataobj,
 trim = 0.25,
 scale = FALSE,
 draw = FALSE
)

depth.FM(
 fdataobj,
 fdataori = fdataobj,
 trim = 0.25,
 scale = FALSE,
 dfunc = "FM1",
 par.dfunc = list(scale = TRUE),
 draw = FALSE
)
```

**Arguments**

- `fdataobj`: The set of new curves to evaluate the depth. `fdata` class object.
- `fdataori`: The set of reference curves respect to which the depth is computed. `fdata` class object.
- `trim`: The alpha of the trimming.
- `metric`: Metric function, by default `metric.lp`. Distance matrix between `fdataobj` and `fdataori`.
- `h`: Bandwidth parameter.
• If \( h \) is a numerical value, the procedure considers the argument value as the bandwidth.
• If \( h \) is \texttt{NULL} (by default) the bandwidth is provided as the 15%-quantile of the distance among curves of \texttt{fdata}\texttt{ori}.
• If \( h \) is a character string (like "0.15"), the procedure reads the numeric value and consider it as the quantile of the distance in \texttt{fdata}\texttt{ori} (as in the second case).

\texttt{scale} = \texttt{TRUE}, the depth is scaled respect to depths in \texttt{fdata}\texttt{ori}.
\texttt{draw} = \texttt{TRUE}, draw the curves, the sample median and trimmed mean.

Further arguments passed to or from other methods. For \texttt{depth.mode} parameters for \texttt{metric}. For random projection depths, parameters to be included in \texttt{rproc2fdata} not included before.
\texttt{nproj} The number of projections. Ignored if a \texttt{fdata} class object is provided in \texttt{proj}
\texttt{proj} if a \texttt{fdata} class, projections provided by the user. Otherwise, it is the sigma parameter of \texttt{rproc2fdata} function.
\texttt{dfunc} type of univariate depth function used inside depth function: "FM1" refers to the original Fraiman and Muniz univariate depth (default), "TD1" Tukey (Half-space),"Liu1" for simplical depth, "LD1" for Likelihood depth and "MhD1" for Mahalanobis 1D depth. Also, any user function fulfilling the following pattern \texttt{FUN.USER(x,xx,...)} and returning a \texttt{dep} component can be included.
\texttt{par.dfunc} List of parameters for \texttt{dfunc}.
\texttt{deriv} Number of derivatives described in integer vector \texttt{deriv}. =0 means no derivative.
\texttt{dfunc2} Multivariate depth function (second step depth function) in RPD depth, by default \texttt{mdepth.LD}. Any user function with the pattern \texttt{FUN.USER(x,xx,...)} can be employed.
\texttt{method} Type of derivative method. See \texttt{fdata.deriv} for more details.
\texttt{xeps} Accuracy. The left limit of the empirical distribution function.

Details

Type of depth functions: Fraiman and Muniz (FM) depth, modal depth, random Tukey (RT), random projection (RP) depth and double random projection depth (RPD).

• \texttt{depth.FM} computes the integration of an univariate depth along the axis \texttt{x} (see Fraiman and Muniz 2001). It is also known as Integrated Depth.
• \texttt{depth.mode} implements the modal depth (see Cuevas et al 2007).
• \texttt{depth.RT} implements the Random Tukey depth (see Cuesta–Albertos and Nieto–Reyes 2008).
• \texttt{depth.RP} computes the Random Projection depth (see Cuevas et al. 2007).
• \texttt{depth.RPD} implements a depth measure based on random projections possibly using several derivatives (see Cuevas et al. 2007).
• \texttt{depth.FSD} computes the Functional Spatial Depth (see Sguera et al. 2014).
• \texttt{depth.KFSD} implements the Kernelized Functional Spatial Depth (see Sguera et al. 2014).
• The `depth.mode` function calculates the depth of a datum accounting the number of curves in its neighbourhood. By default, the distance is calculated using `metric.lp` function although any other distance could be employed through argument `metric` (with the general pattern `USER.DIST(fdataobj,fdataori)`).

• The `depth.RP` function summarizes the random projections through averages whereas the `depth.RT` function uses the minimum of all projections.

• The `depth.RPD` function involves the original trajectories and the derivatives of each curve in two steps. It builds random projections for the function and their derivatives (indicated in the parameter `deriv`) and then applies a depth function (by default `depth.mode`) to this set of random projections (by default the Tukey one).

• The `depth.FSD` and `depth.KFSD` are the implementations of the default versions of the functional spatial depths proposed in Sguera et al 2014. At this moment, it is not possible to change the kernel in the second one.#'

### Value

Return a list with:

- `median` Deepest curve.
- `lmed` Index deepest element `median`.
- `mtrim` `fdata` class object with the average from the `(1-trim)%` deepest curves.
- `ltrim` Indexes of curves that conform the trimmed mean `mtrim`.
- `dep` Depth of each curve of `fdataobj` w.r.t. `fdataori`.
- `dep.ori` Depth of each curve of `fdataori` w.r.t. `fdataori`.
- `proj` The projection value of each point on the curves.
- `dist` Distance matrix between curves or functional data.

### Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

### References


See Also

See Also as Descriptive.

Examples

```r
Not run:
Ex: CanadianWeather data
tt=1:365
fdataobj<-fdata(t(CanadianWeather$dailAv[,1]),tt)
Fraiman-Muniz Depth
out.FM=depth.FM(fdataobj,trim=0.1,draw=TRUE)
Modal Depth
out.mode=depth.mode(fdataobj,trim=0.1,draw=TRUE)
out.RP=depth.RP(fdataobj,trim=0.1,draw=TRUE)
out.RT=depth.RT(fdataobj,trim=0.1,draw=TRUE)
out.FSD=depth.FSD(fdataobj,trim=0.1,draw=TRUE)
out.RPD=depth.RPD(fdataobj,deriv=c(0,1),dfunc2=mdepth.LD,
trim=0.1,draw=TRUE)
out<-c(out.FM$mtrim,out.mode$mtrim,out.RP$mtrim,out.RT$mtrim)
plot(fdataobj,col="grey")
lines(out)
cdep<-cbind(out.FM$dep,out.mode$dep,out.RP$dep,out.RT$dep,out.FSD$dep,out.KFSD$dep)
colnames(cdep)<-c("FM","mode","RP","RT","FSD","KFSD")
pairs(cdep)
round(cor(cdep),2)
End(Not run)
```

---

**depth.mdata**

*Provides the depth measure for multivariate data*

**Description**

Compute measure of centrality of the multivariate data. Type of depth function: simplicial depth (SD), Mahalanobis depth (MhD), Random Half–Space depth (HS), random projection depth (RP) and Likelihood Depth (LD).

**Usage**

```r
mdepth.LD(x, xx = x, metric = metric.dist, h = NULL, scale = FALSE, ...)
mdepth.HS(x, xx = x, proj = 50, scale = FALSE, xeps = 1e-15, random = FALSE)
mdepth.RP(x, xx = x, proj = 50, scale = FALSE)
mdepth.MhD(x, xx = x, scale = FALSE)
```
mdepth.KFSD(x, xx = x, trim = 0.25, h = NULL, scale = FALSE, draw = FALSE)
mdepth.FSD(x, xx = x, trim = 0.25, scale = FALSE, draw = FALSE)
mdepth.FM(x, xx = x, scale = FALSE, dfunc = "TD1")
mdepth.TD(x, xx = x, xeps = 1e-15, scale = FALSE)
mdepth.SD(x, xx = NULL, scale = FALSE)

Arguments

x
is a set of points, a d-column matrix.

xx
is a d-dimension multivariate reference sample (a d-column matrix) where x points are evaluated.

metric
Metric function, by default metric.dist. Distance matrix between x and xx is computed.

h
Bandwidth, h>0. Default argument values are provided as the 15%-quantile of the distance between x and xx.

scale
=TRUE, scale the depth, see scale.

... Further arguments passed to or from other methods.

proj
are the directions for random projections, by default 500 random projections generated from a scaled runif(500,-1,1).

xeps
Accuracy. The left limit of the empirical distribution function.

random
=TRUE for random projections. =FALSE for deterministic projections.

trim
The alpha of the trimming.

draw
=TRUE, draw the curves, the sample median and trimmed mean.

dfunc
type of univariate depth function used inside depth function: "FM1" refers to the original Frainman and Muniz univariate depth (default), "TD1" Tukey (Half-space),"Liu1" for simplical depth, "LD1" for Likelihood depth and "MhD1" for Mahalanobis 1D depth. Also, any user function fulfilling the following pattern FUN.USER(x,xx,...) and returning a dep component can be included.

Details

Type of depth measures:

- The mdepth.SD calculates the simplicial depth (HD) of the points in x w.r.t. xx (for bivariate data).
- The mdepth.HS function calculates the random half-space depth (HS) of the points in x w.r.t. xx based on random projections proj.
- The mdepth.MhD function calculates the Mahalanobis depth (MhD) of the points in x w.r.t. xx.
- The mdepth.RP calculates the random' projection depth (RP) of the points in x w.r.t. xx based on random projections proj.
- The mdepth.LD calculates the Likelihood depth (LD) of the points in x w.r.t. xx.
- The mdepth.TD function provides the Tukey depth measure for multivariate data.
Value

- lmed Index of deepest element \textit{median} of \( xx \).
- ltrim Index of set of points \( x \) with trimmed mean \( mtrim \).
- dep Depth of each point \( x \) \textit{w.r.t.} \( xx \).
- proj The projection value of each point on set of points.
- xis a set of points to be evaluated.
- xx a reference sample
- name Name of depth method

Author(s)

\texttt{mdepth.RP}, \texttt{mdepth.MhD} and \texttt{mdepth.HS} are versions created by Manuel Febrero Bande and Manuel Oviedo de la Fuente of the original version created by Jun Li, Juan A. Cuesta Albertos and Regina Y. Liu for polynomial classifier.

References


See Also

Functional depth functions: \texttt{depth.FM}, \texttt{depth.mode}, \texttt{depth.RP}, \texttt{depth.RPD} and \texttt{depth.RT}.

Examples

```r
Not run:
data(iris)
group<-iris[,5]
x<-iris[,1:2]

MhD<-mdepth.MhD(x)
PD<-mdepth.RP(x)
HD<-mdepth.HS(x)
SD<-mdepth.SD(x)

x.setosa<-x[group=="setosa",]
x.versicolor<-x[group=="versicolor",]
x.virginica<-x[group=="virginica",]
d1<-mdepth.SD(x,x.setosa)$dep
d2<-mdepth.SD(x,x.versicolor)$dep
d3<-mdepth.SD(x,x.virginica)$dep

End(Not run)
```
**depth.mfdata**

Provides the depth measure for a list of p–functional data objects

---

**Description**

This function computes the depth measure for a list of p–functional data objects. The procedure extends the Fraiman and Muniz (FM), modal, and random project depth functions from 1 functional dataset to p functional datasets.

**Usage**

```r
depth.modep(
 mfdata,
 mfdataref = mfdata,
 h = NULL,
 metric,
 par.metric = list(),
 method = "euclidean",
 scale = FALSE,
 trim = 0.25,
 draw = FALSE,
 ask = FALSE
)
```

```r
depth.RPp(
 mfdata,
 mfdataref = mfdata,
 nproj = 50,
 proj = "vexponential",
 trim = 0.25,
 dfunc = "mdepth.TD",
 par.dfunc = list(scale = TRUE),
 draw = FALSE,
 ask = FALSE
)
```

```r
depth.FMp(
 mfdata,
 mfdataref = mfdata,
 trim = 0.25,
 dfunc = "mdepth.MhD",
 par.dfunc = list(scale = FALSE),
 draw = FALSE,
 ask = FALSE,
 ...
)
```
Arguments

- **mfdata**
  A list of new curves (list of `fdata` objects) to evaluate the depth.

- **mfdataref**
  A set of reference curves (list of `fdata` objects) w.r.t. the depth of `mfdata` is computed.

- **h**
  Bandwidth, h>0. Default argument values are provided as the 15%-quantile of the distance between `fdataobj` and `fdataori`.

- **metric**
  Metric or semi-metric function used for compute the distance between each element in `ldata` w.r.t. `ldataref`, by default `metric.lp`.

- **par.metric**
  List of parameters for the metric function.

- **method**
  Type of the distance measure (by default `euclidean`) to compute the metric between the `p-distance` matrix computed from the `p functional data` elements.

- **scale**
  =TRUE, scale the depth.

- **trim**
  The alpha of the trimming.

- **draw**
  =TRUE, draw the curves, the sample median and trimmed mean.

- **ask**
  Logical. If TRUE (and the R session is interactive) the user is asked for input, before a new figure is drawn.

- **nproj**
  The number of projection.

- **proj**
  If is a character: create the random projection using a covariance matrix by process indicated in the argument (by default, proj=1, sigma=diag(ncol(fdataobj))), else if is a matrix of random projection provided by the user.

- **dfunc**
  Type of multivariate depth (of order p) function used in Framiman and Muniz depth, `depth.FMp` or in Random Projection depth, `depth.FMp`:
  - The `mdepth.SD` function provides the simplicial depth measure for bivariate data.
  - The `mdepth.LD` function provides the Likelihood depth measure based on Nadaraya-Watson estimator of empirical density function.
  - The `mdepth.HS` function implements a half-space depth measure based on random projections.
  - The `mdepth.TD` function implements a Tukey depth measure.
  - The `mdepth.MhD` function implements a Mahalanobis depth measure.
  - The `mdepth.RP` function provides the depth measure using random projections for multivariate data.

- **par.dfunc**
  List of parameters for the `dfunc` depth function, see `Depth.Multivariate`.

- **...**
  Further arguments passed to or from other methods.

Details

- `depth.FMp`, this procedure supposes that each curve of the `mfdataobj` have the same support [0,T] (same argvals and rangeval). The FMp depth is defined as: $FM^p = \int_0^T \mathcal{Z}_p^i(t) dt$ where $\mathcal{Z}_p^i(t)$ is a p-variate depth of the vector $(x_1^i(t), \ldots, x_p^i(t))$ w.r.t. the sample at t. derivatives. In this case, note solo un dato funcional se reduce depth.FM=depth.FM1
The `depth.RPp` function calculates the depth in two steps. It builds random projections for each curve of the `mfdata` w.r.t. each curve of the `mfdataref` object. Then it applies a multivariate depth function specified in `dfunc` argument to the set of random projections. This procedure is a generalization of Random Projection with derivatives (RPD) implemented in `depth.RPD` function. Now, the procedure computes a $p$-variate depth with the projections using the $p$ functional dataset.

The modal depth `depth.modep` function calculates the depth in three steps. First, the function calculates a suitable metrics or semi–metrics $m_1 + \cdots + m_p$ for each curve of the `mfdata` w.r.t. each curve in the `mfdataref` object using the `metric` and `par.metric` arguments, see `metric.lp` or `semimetric.NPFDA` for more details. Second, the function uses the $p$-dimensional metrics to construct a new metric, specified in `method` argument, by default if `method=\text{"euclidean"}`, i.e. $m := \sqrt{m_1^2 + \cdots + m_p^2}$. Finally, the empirical $h$–depth is computed as:

$$
\hat{f}_h(x_0) = N^{-1} \sum_{i=1}^{N} K(m_i/h)
$$

where $x$ is dataset with $p$ observed functional data, $m$ is a suitable metric or semi–metric, $K(t)$ is an asymmetric kernel function and $h$ is the bandwidth parameter.

### Value
- `lmed` Index deepest element median.
- `ltrim` Index of curves with trimmed mean `mtrim`.
- `dep` Depth of each curve of `fdataobj` w.r.t. `fdataori`.
- `dfunc` second depth function used as multivariate depth, see details section.
- `par.dfunc` list of parameters for the `dfunc` depth function.
- `proj` The projection value of each point on the curves.
- `dist` Distance matrix between curves or functional data.

### Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

### References


### See Also
See Also as Descriptive.
## Not run:
data(tecator)
xx<-tecator$absorp
xx1<-fdata.deriv(xx,1)
lx<-list(xx=xx,xx=xx1)

## Fraiman-Muniz Depth
par.df<-list(scale =TRUE)
out.FM1p=depth.FMp(lx,trim=0.1,draw=TRUE, par.dfunc = par.df)
out.FM2p=depth.FMp(lx,trim=0.1,dfunc="mdepth.LD",
par.dfunc = par.df, draw=TRUE)

## Random Project Depth
out.RP1p=depth.RPp(lx,trim=0.1,dfunc="mdepth.TD",
draw=TRUE,par.dfunc = par.df)
out.RP2p=depth.RPp(lx,trim=0.1,dfunc="mdepth.LD",
draw=TRUE,par.dfunc = par.df)

##Modal Depth
out.mode1p=depth.modep(lx,trim=0.1,draw=T,scale=T)
out.mode2p=depth.modep(lx,trim=0.1,method="manhattan",
draw=T,scale=T)

par(mfrow=c(2,3))
plot(out.FM1p$dep,out.FM2p$dep)
plot(out.RP1p$dep,out.RP2p$dep)
plot(out.mode1p$dep,out.mode2p$dep)
plot(out.FM1p$dep,out.RP1p$dep)
plot(out.RP1p$dep,out.mode1p$dep)
plot(out.FM1p$dep,out.mode1p$dep)

## End(Not run)

---

**Descriptive**

Descriptive measures for functional data.

---

**Description**

Central and dispersion measures for functional data.

**Usage**

```r
func.mean(x)

func.var(fdataobj)

func.trim.FM(fdataobj, ...)
```
func.trim.mode(fdataobj, ...)  
func.trim.RP(fdataobj, ...)  
func.trim.RT(fdataobj, ...)  
func.trim.RPD(fdataobj, ...)  
func.med.FM(fdataobj, ...)  
func.med.mode(fdataobj, ...)  
func.med.RP(fdataobj, ...)  
func.med.RT(fdataobj, ...)  
func.med.RPD(fdataobj, ...)  
func.trimvar.FM(fdataobj, ...)  
func.trimvar.mode(fdataobj, ...)  
func.trimvar.RP(fdataobj, ...)  
func.trimvar.RPD(fdataobj, ...)  
func.trim.RT(fdataobj, ...)  
func.med.RT(fdataobj, ...)  
func.trimvar.RT(fdataobj, ...)  
func.mean.formula(formula, data = NULL, ..., drop = FALSE)

Arguments

x fdata or ldata class object.

fdataobj fdata class object.

... Further arguments passed to or from other methods. If the argument p is passed, 
it used metric.lp function, by default p=2. 
If the argument trim (alpha of the trimming) is passed, it used metric.lp function. 
If the argument deriv (number of derivatives to use) is passed. This parameter 
is used in depth.RPD function, by default it uses deriv =(0,1).

formula a formula, such as y ~ group, where y is a fdata object to be split into groups 
according to the grouping variable group (usually a factor).

data List that containing the variables in the formula. The item called "df" is a data 
frame with the grouping variable. The item called "y" is a fdata object.
drop  logical indicating if levels that do not occur should be dropped (if f is a factor or a list).

Value

func.mean.formula The value returned from split is a list of fdata containing the mean curves for the groups. The components of the list are named by the levels of f (after converting to a factor, or if already a factor and drop = TRUE, dropping unused levels).

func.mean gives mean curve.
func.var gives variance curve.
func.trim.FM Returns the average from the (1-trim)% deepest curves following FM criteria.
func.trim.mode Returns the average from the (1-trim)% deepest curves following mode criteria.
func.trim.RP Returns the average from the (1-trim)% deepest curves following RP criteria.
func.trim.RT Returns the average from the (1-trim)% deepest curves following RT criteria.
func.trim.RPD Returns the average from the (1-trim)% deepest curves following RPD criteria.
func.med.FM Returns the deepest curve following FM criteria.
func.med.mode Returns the deepest curve following mode criteria.
func.med.RP Returns the deepest curve following RP criteria.
func.med.RPD Returns the deepest curve following RPD criteria.
func.trimvar.FM Returns the marginal variance from the deepest curves following FM criteria.
func.trimvar.mode Returns the marginal variance from the deepest curves following mode criteria.
func.trimvar.RP Returns the marginal variance from the deepest curves following RP criteria.
func.trimvar.RT Returns the marginal variance from the deepest curves following RT criteria.
func.trimvar.RPD Returns the marginal variance from the deepest curves following RPD criteria.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


Examples

## Not run:
# Example with Montreal Daily Temperature (fda-package)
fdatabj<-fdata(MontrealTemp)

# Measures of central tendency by group
fac<-factor(c(rep(1,len=17),rep(2,len=17)))
ldata=list("df"=data.frame(fac,"fdatabj"=fdatabj))
a1<-func.mean.formula(fdataobj=fdataobj,fac,ldata)
plot(a1)
# Measures of central tendency

a1 <- func.mean(fdataobj)
a2 <- func.trim.FM(fdataobj)
a3 <- func.trim.mode(fdataobj)
a4 <- func.trim.RP(fdataobj)
# a5 <- func.trim.RPD(fdataobj, deriv = c(0, 1)) # Time-consuming
a6 <- func.med.FM(fdataobj)
a7 <- func.med.mode(fdataobj)
a8 <- func.med.RP(fdataobj)
# a9 <- func.med.RPD(fdataobj, deriv = c(0, 1)) # Time-consuming
# a10 <- func.med.RT(fdataobj)

par(mfrow = c(1, 2))
plot(c(a1, a2, a3, a4), ylim = c(-26, 29), main = "Central tendency: trimmed mean")
plot(c(a1, a6, a7, a8), ylim = c(-26, 29), main = "Central tendency: median")

## Measures of dispersion

b1 <- func.var(fdataobj)
b2 <- func.trimvar.FM(fdataobj)
b3 <- func.trimvar.FM(fdataobj, trim = 0.1)
b4 <- func.trimvar.mode(fdataobj)
b5 <- func.trimvar.mode(fdataobj, p = 1)
b6 <- func.trimvar.RP(fdataobj)
b7 <- func.trimvar.RPD(fdataobj)
b8 <- func.trimvar.RPD(fdataobj, deriv = c(0, 1))

dev.new()
par(mfrow = c(1, 2))
plot(c(b1, b2, b3, b4, b5), ylim = c(0, 79), main = "Measures of dispersion I")
plot(c(b1, b6, b7, b8, b9), ylim = c(0, 79), main = "Measures of dispersion II")

## End(Not run)

---

**dev.S**

*The deviance score*

**Description**

Returns the deviance of a fitted model object by GCV score.

**Usage**

```r
dev.S(
 y,
 S,
 obs,
 family = gaussian(),
 off,
 offdf,
)```

Measures of central tendency

```r
a1 <- func.mean(fdataobj)
a2 <- func.trim.FM(fdataobj)
a3 <- func.trim.mode(fdataobj)
a4 <- func.trim.RP(fdataobj)
# a5 <- func.trim.RPD(fdataobj, deriv = c(0, 1)) # Time-consuming
a6 <- func.med.FM(fdataobj)
a7 <- func.med.mode(fdataobj)
a8 <- func.med.RP(fdataobj)
# a9 <- func.med.RPD(fdataobj, deriv = c(0, 1)) # Time-consuming
# a10 <- func.med.RT(fdataobj)

par(mfrow = c(1, 2))
plot(c(a1, a2, a3, a4), ylim = c(-26, 29), main = "Central tendency: trimmed mean")
plot(c(a1, a6, a7, a8), ylim = c(-26, 29), main = "Central tendency: median")

## Measures of dispersion

```r
b1 <- func.var(fdataobj)
b2 <- func.trimvar.FM(fdataobj)
b3 <- func.trimvar.FM(fdataobj, trim = 0.1)
b4 <- func.trimvar.mode(fdataobj)
b5 <- func.trimvar.mode(fdataobj, p = 1)
b6 <- func.trimvar.RP(fdataobj)
b7 <- func.trimvar.RPD(fdataobj)
b8 <- func.trimvar.RPD(fdataobj, deriv = c(0, 1))

dev.new()
par(mfrow = c(1, 2))
plot(c(b1, b2, b3, b4, b5), ylim = c(0, 79), main = "Measures of dispersion I")
plot(c(b1, b6, b7, b8, b9), ylim = c(0, 79), main = "Measures of dispersion II")

End(Not run)

dev.S

The deviance score

Description

Returns the deviance of a fitted model object by GCV score.

Usage

```r
dev.S(
  y,
  S,
  obs,
  family = gaussian(),
  off,
  offdf,
)```
criteria = "GCV",
W = diag(1, ncol = ncol(S), nrow = nrow(S)),
trim = 0,
draw = FALSE,
...)

Arguments

y Matrix of set cases with dimension (n x m), where n is the number of curves and m are the points observed in each curve.

S Smoothing matrix.

obs observed response.

family a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.)

off off

offdf off, degrees of freedom

criteria The penalizing function. By default "Rice" criteria. Possible values are "GCV", "AIC", "FPE", "Shibata", "Rice".

W Matrix of weights.

trim The alpha of the trimming.

draw =TRUE, draw the curves, the sample median and trimmed mean.

... Further arguments passed to or from other methods.

Details

Up to a constant, minus twice the maximized log-likelihood. Where sensible, the constant is chosen so that a saturated model has deviance zero.

\[ GCV(h) = p(h)\Xi(n^{-1}h^{-1}) \]

Where

\[ p(h) = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - r_i(x_i) \right)^2 w(x_i) \]

and penalty function

\[ \Xi() \]

can be selected from the following criteria:

Generalized Cross-validation (GCV):

\[ \Xi_{GCV}(n^{-1}h^{-1}) = (1 - n^{-1}S_{ii})^{-2} \]
Akaike’s Information Criterion (AIC):

\[ \Xi_{AIC}(n^{-1}h^{-1}) = \exp(2n^{-1}S_{ii}) \]

Finite Prediction Error (FPE)

\[ \Xi_{FPE}(n^{-1}h^{-1}) = \frac{(1 + n^{-1}S_{ii})}{(1 - n^{-1}S_{ii})} \]

Shibata’s model selector (Shibata):

\[ \Xi_{Shibata}(n^{-1}h^{-1}) = (1 + 2n^{-1}S_{ii}) \]

Rice’s bandwidth selector (Rice):

\[ \Xi_{Rice}(n^{-1}h^{-1}) = (1 - 2n^{-1}S_{ii})^{-1} \]

Value

Returns GCV score calculated for input parameters.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as GCV.S.

Alternative method: CV.S

Examples

data(phoneme)
mlearn<-phoneme$data learn
np<-ncol(mlearn)
tt<-mlearn["argvals"]
S1 <- S.NW(tt,2.5)
gcv1 <- dev.S(mlearn$data[,1], obs=(sample(150)), S1, off=rep(1,150), offdf=3)
gcv2 <- dev.S(mlearn$data[,1], obs=sort(sample(150)), S1, off=rep(1,150), offdf=3)
dfv.test

Delsol, Ferraty and Vieu test for no functional-scalar interaction

Description

The function dfv.test tests the null hypothesis of no interaction between a functional covariate and a scalar response in a general framework. The null hypothesis is

\[ H_0 : m(X) = 0, \]

where \( m(\cdot) \) denotes the regression function of the functional variate \( X \) over the centred scalar response \( Y \) (\( E[Y] = 0 \)). The null hypothesis is tested by the smoothed integrated square error of the response (see Details).

Usage

```r
dfv.statistic(
 X.fdata,
 Y,
 h = quantile(x = metric.lp(X.fdata), probs = c(0.05, 0.1, 0.15, 0.25, 0.5)),
 K = function(x) 2 * dnorm(abs(x)),
 weights = rep(1, dim(X.fdata$data)[1]),
 d = metric.lp,
 dist = NULL
)

dfv.test(
 X.fdata,
 Y,
 B = 5000,
 h = quantile(x = metric.lp(X.fdata), probs = c(0.05, 0.1, 0.15, 0.25, 0.5)),
 K = function(x) 2 * dnorm(abs(x)),
 weights = rep(1, dim(X.fdata$data)[1]),
 d = metric.lp,
 verbose = TRUE
)
```

Arguments

- `X.fdata`: Functional covariate. The object must be in the class `fdata`.
- `Y`: Scalar response. Must be a vector with the same number of elements as functions are in `X.fdata`.
- `h`: Bandwidth parameter for the kernel smoothing. This is a crucial parameter that affects the power performance of the test. One possibility to choose it is considering the Cross-validatory bandwidth of the nonparametric functional regression, given by the function `fregre.np` (see Examples). Other possibility is to consider a grid of bandwidths. This is the default option, considering the grid
given by the quantiles 0.05, 0.10, 0.15, 0.25 and 0.50 of the functional $L^2$ distances of the data.

**K**  
Kernel function. If no specified it is taken to be the rescaled right part of the normal density.

**weights**  
A vector of weights for the sample data. The default is the uniform weights rep(1, dim(X.fdata$data)[1]).

**d**  
Semimetric to use in the kernel smoothers. By default is the $L^2$ distance given by `metric.lp`.

**dist**  
Matrix of distances of the functional data, used to save time in the bootstrap calibration. If not given, the matrix is automatically computed using the semimetric d.

**B**  
Number of bootstrap replicates to calibrate the distribution of the test statistic. B=5000 replicates are the recommended for carry out the test, although for exploratory analysis (not inferential), an acceptable less time-consuming option is B=500.

**verbose**  
Either to show or not information about computing progress.

### Details

The Delsol, Ferraty and Vieu statistic is defined as

$$T_n = \left( \sum_{i=1}^{n} (Y_i - m(X_i)) K\left( \frac{d(X_i, X_i)}{h} \right) \right)^2 \omega(X) dP_X(X)$$

and in the case of no interaction with centred scalar response (when $H_0 : m(X) = 0$ holds), its sample version is computed from

$$T_n = \frac{1}{n} \sum_{j=1}^{n} \left( \sum_{i=1}^{n} Y_i K\left( \frac{d(X_j, X_i)}{h} \right) \right)^2 \omega(X_j).$$

The sample version implemented here does not consider a splitting of the sample, as the authors comment in their paper. The statistic is computed by the function `dfv.statistic` and, before applying the test, the response $Y$ is centred. The distribution of the test statistic is approximated by a wild bootstrap on the residuals, using the golden section bootstrap.

Please note that if a grid of bandwidths is passed, a harmless warning message will prompt at the end of the test (it comes from returning several p-values in the htest class).

### Value

The value of `dfv.statistic` is a vector of length `length(h)` with the values of the statistic for each bandwidth. The value of `dfv.test` is an object with class "htest" whose underlying structure is a list containing the following components:

- **statistic** The value of the Delsol, Ferraty and Vieu test statistic.
- **boot.statistics** A vector of length B with the values of the bootstrap test statistics.
- **p.value** The p-value of the test.
• method The character string "Delsol, Ferraty and Vieu test for no functional-scalar interaction".
• B The number of bootstrap replicates used.
• h Bandwidth parameters for the test.
• K Kernel function used.
• weights The weights considered.
• d Matrix of distances of the functional data.
• data.name The character string "Y=0+e"

Note

No NA's are allowed neither in the functional covariate nor in the scalar response.

Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to <egarcia@math.ku.dk>

References


See Also

rwild, flm.test, flm.Ftest, fregre.np

Examples

```r
Not run:
Simulated example
X=rproc2fdata(n=50,t=seq(0,1,l=101),sigma="OU")
beta0=fdata(mdata=rep(0,length=101)+rnorm(101, sd=0.05),
 argvals=seq(0,1,l=101), rangeval=c(0,1))
beta1=fdata(mdata=cos(2*pi*seq(0,1,l=101))-(seq(0,1,l=101)-0.5)^2+
 rnorm(101, sd=0.05), argvals=seq(0,1,l=101), rangeval=c(0,1))

Null hypothesis holds
Y0=drop(inprod.fdata(X,beta0)+rnorm(50, sd=0.1))

Null hypothesis does not hold
Y1=drop(inprod.fdata(X,beta1)+rnorm(50, sd=0.1))

We use the CV bandwidth given by fregre.np
```
dis.cos.cor

# Do not reject H0
dfv.test(X,Y0,h=fregre.np(X,Y0)$h.opt,B=100)
# dfv.test(X,Y0,B=5000)

# Reject H0
dfv.test(X,Y1,B=100)
# dfv.test(X,Y1,B=5000)

## End(Not run)

---

dis.cos.cor  Proximities between functional data

Description

Computes the cosine correlation distance between two functional dataset of class fdata.

Usage

dis.cos.cor(fdata1, fdata2 = NULL, as.dis = FALSE)

Arguments

fdata1  Functional data 1 or curve 1.
fdata2  Functional data 2 or curve 2.
as.dis  Returns the distance matrix from class dist.

Value

Returns a proximities matrix between functional data.

References


See Also

See also metric.lp and semimetric.NPFDA
Examples

```r
Not run:
r1<-rnorm(1001,sd=.01)
r2<-rnorm(1001,sd=.01)
x<-seq(0,2*pi,length=1001)
fx<-fdata(sin(x)/sqrt(pi)+r1,x)
dis.cos.cor(fx,fx)
dis.cos.cor(c(fx,fx),as.dis=TRUE)
fx0<-fdata(rep(0,length(x))+r2,x)
plot(c(fx,fx0))
dis.cos.cor(c(fx,fx0),as.dis=TRUE)

End(Not run)
```

fanova.hetero

ANOVA for heteroscedastic data

Description

Univariate ANOVA for heteroscedastic data.

Usage

fanova.hetero(object = NULL, formula, pr = FALSE, contrast = NULL, ...)

Arguments

- **object**: A data frame with dimension \((n \times p+1)\). In the first column contains the \(n\) response values and on the following \(p\) columns the explanatory variables specified in the formula.
- **formula**: as formula.
- **pr**: If TRUE, print intermediate results.
- **contrast**: List of special contrast to be used, by default no special contrasts are used (contrast=NULL).
- **...**: Further arguments passed to or from other methods.

Details

This function fits a univariate analysis of variance model and allows calculate special contrasts defined by the user. The list of special contrast to be used for some of the factors in the formula. Each matrix of the list has \(r\) rows and \(r-1\) columns.

The user can also request special predetermined contrasts, for example using `contr.helmert`, `contr.sum` or `contr.treatment` functions.
Value

Return:

- ans A list with components including: the Beta estimation Est, the factor degrees of freedom df1, the residual degrees of freedom df2 and p-value for each factor.
- contrast List of special contrasts.

Note

anova.hetero deprecated
It only works with categorical variables.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: fanova.RPm

Examples

```R
Not run:
data(phoneme)
ind=1 # beetwen 1:150
fdataobj=data.frame(phoneme$learn[["data"]][,ind])
n=dim(fdataobj)[1]
group<-factor(phoneme$classlearn)

#ex 1: real factor and random factor
group.rand=as.factor(sample(rep(1:3,n),n))
f=data.frame(group,group.rand)
mm=data.frame(fdataobj,f)
colnames(mm)=c("value","group","group.rand")
out1=fanova.hetero(object=mm[,2],value=group.rand,pr=FALSE)
out2=fanova.hetero(object=mm[,3],value=group,pr=FALSE)
out1
out2

#ex 2: real factor, random factor and special contrasts
cr5=contr.sum(5) #each level vs last level
cr3=c(1,0,-1) #first level vs last level
out.contrast=fanova.hetero(object=mm[,3],value=group,pr=FALSE,
contrast=list(group=cr5))
out.contrast
```
### fanova.onefactor

**One–way anova model for functional data**

**Description**

One–way anova model for k independent samples of functional data. The function contrasts the null hypothesis of equality of mean functions of functional data based on the an asymptotic version of the anova F–test.

\[ H_0 : m_1 = \ldots = m_k \]

**Usage**

```r
fanova.onefactor(
 object,
 group,
 nboot = 100,
 plot = FALSE,
 verbose = FALSE,
 ...
)
```

**Arguments**

- `object`: functional response data. fdata class object with n curves.
- `group`: a factor specifying the class for each curve.
- `nboot`: number of bootstrap samples.
- `plot`: if TRUE, plot the mean of each factor level and the results of test.
- `verbose`: if TRUE, print intermediate results.
- `...`: further arguments passed to or from other methods.

**Details**

The function returns the p–value of test using one–way anova model over nboot runs.

**Value**

Returns:

- p–value probability of rejecting the null hypothesis H0 at a significance level
- `stat` statistic value of test.
- `wm` statistic values of bootstrap resamples.

**Note**

anova.onefactor deprecated.
Author(s)
Juan A. Cuesta-Albertos, Manuel Febrero-Bande, Manuel Oviedo de la Fuente
<manuel.oviedo@usc.es>

References

See Also
See Also as: fanova.RPm

Examples

```
Not run:
data(MCO)
gupo<-MCO$classintact
datos<-MCO$intact
res=fanova.onefactor(datos,grupo,nboot=50,plot=TRUE)
gupo <- MCO$classpermea
datos <- MCO$permea
res=fanova.onefactor(datos,grupo,nboot=50,plot=TRUE)
End(Not run)
```

fanova.RPm

Functional ANOVA with Random Project.

Description
The procedure is based on the analysis of randomly chosen one-dimensional projections. The function tests ANOVA models for functional data with continuous covariates and perform special contrasts for the factors in the formula.

Usage

```
fanova.RPm(
 object, formua, dat.a.fac, RP = min(30, ncol(object)), alpha = 0.95, zpro = NULL, par.zpro = list(norm = TRUE), hetero = TRUE, pr = FALSE, w = rep(1, ncol(object)),)
```
## S3 method for class 'fanova.RPm'

```r
summary(object, ndec = NULL, ...)
```

### Arguments

- **object**: Functional response data. Object with class fdata with \(n\) curves discretitized in \(m\) points. For multivariate problems `object` can be a `data.frame` or a `matrix`.
- **formula**: as `formula` without response.
- **data.fac**: Explanatory variables. Data frame with dimension \((n \times p)\), where \(p\) are the number of factors or covariates considered.
- **RP**: Vector of number of random projections.
- **alpha**: Alpha value, by default \(\alpha = 0.95\).
- **zproj**: Function for generating the projections or an object that contains that projections.
- **par.zproj**: List of parameters for `zproj` function.
- **hetero**: logical. If `TRUE` (by default) means heteroskedastic ANOVA.
- **pr**: logical. If `TRUE` prints intermediate results.
- **w**: Vector of weights (only for multivariate problems).
- **nboot**: Number of bootstrap samples, by default no bootstrap computations, `nboot=0`.
- **contrast**: List of special contrast to be used; by default no special contrasts are used (`contrast=NULL`).
- **...**: Further arguments passed to or from other methods.
- **ndec**: Number of decimals.

### Details

`zproj` allows to change the generator process of the projections. This can be done through the inclusion of a function or a collection of projections generated outside the function. By default, for a functional problem, the function `rproc2fdata` is used. For multivariate problems, if no function is included, the projections are generated by a normalized gaussian process of the same dimension as `object`. Any user function can be included with the only limitation that the two first parameters are:

- \(n\): number of projections
- \(t\): discretization points for functional problems
- \(m\): number of columns for multivariate problems.

That functions must return a `fdata` or `matrix` object respectively.

The function allows user-defined contrasts. The list of contrast to be used for some of the factors in the formula. Each contrast matrix in the list has \(r\) rows, where \(r\) is the number of factor levels.
The user can also request special predetermined contrasts, for example using the \texttt{contr.helmert}, \texttt{contr.sum} or \texttt{contr.treatment} functions.

The function returns (by default) the significance of the variables using the Bonferroni test and the False Discovery Rate test. Bootstrap procedure provides more precision.

\textbf{Value}

An object with the following components:

- \texttt{proj} The projection value of each point on the curves. Matrix with dimension (\(RP \times m\)), where \(RP\) is the number of projection and \(m\) are the points observed in each projection curve.
- \texttt{mins} minimum number for each random projection.
- \texttt{result} p-value for each random projection.
- \texttt{test.Bonf} significance (TRUE or FALSE) for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.
- \texttt{p.Bonf} p-value for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.
- \texttt{test.fdr} False Discovery Rate (TRUE or FALSE) for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.
- \texttt{p.fdr} p-value of False Discovery Rate for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.
- \texttt{test.Boot} False Discovery Rate (TRUE or FALSE) for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.
- \texttt{p.Boot} p-value of Bootstrap sample for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.

\textbf{Note}

\texttt{anova.RPm} deprecated.

If \texttt{hetero=TRUE} then all factors must be categorical.

\textbf{Author(s)}

Juan A. Cuesta-Albertos, Manuel Febrero-Bande, Manuel Oviedo de la Fuente
<manuel.oviedo@usc.es>

\textbf{References}


\textbf{See Also}

See Also as: \texttt{fanova.onefactor}
Examples

## Not run:
# ex fanova.hetero
data(phoneme)
names(phoneme)
# A MV matrix obtained from functional data
data=data.frame(phoneme$learn$data[,c(1,seq(0,150,10)[-1])])
group=phoneme$classlearn
n=nrow(data)
group.rand=as.factor(sample(rep(1:3,len=n),n))
RP=c(2,5,15,30)

#ex 1: real factor and random factor
m03=data.frame(group,group.rand)
resul1=fanova.RPm(phoneme$learn,~group+group.rand,m03,RP=c(5,30))
summary(resul1)

#ex 2: real factor with special contrast
m0=data.frame(group)
cr5=contr.sum(5) #each level vs last level
resul03c1=fanova.RPm(data,~group,m0,contrast=list(group=cr5))
summary(resul03c1)

#ex 3: random factor with special contrast. Same projs as ex 2.
m0=data.frame(group.rand)
zz=resul03c1$proj
cr3=contr.sum(3) #each level vs last level
resul03c1=fanova.RPm(data,~group.rand,m0,contrast=list(group.rand=cr3),zproj=zz)
summary(resul03c1)

## End(Not run)

---

fda.usc.internal  fda.usc internal functions

Description

Internal undocumentation functions for fda.usc package.

Usage

trace.matrix(x, na.rm = TRUE)

argvals.equi(tt)

## S3 method for class 'fdata'
fdatal + fdatal2
## S3 method for class 'fdata'
fdata1 - fdata2

## S3 method for class 'fdata'
fdata1 * fdata2

## S3 method for class 'fdata'
fdata1 / fdata2

## S3 method for class 'fdata'
fdataobj[i = TRUE, j = TRUE, drop = FALSE]

## S3 method for class 'fdata'
fdata1 != fdata2

## S3 method for class 'fdata'
fdata1 == fdata2

## S3 method for class 'fdata'
fdataobj ^ pot

## S3 method for class 'fdata'
dim(x)

ncol.fdata(x)

nrow.fdata(x)

## S3 method for class 'fdata'
length(x)

NROW.fdata(x)

NCOL.fdata(x)

rownames.fdata(x)

colnames.fdata(x)

## S3 method for class 'fdata'
c(...)

argvals(fdataobj)

rangeval(fdataobj)

## S3 method for class 'fdist'
fdataobj[i = TRUE, j = TRUE, drop = FALSE]
## S3 method for class 'fdata'
is.na(x)

## S3 method for class 'fdata'
anyNA(x, recursive = FALSE)
count.na.fdata(x)
unlist_fdata(x, recursive = TRUE, use.names = TRUE)

### Arguments

- **x**: matrix or `fdata` class object.
- **na.rm**: logical. Should missing values (including `NaN`) be removed?
- **tt**: argument values
- **fdataobj, fdata1, fdata2**: `fdata` class object.
- **i, j**: Indices specifying elements to extract, replace. Indices are numeric or character vectors or empty
- **drop**: For `fdata` class object. If TRUE the result is coerced to the lowest possible dimension of element data. This only works for extracting elements, not for the replacement.
- **pot**: Numeric value for exponentiation.
- **...**: `fdata` objects to be concatenated.
- **recursive**: should anyNA be applied recursively to lists and pairlists? (in `anyNA.fdata` function) logical. Should unlisting be applied to list components of x? (in `unlist_fdata` function).
- **use.names**: logical. Should names be preserved?

### Details

The `argvals.equi` function returns `TRUE` if the argvals are equispaced and `FALSE` in other case.

### Note

In "Ops" functions "+.fdata", "-.fdata", "*.fdata" and "/.fdata": The lengths of the objects `fdata1` and `fdata2` may be different because operates recycled into minimum size as necessary.

### References

fdata

Converts raw data or other functional data classes into fdata class.

Description

Create a functional data object of class fdata from (matrix, data.frame, numeric, integer, fd, fds, fts or sfts) class data.

Usage

fdata(mdata, argvals = NULL, rangeval = NULL, names = NULL, fdata2d = FALSE)

Arguments

mdata
Matrix of set cases with dimension (n x m), where n is the number of curves and m are the points observed in each curve.

argvals
Argvals, by default: 1:m.

rangeval
(optional) Range of discretization points, by default: range(argvals).

names
(optional) list with tree components: main an overall title, xlab title for x axis and ylab title for y axis.

fdata2d
TRUE class fdata2d, the functional data is observed in at least a two grids (the argvals is a list of vectors). By default fdata2d=FALSE the functional data is observed in a single grid (the argvals is a vector).

Value

Return fdata class object with:

• "data": matrix of set cases with dimension (n x m), where n is the number of curves and m are the points observed in each curve
• "rangeval": the discretizations points values, if not provided: 1:m
• "rangeval": range of the discretizations points values, by default: range(argvals)
• "names": (optional) list with main an overall title, xlab title for x axis and ylab title for y axis.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

fdata.bootstrap

Bootstrap samples of a functional statistic

Description

provides bootstrap samples for functional data.

Usage

fdata.bootstrap(
  fdataobj,
  statistic = func.mean,
  alpha = 0.05,
  nb = 200,
  smo = 0,
  draw = FALSE,
)
Arguments

- **fdataobj**: fdata class object.
- **statistic**: Sample statistic. It must be a function that returns an object of class fdata. By default, it uses sample mean `func.mean`. See `Descriptive` for other statistics.
- **alpha**: Significance value.
- **nb**: Number of bootstrap resamples.
- **smo**: The smoothing parameter for the bootstrap samples as a proportion of the sample variance matrix.
- **draw**: If TRUE, plot the bootstrap samples and the statistic.
- **draw.control**: List that it specifies the col, lty and lwd for objects: fdataobj, statistic, IN and OUT.
- **...**: Further arguments passed to or from other methods.

Details

The `fdata.bootstrap()` computes a confidence ball using bootstrap in the following way:

- Let $X_1(t), \ldots, X_n(t)$ the original data and $T = T(X_1(t), \ldots, X_n(t))$ the sample statistic.
- Calculate the nb bootstrap resamples $\{X_1^*(t), \ldots, X_n^*(t)\}$, using the following scheme $X_i^*(t) = X_i(t) + Z(t)$ where $Z(t)$ is normally distributed with mean 0 and covariance matrix $\gamma \Sigma_x$, where $\Sigma_x$ is the covariance matrix of $\{X_1(t), \ldots, X_n(t)\}$ and $\gamma$ is the smoothing parameter.
- Let $T^*_j = T(X_1^j(t), \ldots, X_n^j(t))$ the estimate using the j resample.
- Compute $d(T, T^*_j)$, $j = 1, \ldots, nb$. Define the bootstrap confidence ball of level $1 - \alpha$ as $CB(\alpha) = X \in E$ such that $d(T, X) \leq d_\alpha$ being $d_\alpha$ the quantile $(1 - \alpha)$ of the distances between the bootstrap resamples and the sample estimate.

The `fdata.bootstrap` function allows us to define a statistic calculated on the nb resamples, control the degree of smoothing by smo argument and represent the confidence ball with level $1 - \alpha$ as those resamples that fulfill the condition of belonging to $CB(\alpha)$. The statistic used by default is the mean (`func.mean`) but also other depth-based functions can be used (see `help(Descriptive)`).

Value

- **statistic**: fdata class object with the statistic estimate from nb bootstrap samples.
- **dband**: Bootstrap estimate of $(1 - \alpha)\%$ distance.
- **rep.dist**: Distance from every replicate.
- **resamples**: fdata class object with the bootstrap resamples.
- **fdataobj**: fdata class object.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
References


See Also

See Also as Descriptive

Examples

```r
Not run:
data(tecator)
absorp<-tecator$absorp.fdata
Time consuming
#Bootstrap for Trimmed Mean with depth mode
out.boot=fdata.bootstrap(absorp,statistic=func.trim.FM,nb=200,draw=TRUE)
names(out.boot)
#Bootstrap for Median with with depth mode
control=list("col"=c("grey","blue","cyan"),"lty"=c(2,1,1),"lwd"=c(1,3,1))
out.boot=fdata.bootstrap(absorp,statistic=func.med.mode,
draw=TRUE,draw.control=control)
End(Not run)
```

fdata.cen

Functional data centred (subtract the mean of each discretization point)

Description

The function fdata.cen centres the curves by subtracting the functional mean.

Usage

fdata.cen(fdataobj, meanX = func.mean(fdataobj))

Arguments

fdataobj  fdata class object.
meanX  The functional mean subtracted in the fdatobj.
fdata.deriv

Value

Return:
  two fdata class objects with:

  Xcen       The centered fdata.
  meanX      Functional mean substracted.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See Also as fdata

Examples

```r
Not run:
data(phoneme)
mlearn<-phoneme[["learn"]][13:15,]
fdata.c=fdata.cen(mlearn)$Xcen
par(mfrow=c(1,2))
plot(mlearn,type="l")
plot(fdata.c,type="l")
End(Not run)
```

fdata.deriv  Computes the derivative of functional data object.

Description

Computes the derivative of functional data.

- If method = "bspline", "exponential", "fourier", "monomial" or "polynomial". fdata.deriv function creates a basis to represent the functional data. The functional data are converted to class fd using the Data2Fd function and the basis indicated in the method. Finally, the function calculates the derivative of order nderiv of curves using deriv.fd function.

- If method = "fmm", "periodic", "natural" or "monoH.FC" is used splinefun function.

- If method = "diff", raw derivation is applied. Not recommended to use this method when the values are not equally spaced.
Usage

fdataderiv(
  fdataobj,
  ndriv = 1,
  method = "bspline",
  class.out = "fdata",
  nbasis = NULL,
  ...
)

Arguments

fdataobj  fdata class object.
nderiv    Order of derivation, by default ndriv = 1.
method    Type of derivative method, for more information see details.
class.out Class of functional data returned: fdata or fd class.
nbasis    Number of Basis for fdataobj$DATA. It is only used if method = "bspline",
           "exponential", "fourier", "monomial" or "polynomial"
...        Further arguments passed to or from other methods.

Value

Returns the derivative of functional data of fd class if class.out = "fd" or fdata class if class.out = "fdata".

See Also

See also deriv.fd, splinefun and fdata

Examples

data(tecator)
  absorp=tecator$absorp.fdata
  tecator.fd1=fdata2fd(absorp)
  tecator.fd2=fdata2fd(absorp, "fourier", 9)
  tecator.fd3=fdata2fd(absorp, "fourier", nbasis=9, ndriv=1)
  #tecator.fd1;tecator.fd2;tecator.fd3
  tecator.fd1a=fdata(tecator.fd1)
  tecator.fd2a=fdata(tecator.fd2)
  tecator.fd3a=fdata(tecator.fd3)
  tecator.fd4a=fdata.deriv(absorp, ndriv=1, method="bspline",
                            class.out='fdata', nbasis=9)
  tecator.fd4b=fdata.deriv(tecator.fd3, ndriv=0, class.out='fd', nbasis=9)
  plot(tecator.fd4a)
  plot(fdata.deriv(absorp, ndriv=1, method="bspline", class.out='fd', nbasis=9))
fdata.methods

fdata S3 Group Generic Functions

Description

fdata Group generic methods defined for four specified groups of functions, Math, Ops, Summary and Complex.

order.fdata and split.fdata: A wrapper for the order and split function for fdata object.

Usage

## S3 method for class 'fdata'
Math(x, ...)

## S3 method for class 'fdata'
Ops(e1, e2 = NULL)

## S3 method for class 'fdata'
Summary(..., na.rm = FALSE)

## S3 method for class 'fdata'
split(x, f, drop = FALSE, ...)

order.fdata(y, fdataobj, na.last = TRUE, decreasing = FALSE)

is.fdata(fdataobj)

Arguments

x An fdata object containing values to be divided into groups or an list of fdata objects containing values to be combine by rows in a to be flatten one fdata object.

... Further arguments passed to methods.

e1, e2 fdata class object

na.rm logical: should missing values be removed?

f a factor in the sense that as.factor(f) defines the grouping, or a list of such factors in which case their interaction is used for the grouping.

drop logical indicating if levels that do not occur should be dropped (if f is a factor or a list).

y A sequence of numeric, complex, character or logical vectors, all of the same length, or a classed R object.

fdataobj fdata class object.

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put last; if FALSE, they are put first; if NA, they are removed; if "keep" they are kept with rank NA.

decreasing logical Should the sort order be increasing or decreasing?
Details
In `order.fdata` the functional data is ordered w.r.t the sample order of the values of vector.

`split.fdata` divides the data in the `fdata` object `x` into the groups defined by `f`.

Value
- `split.fdata`: The value returned from `split` is a list of `fdata` objects containing the values for the groups. The components of the list are named by the levels of `f` (after converting to a factor, or if already a factor and `drop = TRUE`, dropping unused levels).
- `order.fdata`: returns the functional data `fdataobj` w.r.t. a permutation which rearranges its first argument into ascending or descending order.

Author(s)
Manuel Febrero Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also
See `Summary` and `Complex`.

Examples
```r
Not run:
data(tecator)
absor<-tecator$absorp.fdata
absor2<-fdata.deriv(absor,1)
absor<-absor2[1:5,1:4]
absor2<-absor2[1:5,1:4]
sum(absor)
round(absor,4)
log1<-log(absor)

fdataobj<-fdata(MontrealTemp)
fac<-factor(c(rep(1,len=17),rep(2,len=17)))
a1<-split(fdataobj,fac)
dim(a1[[1]]);dim(a1[[2]])

End(Not run)
```

---

**fdata2fd**

Converts `fdata` class object into `fd` class object

Description
Converts `fdata` class object into `fd` class object using `Data2fd` function.
Usage

```r
fdata2fd(
 fdataobj,
 type.basis = NULL,
 nbasis = NULL,
 nderv = 0,
 lambda = NULL,
 ...)
```

Arguments

- `fdataobj`: `fdata` class object.
- `type.basis`: Type of basis. A function `create."type.basis".basis` must exists. By default, bspline basis is used.
- `nbasis`: Number of basis which is used in `create.basis` function.
- `nderiv`: Order of derivation which is used in `deriv.fd` function (optional).
- `lambda`: Weight on the smoothing operator specified by `nderiv`.
- `...`: Further arguments passed to or from other methods.

Value

Return an object of the `fd` class.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as `fdata` and `Data2fd`

Examples

```r
Not run:
data(phoneme)
mlearn<-phoneme$learn[1]
fdata2=fdata2fd(mlearn)
class(mlearn)
class(fdata2)
fdata3=fdata2fd(mlearn,type.basis="fourier",nbasis=7)
plot(mlearn)
```
lines(fdata2,col=2)
lines(fdata3,col=3)
fdata5=fdata2fd(mlearn,nderiv=1)

## End(Not run)

---

### fdata2pc

**Principal components for functional data**

#### Description

Compute (penalized) principal components for functional data.

#### Usage

```r
fdata2pc(fdataobj, ncomp = 2, norm = TRUE, lambda = 0, P = c(0, 0, 1), ...)
```

#### Arguments

- **fdataobj**: `fdata` class object.
- **ncomp**: Number of principal components.
- **norm**: If `TRUE` the norm of eigenvectors (rotation) is 1.
- **lambda**: Amount of penalization. Default value is 0, i.e. no penalization is used.
- **P**: If `P` is a vector: coefficients to define the penalty matrix object. By default `P=c(0,0,1)` penalize the second derivative (curvature) or acceleration. If `P` is a matrix: the penalty matrix object.
- **...**: Further arguments passed to or from other methods.

#### Details

Smoothing is achieved by penalizing the integral of the square of the derivative of order \( m \) over \( \text{rangeval} \):

- \( m = 0 \) penalizes the squared difference from 0 of the function
- \( m = 1 \) penalize the square of the slope or velocity
- \( m = 2 \) penalize the squared acceleration
- \( m = 3 \) penalize the squared rate of change of acceleration

#### Value

- \( d \): The standard deviations of the functional principal components.
- \( \text{rotation} \): are also known as loadings. A `fdata` class object whose rows contain the eigenvectors.
- \( x \): are also known as scores. The value of the rotated functional data is returned.
- \( \text{fdataobj.cen} \): The centered `fdataobj` object.
fdata2pls

Partial least squares components for functional data.

Description

Compute penalized partial least squares (PLS) components for functional data.

Usage

fdata2pls(fdataobj, y, ncomp = 2, lambda = 0, P = c(0, 0, 1), norm = TRUE, ...)
Arguments

fdataobj  
\textit{fdata} class object.

y  
Scalar response with length n.

ncomp  
The number of components to include in the model.

lambda  
Amount of penalization. Default value is 0, i.e. no penalization is used.

P  
If P is a vector: coefficients to define the penalty matrix object. By default $P = c(0, 0, 1)$ penalizes the second derivative (curvature) or acceleration. If P is a matrix: the penalty matrix object.

norm  
If TRUE the fdataobj are centered and scaled.

...  
Further arguments passed to or from other methods.

Details

If norm=TRUE, computes the PLS by NIPALS algorithm and the Degrees of Freedom using the Krylov representation of PLS, see Kraemer and Sugiyama (2011).

If norm=FALSE, computes the PLS by Orthogonal Scores Algorithm and the Degrees of Freedom are the number of components ncomp, see Martens and Naes (1989).

Value

fdata2pls function return:

- df degree of freedom
- rotation \textit{fdata} class object.
- x Is true the value of the rotated data (the centred data multiplied by the rotation matrix) is returned.
- fdataobj.cen The centered fdataobj object.
- mean mean of fdataobj.
- lVector of index of principal components.
- C The matched call.
- lambda Amount of penalization.
- P Penalty matrix.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


FDR
False Discovery Rate (FDR)

Description
Compute the False Discovery Rate for a vector of p-values and alpha value.

Usage
FDR(pvalues = NULL, alpha = 0.95, dep = 1)
pvalue.FDR(pvalues = NULL, dep = 1)

Arguments

- pvalues: Vector of p-values
- alpha: Alpha value (level of significance).
- dep: Parameter dependence test. By default dep = 1, direct dependence between tests.

Details
FDR method is used for multiple hypothesis testing to correct problems of multiple contrasts.
If dep = 1, the tests are positively correlated, for example when many tests are the same contrast.
If dep < 1 the tests are negatively correlated.

Value
Return:
- out.FDR = TRUE. If there are significative differences.
- pv.FDR p-value for False Discovery Rate test.
Author(s)
Febreero-Bande, M. and Oviedo de la Fuente, M.

References

See Also
Function used in fanova.RPm

Examples
p=seq(1:50)/1000
FDR(p)
pvalue.FDR(p)
FDR(p,alpha=0.9999)
FDR(p,alpha=0.9)
FDR(p,alpha=0.9,dep=-1)

flm.Ftest F-test for the Functional Linear Model with scalar response

Description
The function flm.Ftest tests the null hypothesis of no interaction between a functional covariate and a scalar response inside the Functional Linear Model (FLM): \( Y = \langle X, \beta \rangle + \epsilon \). The null hypothesis is \( H_0 : \beta = 0 \) and the alternative is \( H_1 : \beta \neq 0 \). The null hypothesis is tested by a functional extension of the classical F-test (see Details).

Usage
Ftest.statistic(X.fdata, Y)
flm.Ftest(X.fdata, Y, B = 5000, verbose = TRUE)

Arguments
X.fdata Functional covariate for the FLM. The object must be in the class fdata.
Y Scalar response for the FLM. Must be a vector with the same number of elements as functions are in X.fdata.
B Number of bootstrap replicates to calibrate the distribution of the test statistic. B=5000 replicates are the recommended for carry out the test, although for exploratory analysis (not inferential), an acceptable less time-consuming option is B=500.
verbose Either to show or not information about computing progress.
The Functional Linear Model with scalar response (FLM), is defined as \( Y = \langle X, \beta \rangle + \epsilon \), for a functional process \( X \) such that \( E[X(t)] = 0 \), \( E[X(t)|\epsilon] = 0 \) for all \( t \) and for a scalar variable \( Y \) such that \( E[Y] = 0 \). The functional F-test is defined as

\[ T_n = \left\| \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) \right\|, \]

where \( \bar{X} \) is the functional mean of \( X \), \( \bar{Y} \) is the ordinary mean of \( Y \) and \( \| \cdot \| \) is the \( L^2 \) functional norm. The statistic is computed with the function \texttt{ftest.statistic}. The distribution of the test statistic is approximated by a wild bootstrap resampling on the residuals, using the golden section bootstrap.

The value for \texttt{ftest.statistic} is simply the F-test statistic. The value for \texttt{flm.Ftest} is an object with class "htest" whose underlying structure is a list containing the following components:

- statistic The value of the F-test statistic.
- boot.statistics A vector of length \( B \) with the values of the bootstrap F-test statistics.
- p.value The p-value of the test.
- method The character string "Functional Linear Model F-test".
- B The number of bootstrap replicates used.
- data.name The character string "Y=<X,0>+e"

No NA's are allowed neither in the functional covariate nor in the scalar response.

Eduardo Garcia-Portugues. Please, report bugs and suggestions to <egarcia@math.ku.dk>


See Also

\texttt{rwild}, \texttt{flm.test}, \texttt{dfv.test}
Examples

```r
Not run:
Simulated example
X = rproc2fdata(n = 50, t = seq(0, 1, l = 101), sigma = "OU")
beta0 = fdata(mdata = rep(0, length = 101) + rnorm(101, sd = 0.05),
 argvals = seq(0, 1, l = 101), rangeval = c(0, 1))
beta1 = fdata(mdata = cos(2*pi*seq(0, 1, l = 101)) - (seq(0, 1, l = 101) - 0.5)^2 + rnorm(101, sd = 0.05),
 argvals = seq(0, 1, l = 101), rangeval = c(0, 1))

Null hypothesis holds
Y0 = drop(inprod.fdata(X, beta0) + rnorm(50, sd = 0.1))
Null hypothesis does not hold
Y1 = drop(inprod.fdata(X, beta1) + rnorm(50, sd = 0.1))

Do not reject H0
flm.Ftest(X, Y0, B = 100)
flm.Ftest(X, Y0, B = 5000)

Reject H0
flm.Ftest(X, Y1, B = 100)
flm.Ftest(X, Y1, B = 5000)

End(Not run)
```

`flm.test`

Goodness-of-fit test for the Functional Linear Model with scalar response

Description

The function `flm.test` tests the composite null hypothesis of a Functional Linear Model with scalar response (FLM),

\[ H_0 : Y = \langle X, \beta \rangle + \epsilon, \]

versus a general alternative. If \( \beta = \beta_0 \) is provided, then the simple hypothesis \( H_0 : Y = \langle X, \beta_0 \rangle + \epsilon \) is tested. The testing of the null hypothesis is done by a Projected Cramer-von Mises statistic (see Details).

Usage

```r
flm.test(
X.fdata,
Y,
beta0.fdata = NULL,
B = 5000,
est.method = "pls",
p = NULL,
type.basis = "bspline",
verbose = TRUE,
```

---

**flm.test**  

Goodness-of-fit test for the Functional Linear Model with scalar response

Description

The function `flm.test` tests the composite null hypothesis of a Functional Linear Model with scalar response (FLM),

\[ H_0 : Y = \langle X, \beta \rangle + \epsilon, \]

versus a general alternative. If \( \beta = \beta_0 \) is provided, then the simple hypothesis \( H_0 : Y = \langle X, \beta_0 \rangle + \epsilon \) is tested. The testing of the null hypothesis is done by a Projected Cramer-von Mises statistic (see Details).

Usage

```r
flm.test(
X.fdata,
Y,
beta0.fdata = NULL,
B = 5000,
est.method = "pls",
p = NULL,
type.basis = "bspline",
verbose = TRUE,
```
plot.it = TRUE,
B.plot = 100,
G = 200,
...
)

Arguments

X.fdata  Functional covariate for the FLM. The object must be in the class fdata.
Y  Scalar response for the FLM. Must be a vector with the same number of elements as functions are in X.fdata.
beta0.fdata  Functional parameter for the simple null hypothesis, in the fdata class. Recall that the argvals and rangeval arguments of beta0.fdata must be the same of X.fdata. A possibility to do this is to consider, for example for $\beta_0 = 0$ (the simple null hypothesis of no interaction),
beta0.fdata = fdata(mdata = rep(0, length(X.fdata$argvals)),
argvals = X.fdata$argvals, rangeval = X.fdata$rangeval).
If beta0.fdata = NULL (default), the function will test for the composite null hypothesis.
B  Number of bootstrap replicates to calibrate the distribution of the test statistic. B=5000 replicates are the recommended for carry out the test, although for exploratory analysis (not inferential), an acceptable less time-consuming option is B=500.
est.method  Estimation method for the unknown parameter $\beta$, only used in the composite case. Mainly, there are two options: specify the number of basis elements for the estimated $\beta$ by $p$ or optimally select $p$ by a data-driven criteria (see Details section for discussion). Then, it must be one of the following methods:
  • "pc" If $p$, the number of basis elements, is given, then $\beta$ is estimated by fregre.pc. Otherwise, an optimum $p$ is chosen using fregre.pc.cv and the "SICc" criteria.
  • "pls" If $p$ is given, $\beta$ is estimated by fregre.pls. Otherwise, an optimum $p$ is chosen using fregre.pls.cv and the "SICc" criteria. This is the default argument as it has been checked empirically that provides a good balance between the performance of the test and the estimation of $\beta$.
  • "basis" If $p$ is given, $\beta$ is estimated by fregre.basis. Otherwise, an optimum $p$ is chosen using fregre.basis.cv and the "GCV.S" criteria. In these functions, the same basis for the arguments basis.x and basis.b is considered. The type of basis used will be the given by the argument type.basis and must be one of the class of create.basis. Further arguments passed to create.basis (not rangeval that is taken as the rangeval of X.fdata), can be passed throughout ....
p  Number of elements of the basis considered. If it is not given, an optimal $p$ will be chosen using a specific criteria (see est.method and type.basis arguments).
type.basis  Type of basis used to represent the functional process. Depending on the hypothesis it will have a different interpretation:
• Simple hypothesis. One of these options:
  – "bspline" If $p$ is given, the functional process is expressed in a basis of $p$ B-splines. If not, an optimal $p$ will be chosen by `optim.basis`, using the "GCV.S" criteria.
  – "fourier" If $p$ is given, the functional process is expressed in a basis of $p$ fourier functions. If not, an optimal $p$ will be chosen by `optim.basis`, using the "GCV.S" criteria.
  – "pc" $p$ must be given. Expresses the functional process in a basis of $p$ PC.
  – "pls" $p$ must be given. Expresses the functional process in a basis of $p$ PLS.

Although other of the basis supported by `create.basis` are possible too, "bspline" and "fourier" are recommended. Other basis may cause incompatibilities.

• Composite hypothesis. This argument is only used when `est.method="basis"` and, in this case, claims for the type of basis used in the basis estimation method of the functional parameter. Again, basis "bspline" and "fourier" are recommended, as other basis may cause incompatibilities.

<table>
<thead>
<tr>
<th>verbose</th>
<th>Either to show or not information about computing progress.</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot.it</td>
<td>Either to show or not a graph of the observed trajectory, and the bootstrap trajectories under the null composite hypothesis, of the process $R_n(\cdot)$ (see Details). Note that if <code>plot.it=TRUE</code>, the function takes more time to run.</td>
</tr>
<tr>
<td>B.plot</td>
<td>Number of bootstrap trajectories to show in the resulting plot of the test. As the trajectories shown are the first $B.plot$ of $B$, <code>B.plot</code> must be lower or equal to $B$.</td>
</tr>
<tr>
<td>G</td>
<td>Number of projections used to compute the trajectories of the process $R_n(\cdot)$ by Monte Carlo.</td>
</tr>
</tbody>
</table>

Further arguments passed to `create.basis`.

Details

The Functional Linear Model with scalar response (FLM), is defined as $Y = \langle X, \beta \rangle + \epsilon$, for a functional process $X$ such that $E[X(t)] = 0$, $E[X(t)\epsilon] = 0$ for all $t$ and for a scalar variable $Y$ such that $E[Y] = 0$. Then, the test assumes that $Y$ and $X.fdata$ are centred and will automatically center them. So, bear in mind that when you apply the test for $Y$ and $X.fdata$, actually, you are applying it to $Y$-mean($Y$) and fdata.cen($X.fdata$)$Xcen$. The test statistic corresponds to the Cramer-von Mises norm of the Residual Marked empirical Process based on Projections $R_n(u, \gamma)$ defined in Garcia-Portugues et al. (2014). The expression of this process in a $p$-truncated basis of the space $L^2[0, T]$ leads to the $p$-multivariate process $R_{n,p}(u, \gamma(p))$, whose Cramer-von Mises norm is computed. The choice of an appropriate $p$ to represent the functional process $X$, in case that is not provided, is done via the estimation of $\beta$ for the composite hypothesis. For the simple hypothesis, as no estimation of $\beta$ is done, the choice of $p$ depends only on the functional process $X$. As the result of the test may change for different $p$’s, we recommend to use an automatic criterion to select $p$ instead of provide a fixed one. The distribution of the test statistic is approximated by a wild bootstrap resampling on the residuals, using the golden section bootstrap. Finally, the graph
shown if plot.it=TRUE represents the observed trajectory, and the bootstrap trajectories under the null, of the process RMPP integrated on the projections:

\[
R_n(u) \approx \frac{1}{G} \sum_{g=1}^{G} R_n(u, \gamma_g),
\]

where \( \gamma_g \) are simulated as Gaussians processes. This gives a graphical idea of how distant is the observed trajectory from the null hypothesis.

Value

An object with class "htest" whose underlying structure is a list containing the following components:

- statistic The value of the test statistic.
- boot.statistics A vector of length B with the values of the bootstrap test statistics.
- p.value The p-value of the test.
- method The method used.
- B The number of bootstrap replicates used.
- type.basis The type of basis used.
- beta.est The estimated functional parameter \( \beta \) in the composite hypothesis. For the simple hypothesis, the given \( \text{beta0.fdata} \).
- p The number of basis elements passed or automatically chosen.
- ord The optimal order for PC and PLS given by \( \text{fregre.pc.cv} \) and \( \text{fregre.pls.cv} \). For other methods is setted to 1:p.
- data.name The character string "Y=<X,b>+e"

Note

No NA's are allowed neither in the functional covariate nor in the scalar response.

Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to <edgarcia@est-econ.uc3m.es>

References


See Also

Adot, PCvM.statistic, rwild, flm.Ftest, dfv.test, fregre.pc, fregre.pls, fregre.basis, fregre.pc.cv, fregre.pls.cv, fregre.basis.cv, optim.basis, create.basis

Examples

# Simulated example #
X=rproc2fdata(n=100, t=seq(0,1,l=101), sigma="OU")
beta0=fdata(mdata=cos(2*pi*seq(0,1,l=101))-(seq(0,1,l=101)-0.5)^2+
            rnorm(101, sd=0.05), argvals=seq(0,1,l=101), rangeval=c(0,1))
Y=inprod.fdata(X,beta0)+rnorm(100, sd=0.1)

dev.new(width=21, height=7)
par(mfrow=c(1,3))
plot(X, main="X")
plot(beta0, main="beta0")
plot(density(Y), main="Density of Y", xlab="Y", ylab="Density")
rug(Y)

## Not run:
# Composite hypothesis: do not reject FLM
pcvm.sim=flm.test(X, Y, B=50, B.plot=50, G=100, plot.it=TRUE)

# Estimated beta
dev.new()
plot(pcvm.sim$beta.est)

# Simple hypothesis: do not reject beta=beta0
flm.test(X, Y, beta0.fdata=beta0, B=50, B.plot=50, G=100)
flm.test(X, Y, beta0.fdata=beta0, B=5000)

# AEMET dataset #
data(aemet)
# Remove the 5
dev.new()
res.FM=depth.FM(aemet$temp, draw=TRUE)
qu=quantile(res.FM$dep, prob=0.05)
l=which(res.FM$dep<qu)
lines(aemet$temp[l], col=3)
aemet$df$name[l]

# Data without outliers
wind.speed=apply(aemet$wind.speed$data, 1, mean)[-l]
temp=aemet$temp[-l]
# Exploratory analysis: accept the FLM
pcvm.aemet=flm.test(temp, wind.speed, est.method="pls", B=100, B.plot=50, G=100)
pcvm.aemet

# Estimated beta
dev.new()
plot(pcvm.aemet$beta.est,lwd=2,col=2)
# B=5000 for more precision on calibration of the test: also accept the FLM
flm.test(temp,wind.speed,est.method="pls",B=5000)

# Simple hypothesis: rejection of beta0=0? Limiting p-value...
dat=rep(0,length(temp$argvals))
flm.test(temp,wind.speed, beta0.fdata=fdata(mdata=dat,argvals=temp$argvals,
rangeval=temp$rangeval),B=100)
flm.test(temp,wind.speed, beta0.fdata=fdata(mdata=dat,argvals=temp$argvals,
rangeval=temp$rangeval),B=5000)

# Tecator dataset #
data(tecator)
names(tecator)
absorp=tecator$absorp.fdata
ind=1:129 # or ind=1:215
x=absorp[ind,]
y=tecator$y$Fat[ind]
tt=absorp[["argvals"]]

# Exploratory analysis for composite hypothesis with automatic choose of p
pcvm.tecat=flm.test(x,y,B=100,B.plot=50,G=100)

# B=5000 for more precision on calibration of the test: also reject the FLM
flm.test(x,y,B=5000)

# Distribution of the PCvM statistic
plot(density(pcvm.tecat$boot.statistics),lwd=2,xlim=c(0,10),
main="PCvM distribution", xlab="PCvM*",ylab="Density")
rug(pcvm.tecat$boot.statistics)
abline(v=pcvm.tecat$statistic,col=2,lwd=2)
legend("top",legend=c("PCvM observed"),lwd=2,col=2)

# Simple hypothesis: fixed p
dat=rep(0,length(x$argvals))
flm.test(x,y,beta0.fdata=fdata(mdata=dat,argvals=x$argvals,
rangeval=x$rangeval),B=100,p=11)

# Simple hypothesis, automatic choose of p
flm.test(x,y,beta0.fdata=fdata(mdata=dat,argvals=x$argvals,
rangeval=x$rangeval),B=100)
flm.test(x,y,beta0.fdata=fdata(mdata=dat,argvals=x$argvals,
rangeval=x$rangeval),B=5000)

## End(Not run)

fregre.basis  Functional Regression with scalar response using basis representation.
Description

Computes functional regression between functional explanatory variable \( X(t) \) and scalar response \( Y \) using basis representation.

Usage

\[
fregre.basis(fdataobj, \\
y, \\
basis.x = NULL, \\
basis.b = NULL, \\
nlambda = 0, \\
Lfdobj = vec2Lfd(c(0, 0), rtt), \\
weights = rep(1, n), \\
...)
\]

Arguments

\begin{itemize}
  \item \textbf{fdataobj} \hspace{1cm} \texttt{fdata} class object.
  \item \textbf{y} \hspace{1cm} Scalar response with length \( n \).
  \item \textbf{basis.x} \hspace{1cm} Basis for functional explanatory data \( fdataobj \).
  \item \textbf{basis.b} \hspace{1cm} Basis for functional beta parameter.
  \item \textbf{lambda} \hspace{1cm} A roughness penalty. By default, no penalty \( \lambda=0 \).
  \item \textbf{Lfdobj} \hspace{1cm} See \texttt{eval.penalty}.
  \item \textbf{weights} \hspace{1cm} weights
  \item \textbf{...} \hspace{1cm} Further arguments passed to or from other methods.
\end{itemize}

Details

\[
Y = \langle X, \beta \rangle + \epsilon = \int_T X(t)\beta(t)dt + \epsilon
\]

where \( \langle \cdot, \cdot \rangle \) denotes the inner product on \( L_2 \) and \( \epsilon \) are random errors with mean zero, finite variance \( \sigma^2 \) and \( E[X(t)\epsilon] = 0 \).

The function uses the basis representation proposed by Ramsay and Silverman (2005) to model the relationship between the scalar response and the functional covariate by basis representation of the observed functional data \( X(t) \approx \sum_{k=1}^{k_1} c_k \xi_k(t) \) and the unknown functional parameter \( \beta(t) \approx \sum_{k=2}^{k_2} b_k \phi_k(t) \).

The functional linear models estimated by the expression:

\[
\hat{y} = \langle X, \hat{\beta} \rangle = C^T \psi(t)\phi^T(t)\hat{b} = \hat{X}\hat{b}
\]

where \( \hat{X}(t) = C^T \psi(t)\phi^T(t) \), and \( \hat{b} = (\hat{X}^T\hat{X})^{-1}\hat{X}^T\hat{y} \) and so, \( \hat{y} = \hat{X}\hat{b} = \hat{X}(\hat{X}^T\hat{X})^{-1}\hat{X}^T\hat{y} = Hy \) where \( H \) is the hat matrix with degrees of freedom: \( df = tr(H) \).
If $\lambda > 0$ then `fregre.basis` incorporates a roughness penalty:

\[
\hat{y} = \hat{X} \hat{b} = \hat{X} (\hat{X}^T \hat{X} + \lambda \hat{R}_0)^{-1} \hat{X}^T \hat{y} = H_{\lambda} \hat{y}
\]

where $\hat{R}_0$ is the penalty matrix.

This function allows covariates of class `fdata, matrix, data.frame` or directly covariates of class `fd`. The function also gives default values to arguments `basis.x` and `basis.b` for representation on the basis of functional data $X(t)$ and the functional parameter $\beta(t)$, respectively.

If `basis=NULL` creates the bspline basis by `create.bspline.basis`.

If the functional covariate `fdataobj` is a matrix or data.frame, it creates an object of class "fdata" with default attributes, see `fdata`.

If `basis.x$type="fourier"` and `basis.b$type="fourier"`, the basis are orthonormal and the function decreases the number of fourier basis elements on the $\min(k_{n1}, k_{n2})$, where $k_{n1}$ and $k_{n2}$ are the number of basis element of `basis.x` and `basis.b` respectively.

Value

Return:

- `call` The matched call.
- `coefficients` A named vector of coefficients
- `residuals` $y$ minus fitted values.
- `fitted.values` Estimated scalar response.
- `beta.est` beta parameter estimated of class `fd`
- `weights` (only for weighted fits) the specified weights.
- `df` The residual degrees of freedom.
- `r2` Coefficient of determination.
- `sr2` Residual variance.
- `Vp` Estimated covariance matrix for the parameters.
- `H` Hat matrix.
- `y` Response.
- `fdataobj` Functional explanatory data of class `fdata`.
- `a.est` Intercept parameter estimated
- `x.fd` Centered functional explanatory data of class `fd`.
- `basis.b` Basis used for beta parameter estimation.
- `lambda.opt` A roughness penalty.
- `Lfdobj` Order of a derivative or a linear differential operator.
- `P` Penalty matrix.
- `lm` Return `lm` object

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
References


See Also

See Also as: `fregre.basis.cv`, `summary.fregre.fd` and `predict.fregre.fd`. Alternative method: `fregre.pc` and `fregre.np`.

Examples

```r
Not run:
fregre.basis
data(tecator)
names(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecatoryFat[ind]
tt=absorp[["argvals"]]
res1=fregre.basis(x,y)
summary(res1)
basis1=create.bspline.basis(rangeval=range(tt),nbasis=19)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=9)
res5=fregre.basis(x,y,basis1,basis2)
summary(res5)
x.d2=fdata.deriv(x,nbasis=19,nderiv=1,method="bspline",class.out="fdata")
res7=fregre.basis(x.d2,y,basis1,basis2)
summary(res7)

End(Not run)
```

---

**fregre.basis.cv**  
Cross-validation Functional Regression with scalar response using basis representation.

Description

Computes functional regression between functional explanatory variables and scalar response using basis representation.
Usage

fregre.basis.cv(
  fdataobj,
  y,
  basis.x = NULL,
  basis.b = NULL,
  type.basis = NULL,
  lambda = 0,
  Lfdobj = vec2Lfd(c(0, 0), rtt),
  type.CV = GCV.S,
  par.CV = list(trim = 0),
  weights = rep(1, n),
  verbose = FALSE,
  ...
)

Arguments

fdataobj  
  *fdata* class object.

y  
  Scalar response with length n.

basis.x  
  Basis for functional explanatory data fdataobj.

basis.b  
  Basis for functional beta parameter.

type.basis  
  A vector of character string which determines type of basis. By default "bspline". It is only used when basis.x or basis.b are a vector of number of basis considered.

lambda  
  A roughness penalty. By default, no penalty lambda=0.

Lfdobj  
  See eval.penalty.

type.CV  
  Type of cross-validation. By default generalized cross-validation GCV.S method.

par.CV  
  List of parameters for type.CV: trim, the alpha of the trimming and draw.

weights  
  weights

verbose  
  If TRUE information about the procedure is printed. Default is FALSE.

...  
  Further arguments passed to or from other methods.

Details

The function fregre.basis.cv() uses validation criterion defined by argument type.CV to estimate the number of basis elements and/or the penalized parameter (lambda) that best predicts the response.

If basis = NULL creates bspline basis.

If the functional covariate fdataobj is in a format raw data, such as matrix or data.frame, creates an object of class fdata with default attributes, see fdata.
If `basis.x` is a vector of number of basis elements and `basis.b=NULL`, the function force the same number of elements in the basis of `x` and `beta`.

If `basis.x$type=`'fourier'` and `basis.b$type=`'fourier', the function decreases the number of fourier basis elements on the $min(k_{n1}, k_{n2})$, where $k_{n1}$ and $k_{n2}$ are the number of basis element of `basis.x` and `basis.b` respectively.

**Value**

Return:

- `call` The matched call.
- `coefficients` A named vector of coefficients
- `residuals` `y` minus fitted values.
- `fitted.values` Estimated scalar response.
- `beta.est` `beta` parameter estimated of class `fd`
- `weights` (only for weighted fits) the specified weights.
- `df` The residual degrees of freedom.
- `r2` Coefficient of determination.
- `sr2` Residual variance.
- `H` Hat matrix.
- `y` Scalar response.
- `fdataobj` Functional explanatory data of class `fdata`.
- `x.fd` Centered functional explanatory data of class `fd`.
- `lambda.opt` `lambda` value that minimizes CV or GCV method.
- `gcv.opt` Minimum value of CV or GCV method.
- `basis.x.opt` Basis used for functional explanatory data estimation `fdata`.
- `basis.b.opt` Basis used for for functional `beta` parameter estimation.
- `a.est` Intercept parameter estimated
- `lm` Return `lm` object.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**


See Also

See Also as: \texttt{fregre.basis, summary.fregre.fd} and \texttt{predict.fregre.fd}. Alternative method: \texttt{fregre.pc.cv} and \texttt{fregre.np.cv).

Examples

```r
Not run:
data(tecator)
x<-tecator$absorp.fdata[1:129]
y=tecatoryFat[1:129]
b1<-c(15,21,31)
b2<-c(7,9)
res1=fregre.basis.cv(x,y,basis.x=b1)
res2=fregre.basis.cv(x,y,basis.x=b1,basis.b=b2)
res1$gcv
res2$gcv
l=2^(-4:10)
res3=fregre.basis.cv(x,y,basis.b=b1,type.basis="fourier",
lambda=l,type.CV=GCV.S,par.CV=list(trim=0.15))
res3$gcv
End(Not run)
```

---

\textbf{fregre.basis.fr} \hspace{1cm} \textit{Functional Regression with functional response using basis representation.}

\textbf{Description}

Computes functional regression between functional explanatory variable $X(s)$ and functional response $Y(t)$ using basis representation.

\textbf{Usage}

\begin{verbatim}
fregre.basis.fr(
  x,
  y,
  basis.s = NULL,
  basis.t = NULL,
  lambda.s = 0,
  lambda.t = 0,
  Lfdobj.s = vec2Lfd(c(0, 0), range.s),
  Lfdobj.t = vec2Lfd(c(0, 0), range.t),
  weights = NULL,
  ...
)
\end{verbatim}
Arguments

- **x**: Functional explanatory variable.
- **y**: Functional response variable.
- **basis.s**: Basis related with \( s \) and it is used in the estimation of \( \beta(s, t) \).
- **basis.t**: Basis related with \( t \) and it is used in the estimation of \( \beta(s, t) \).
- **lambda.s**: A roughness penalty with respect to \( s \) to be applied in the estimation of \( \beta(s, t) \). By default, no penalty \( \lambda.s=0 \).
- **lambda.t**: A roughness penalty with respect to \( t \) to be applied in the estimation of \( \beta(s, t) \). By default, no penalty \( \lambda.t=0 \).
- **Lfdobj.s**: A linear differential operator object with respect to \( s \). See eval.penalty.
- **Lfdobj.t**: A linear differential operator object with respect to \( t \). See eval.penalty.
- **weights**: Weights.
- **...**: Further arguments passed to or from other methods.

Details

\[
Y(t) = \alpha(t) + \int_T X(s)\beta(s, t)ds + \epsilon(t)
\]

where \( \alpha(t) \) is the intercept function, \( \beta(s, t) \) is the bivariate regression function and \( \epsilon(t) \) are the error term with mean zero.

The function is a wrapped of `linmod` function proposed by Ramsay and Silverman (2005) to model the relationship between the functional response \( Y(t) \) and the functional covariate \( X(t) \) by basis representation of both.

The unknown bivariate functional parameter \( \beta(s, t) \) can be expressed as a double expansion in terms of \( K \) basis function \( \nu_k \) and \( L \) basis functions \( \theta_l \),

\[
\beta(s, t) = \sum_{k=1}^{K} \sum_{l=1}^{L} b_{kl} \nu_k(s)\theta_l(t) = \nu(s)\top B\theta(t)
\]

Then, the model can be re-written in a matrix version as,

\[
Y(t) = \alpha(t) + \int_T X(s)\nu(s)\top B\theta(t)ds + \epsilon(t) = \alpha(t) + X B\theta(t) + \epsilon(t)
\]

where \( X = \int T X(s)\nu(s)\top(t)ds \)

This function allows objects of class `fdata` or directly covariates of class `fd`. If \( x \) is a `fdata` class, `basis.s` is also the basis used to represent \( x \) as `fd` class object. If \( y \) is a `fdata` class, `basis.t` is also the basis used to represent \( y \) as `fd` class object. The function also gives default values to arguments `basis.s` and `basis.t` for constructing the `bifd` class object used in the estimation of \( \beta(s, t) \). If `basis.s=NULL` or `basis.t=NULL` the function creates a bspline basis by `create.bspline.basis`.

`fregre.basis.fr` incorporates a roughness penalty using an appropriate linear differential operator; \( \lambda.s \) \( Lfdobj.s \) for penalization of \( \beta \)’s variations with respect to \( s \) and \( \lambda.t \) \( Lfdobj.t \) for penalization of \( \beta \)’s variations with respect to \( t \).
Value

Return:
• call The matched call.
• a.est Intercept parameter estimated.
• coefficients the matrix of the coefficients.
• beta.est A bivariate functional data object of class bifd with the estimated parameters of $\beta(s,t)$.
• fitted.values Estimated response.
• residuals y minus fitted values.
• y Functional response.
• x Functional explanatory data.
• lambda.s A roughness penalty with respect to s.
• lambda.t A roughness penalty with respect to t.
• Lfdobj.s A linear differential operator with respect to s.
• Lfdobj.t A linear differential operator with respect to t.
• weights Weights.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: predict.fregre.fr. Alternative method: linmod.

Examples

```r
Not run:
rtt<-c(0, 365)
basis.alpha <- create.constant.basis(rtt)
basisx <- create.bspline.basis(rtt,11)
basisy <- create.bspline.basis(rtt,11)
basisss <- create.bspline.basis(rtt,7)
basisst <- create.bspline.basis(rtt,9)

dayfd<-Data2fd(day.5,CanadianWeather$dailyAv,basisx)
tempfd<-dayfd[,1]
log10precfd<-dayfd[,3]
res1 <- fregre.basis.fr(tempfd, log10precfd, basis.s=basisss,basis.t=basisst)
```
# fdata class
tt <- 1:365
tempfdata <- fdata(t(CanadianWeather$dailyAv[,1]), tt, rtt)
log10precfdata <- fdata(t(CanadianWeather$dailyAv[,3]), tt, rtt)
res2 <- fregre.basis.fr(tempfdata, log10precfdata,
basis.s = basiss, basis.t = basist)

# penalization
Lfdojbt <- Lfdobjs <- vec2Lfd(c(0, 0), rtt)
lambda <- lambdas <- 100
res1.pen <- fregre.basis.fr(tempfdata, log10precfdata, basis.s = basiss,
basis.t = basist, lambda.s = lambdas, lambda.t = lambdat,
Lfdojbs = Lfdobjb, Lfdobj.t = Lfdobjt)
res2.pen <- fregre.basis.fr(tempfd, log10precfd,
basis.s = basiss, basis.t = basist, lambda.s = lambdas,
lambda.t = lambdat, Lfdobj.s = Lfdobjb, Lfdobj.t = Lfdobjt)

plot(log10precfdata, col = 1)
lines(res1$fitted.values, col = 2)
plot(res1$residuals)
plot(res1$beta.est, tt, tt)
plot(res1$beta.est, tt, tt, type = "persp", theta = 45, phi = 30)

## End(Not run)

---

fregre.bootstrap  

Bootstrapping regression

Description

Estimate the beta parameter by wild or smoothed bootstrap procedure

Usage

fregre.bootstrap(
  model,
  nb = 500,
  wild = TRUE,
  type.wild = "golden",
  newX = NULL,
  smo = 0.1,
  smoX = 0.05,
  alpha = 0.95,
  kmax.fix = FALSE,
  draw = TRUE,
  ...
)
**Arguments**

- **model**  
  fregre.pc, fregre.pls or fregre.basis object.

- **nb**  
  Number of bootstrap samples.

- **wild**  
  Naive or smoothed bootstrap depending of the smo and smoX parameters.

- **type.wild**  
  Type of distribution of V in wild bootstrap procedure, see rwild.

- **newX**  
  A fdata class containing the values of the model covariates at which predictions are required (only for smoothed bootstrap).

- **smo**  
  If > 0, smoothed bootstrap on the residuals (proportion of response variance).

- **smoX**  
  If > 0, smoothed bootstrap on the explanatory functional variable fdata (proportion of variance-covariance matrix of fdata object).

- **alpha**  
  Significance level used for graphical option, draw=TRUE.

- **kmax.fix**  
  The number of maximum components to consider in each bootstrap iteration. =TRUE, the bootstrap procedure considers the same number of components used in the previous fitted model. =FALSE, the bootstrap procedure estimates the best components in each iteration.

- **draw**  
  =TRUE, plot the bootstrap estimated beta, and (optional) the CI for the predicted response values.

- **...**  
  Further arguments passed to or from other methods.

**Details**

Estimate the beta parameter by wild or smoothed bootstrap procedure using principal components representation fregre.pc, Partial least squares components (PLS) representation fregre.pls or basis representation fregre.basis.

If a new curves are in newX argument the bootstrap method estimates the response using the bootstrap resamples.

If the model exhibits heteroskedasticity, the use of wild bootstrap procedure is recommended (by default).

**Value**

Return:

- model fregre.pc, fregre.pls or fregre.basis object.
- beta.boot functional beta estimated by the nb bootstrap regressions.
- norm.boot norm of differences between the nboot betas estimated by bootstrap and beta estimated by regression model.
- coefs.boot matrix with the bootstrap estimated basis coefficients.
- kn.boot vector or list of length nb with index of the basis, PC or PLS factors selected in each bootstrap regression.
- y.pred predicted response values using newX covariates.
- y.boot matrix of bootstrap predicted response values using newX covariates.
- newX a fdata class containing the values of the model covariates at which predictions are required (only for smoothed bootstrap).
Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: fregre.pc, fregre.pls, fregre.basis.

Examples

```r
Not run:
data(tecator)
iest<-1:129
x=tecator$absorp.fdata[iest]
y=tecatoryFat[iest]
nb<-25 ## Time-consuming
res.pc=fregre.pc(x,y,1:6)
Fix the compontents used in the each regression
res.boot1=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=TRUE)
Select the "best" compontents used in the each regression
res.boot2=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=FALSE)
res.boot3=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=10)
predicted responses and bootstrap confidence interval
newx=tecator$absorp.fdata[-iest]
res.boot4=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,newX=newx,draw=TRUE)
End(Not run)
```

Fitting Functional Generalized Kernel Additive Models.

Description

Computes functional regression between functional explanatory variables \((X^1(t_1), \ldots, X^q(t_q))\) and scalar response \(Y\) using backfitting algorithm.
Usage

fregre.gkam(
    formula,
    family = gaussian(),
    data,
    weights = rep(1, nobs),
    par.metric = NULL,
    par.np = NULL,
    offset = NULL,
    control = list(maxit = 100, epsilon = 0.001, trace = FALSE, inverse = "solve"),
    ...
)

Arguments

formula an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The procedure only considers functional covariates (not implemented for non-functional covariates). The details of model specification are given under Details.
family a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions).
data List that containing the variables in the model.
weights weights
par.metric List of arguments by covariate to pass to the metric function by covariate.
par.np List of arguments to pass to the fregre.np.cv function
offset this can be used to specify an a priori known component to be included in the linear predictor during fitting.
control a list of parameters for controlling the fitting process, by default: maxit, epsilon, trace and inverse
... Further arguments passed to or from other methods.
inverse ="svd" (by default) or ="solve" method.

Details

The smooth functions $f(.)$ are estimated nonparametrically using a iterative local scoring algorithm by applying Nadaraya-Watson weighted kernel smoothers using fregre.np.cv in each step, see Febrero-Bande and Gonzalez-Manteiga (2011) for more details.
Consider the fitted response $\hat{Y} = g^{-1}(H_Q y)$, where $H_Q$ is the weighted hat matrix.
Opsomer and Ruppert (1997) solves a system of equations for fit the unknowns $f(\cdot)$ computing the additive smoother matrix $H_k$ such that $\hat{f}_k(X^k) = H_k Y$ and $H_Q = H_1 +, \cdots, + H_q$. The additive model is fitted as follows:

$$\hat{Y} = g^{-1}\left(\sum_{i}^{q} \hat{f}_i(X_i)\right)$$
Value

- **result** List of non-parametric estimation by covariate.
- **fitted.values** Estimated scalar response.
- **residuals** \( y \) minus fitted values.
- **effects** The residual degrees of freedom.
- **alpha** Hat matrix.
- **family** Coefficient of determination.
- **linear.predictors** Residual variance.
- **deviance** Scalar response.
- **aic** Functional explanatory data.
- **null.deviance** Non functional explanatory data.
- **iter** Distance matrix between curves.
- **w** beta coefficient estimated
- **eqrank** List that containing the variables in the model.
- **prior.weights** Asymmetric kernel used.
- **y** Scalar response.
- **H** Hat matrix, see Opsomer and Ruppert(1997) for more details.
- **conv** converged conv.

Author(s)

Febrero-Bande, M. and Oviedo de la Fuente, M.

References


See Also

See Also as: fregre.gsam, fregre.glm and fregre.np.cv

Examples

```r
Not run:
data(tecator)
ab=tecator$absorp.fdata[1:100]
ab2=fdata.deriv(ab,2)
yfat=tecator$y[1:100,"Fat"]

Example 1: # Changing the argument par.np and family
```
```r
yfat.cat=ifelse(yfat<15,0,1)
xlist=list("df"=data.frame(yfat.cat),"ab"=ab,"ab2"=ab2)
f2<-yfat.cat~ab+ab2
par.NP<-list("ab"=list(Ker=AKer.norm,type.S="S.NW"),
"ab2"=list(Ker=AKer.norm,type.S="S.NW"))
res2=fregre.gkam(f2,family=binomial(),data=xlist,
par.np=par.NP)
res2

Example 2: Changing the argument par.metric and family link
par.metric=list("ab"=list(metric=semimetric.deriv,nderiv=2,nbasis=15),
"ab2"=list(metric=semimetric.basis))
res3=fregre.gkam(f2,family=binomial("probit"),data=xlist,
par.metric=par.metric,control=list(maxit=2,trace=FALSE))
summary(res3)

Example 3: Gaussian family (by default)
Only 1 iteration (by default maxit=100)
xlist=list("df"=data.frame(yfat),"ab"=ab,"ab2"=ab2)
f<-yfat~ab+ab2
res=fregre.gkam(f,data=xlist,control=list(maxit=1,trace=FALSE))
res

End(Not run)
```

### fregre.glm

**Fitting Functional Generalized Linear Models**

#### Description

Computes functional generalized linear model between functional covariate $X^j(t)$ (and non functional covariate $Z^j$) and scalar response $Y$ using basis representation.

#### Usage

```r
fregre.glm(
 formula,
 family = gaussian(),
 data,
 basis.x = NULL,
 basis.b = NULL,
 CV = FALSE,
 subset = NULL,
 ...
)
```
Arguments

formula  
an object of class formula (or one that can be coerced to that class): a symbolic 
description of the model to be fitted. The details of model specification are given 
under Details.

family  
a description of the error distribution and link function to be used in the model. 
This can be a character string naming a family function, a family function or the 
result of a call to a family function. (See family for details of family functions.)

data  
List that containing the variables in the model.

basis.x  
List of basis for functional explanatory data estimation.

basis.b  
List of basis for $\beta(t)$ parameter estimation.

CV  
=TRUE, Cross-validation (CV) is done.

subset  
an optional vector specifying a subset of observations to be used in the fitting 
process.

...  
Further arguments passed to or from other methods.

Details

This function is an extension of the linear regression models: fregre.lm where the $E[Y|X,Z]$ is 
related to the linear prediction $\eta$ via a link function $g(-)$.

$$E[Y|X,Z] = \eta = g^{-1}(\alpha + \sum_{j=1}^{p} \beta_j Z_j + \sum_{k=1}^{q} \frac{1}{\sqrt{T_k}} \int_{T_k} X^k(t) \beta_k(t) dt)$$

where $Z = [Z^1, \cdots, Z^p]$ are the non functional covariates and $X(t) = [X^1(t_1), \cdots, X^q(t_q)]$ are 
the functional ones.

The first item in the data list is called "df" and is a data frame with the response and non functional 
explanatory variables, as glm.

Functional covariates of class fdata or fd are introduced in the following items in the data list. 
basis.x is a list of basis for represent each functional covariate. The basis object can be created by 
the function: create.pc.basis, pca.fd create.pc.basis, create.fdata.basis o create.basis. 
basis.b is a list of basis for represent each $\beta(t)$ parameter. If basis.x is a list of functional principal 
components basis (see create.pc.basis or pca.fd) the argument basis.b is ignored. 
represent beta lower than the number of basis used to represent the functional data.

Value

Return glm object plus:

- basis.x Basis used for fdata or fd covariates.
- basis.b Basis used for beta parameter estimation.
- beta.l List of estimated beta parameter of functional covariates.
- data List that containing the variables in the model.
- formula formula.
- CV predicted response by cross-validation.
Note

If the formula only contains a non functional explanatory variables (multivariate covariates), the function compute a standard \texttt{glm} procedure.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: \texttt{predict.fregre.glm} and \texttt{summary.glm}.

Alternative method if family=\texttt{gaussian}: \texttt{fregre.lm}.

Examples

```r
Not run:
data(tecator)
x=tecator$absorp.fdata
y=tecatoryFat
tt=x[['argvals']]
dataf=as.data.frame(tecator$y)
nbasis.x=11
nbasis.b=7
basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b)
f=Fat~Protein+x
basis.x=list("x"=basis1)
basis.b=list("x"=basis2)
dataf=list("df"=dataf,"x"=x)
res=fregre.glm(f,family=gaussian(),data=dataf,basis.x=basis.x, basis.b=basis.b)
summary(res)

End(Not run)
```
Description

This function fits a functional linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.

Usage

fregre.gls(
  formula,  # a two-sided linear formula object describing the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right.
  data,     # an optional data frame containing the variables named in model, correlation, weights, and subset. By default the variables are taken from the environment from which gls is called.
  correlation = NULL, # an optional corStruct object describing the within-group correlation structure. See the documentation of corClasses for a description of the available corStruct classes. If a grouping variable is to be used, it must be specified in the form argument to the corStruct constructor. Defaults to NULL, corresponding to uncorrelated errors.
  basis.x = NULL,     # List of basis for functional explanatory data estimation.
  basis.b = NULL,     # List of basis for \( \beta(t) \) parameter estimation.
  rn,       # List of Ridge parameter.
  lambda,   # List of Roughness penalty parameter.
  weights = NULL, # an optional list describing the weights assigned to each observation. The relative weights are the values of weights divided by their sum.
  subset,   # an optional expression indicating a subset of the rows of data used in the fit.
  method = c("REML", "ML"), # the method to be used in the fitting process. REML gives the restricted maximum likelihood estimates, while ML gives the maximum likelihood estimates.
  control = list(), # a list of control values for the fitted model object. It is equivalent to the control argument within the gls function.
  verbose = FALSE, # logical; if TRUE, verbose output isprinted.
  criteria = "GCCV1", ... # a list of user-specified criteria for model selection.
)

Arguments

- **formula**: a two-sided linear formula object describing the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right.
- **data**: an optional data frame containing the variables named in model, correlation, weights, and subset. By default the variables are taken from the environment from which gls is called.
- **correlation**: an optional corStruct object describing the within-group correlation structure. See the documentation of corClasses for a description of the available corStruct classes. If a grouping variable is to be used, it must be specified in the form argument to the corStruct constructor. Defaults to NULL, corresponding to uncorrelated errors.
- **basis.x**: List of basis for functional explanatory data estimation.
- **basis.b**: List of basis for \( \beta(t) \) parameter estimation.
- **rn**: List of Ridge parameter.
- **lambda**: List of Roughness penalty parameter.
weights an optional \texttt{varFunc} object or one-sided formula describing the within-group heteroscedasticity structure. If given as a formula, it is used as the argument to \texttt{varFixed}, corresponding to fixed variance weights. See the documentation on \texttt{varClasses} for a description of the available \texttt{varFunc} classes. Defaults to \texttt{NULL}, corresponding to homoscedastic errors.

subset an optional expression indicating which subset of the rows of data should be used in the fit. This can be a logical vector, or a numeric vector indicating which observation numbers are to be included, or a character vector of the row names to be included. All observations are included by default.

method a character string. If \texttt{"REML"} the model is fit by maximizing the restricted log-likelihood. If \texttt{"ML"} the log-likelihood is maximized. Defaults to \texttt{"REML"}.

control a list of control values for the estimation algorithm to replace the default values returned by the function \texttt{glsControl}. Defaults to an empty list.

verbose an optional logical value. If \texttt{TRUE} information on the evolution of the iterative algorithm is printed. Default is \texttt{FALSE}.

criteria GCCV criteria, see \texttt{GCCV.S}.

... some methods for this generic require additional arguments. None are used in this method.

Value

an object of class \texttt{"gls"} representing the functional linear model fit. Generic functions such as \texttt{print}, \texttt{plot}, and \texttt{summary} have methods to show the results of the fit. See \texttt{glsObject} for the components of the fit. The functions \texttt{resid}, \texttt{coef} and \texttt{fitted}, can be used to extract some of its components.

Beside, the \texttt{class(z)} is \texttt{"gls"}, \texttt{"lm"} and \texttt{"fregre.lm"} with the following objects:

- \texttt{sr2} Residual variance.
- \texttt{Vp} Estimated covariance matrix for the parameters.
- \texttt{lambda} A roughness penalty.
- \texttt{basis.x} Basis used for fdata or fd covariates.
- \texttt{basis.b} Basis used for beta parameter estimation.
- \texttt{beta.l} List of estimated beta parameter of functional covariates.
- \texttt{data} List that containing the variables in the model.
- \texttt{formula} formula used in ajusted model.
- \texttt{formula.ini} formula in call.
- \texttt{W} inverse of covariance matrix
- \texttt{correlation} See \texttt{glsObject} for the components of the fit.

References

Examples

```r
Not run:
data(tecator)
x <- tecator$absorp$fdata
x.d2 <- fdata.deriv(x,nderiv =)
tt <- x[["argvals"]]
dataf = as.data.frame(tecator$y)

plot the response
plot(ts(tecatoryFat))

nbasis.x = 11; nbasis.b = 7
basis1 = create.bspline.basis(rangeval = range(tt), nbasis = nbasis.x)
basis2 = create.bspline.basis(rangeval = range(tt), nbasis = nbasis.b)
basis.x = list("x.d2" = basis1)
basis.b = list("x.d2" = basis2)
ldata = list("df" = dataf, "x.d2" = x.d2)
res.gls = fregre.gls(Fat ~ x.d2, data = ldata, correlation = corAR1(),
 basis.x = basis.x, basis.b = basis.b)
summary(res.gls)

End(Not run)
```

fregre.gsam

Fitting Functional Generalized Spectral Additive Models

Description

Computes functional GAM model between functional covariate \( X^1(t_1), \cdots, X^q(t_q) \) (and non functional covariate \( Z^1, \cdots, Z^p \)) and scalar response \( Y \).

Usage

```r
fregre.gsam(
 formula,
 family = gaussian(),
 data = list(),
 weights = NULL,
 basis.x = NULL,
 basis.b = NULL,
 CV = FALSE,
 ...
)
```

Arguments

- `formula`: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.
family  a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.)
data  List that containing the variables in the model.
weights  weights
basis.x  List of basis for functional explanatory data estimation.
basis.b  List of basis for functional beta parameter estimation.
CV  =TRUE, Cross-validation (CV) is done.
...  Further arguments passed to or from other methods.

Details

This function is an extension of the functional generalized linear regression models: fregre.glm where the \( E[Y|X, Z] \) is related to the linear prediction \( \eta \) via a link function \( g(\cdot) \) with integrated smoothness estimation by the smooth functions \( f(\cdot) \).

\[
E[Y|X, Z]) = \eta = g^{-1}(\alpha + \sum_{i=1}^{p} f_i(Z^i) + \sum_{k=1}^{q} \sum_{j=1}^{k_q} f^k_j(\xi^k_j))
\]

where \( \xi^k_j \) is the coefficient of the basis function expansion of \( X^k \), (in PCA analysis \( \xi^k_j \) is the score of the \( j \)-functional PC of \( X^k \).
The smooth functions \( f(\cdot) \) can be added to the right hand side of the formula to specify that the linear predictor depends on smooth functions of predictors using smooth terms \( s \) and \( te \) as in gam (or linear functionals of these as \( Z \beta \) and \( \langle X(t), \beta \rangle \) in fregre.glm).
The first item in the data list is called "df" and is a data frame with the response and non functional explanatory variables, as gam.

Functional covariates of class \( fdata \) or \( fd \) are introduced in the following items in the data list. basis.x is a list of basis for represent each functional covariate. The basis object can be created by the function: \( \text{create.pc.basis, pca.fd create.pc.basis, create.fdata.basis o create.basis.basis.b is a list of basis for represent each functional beta parameter estimation. If basis.x is a list of functional principal components basis (see \( \text{create.pc.basis or pca.fd} \) the argument basis.b is ignored.

Value

Return gam object plus:

- basis.x Basis used for \( fdata \) or \( fd \) covariates.
- basis.b Basis used for beta parameter estimation.
- data List that containing the variables in the model.
- formula formula.
- y.pred predicted response by cross-validation.
Note

If the formula only contains a non functional explanatory variables (multivariate covariates), the function compute a standard glm procedure.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: predict.fregre.gsam and summary.gam.
Alternative methods: fregre.glm and fregre.gkam.

Examples

## Not run:
data(tecator)
x=tecator$absorp.fdata
x.d1<-fdata.deriv(x)
tt<-x[["argvals"]]
dataf=as.data.frame(tecator$y)
nbasis.x=11;nbasis.b=5
basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b)
f=Fat~s(Protein)+x+s(x)
basis.x=list("x"=basis1,"x.d1"=basis1)
basis.b=list("x"=basis2,"x.d1"=basis2)
ldata=list("df"=dataf,"x"=x,"x.d1"=x.d1)
res=fregre.gsam(Fat~Water+s(Protein)+x+s(x.d1),ldata,family=gaussian(),basis.x=list("x"=basis.x,basis.b=basis.b))
res
res2=fregre.gsam(Fat~te(Protein,k=3)+x,data=ldata,family=gaussian())
summary(res2)

## dropind basis pc
basis.pc0=create.pc.basis(x,c(2,4,7))
basis.pc1=create.pc.basis(x.d1,c(1:3))
basis.x=list("x"=basis.pc0,"x.d1"=basis.pc1)
ldata=list("df"=dataf,"x"=x,"x.d1"=x.d1)
res.pc=fregre.gsam(f,data=ldata,family=gaussian(),basis.x=basis.x,basis.b=basis.b)
summary(res.pc)

## Binomial family
x=tecator$absorp.fdata
tecator$y$Fat<-ifelse(tecator$y$Fat>20,1,0)
x.d1<-fdata.deriv(x)
dataf=as.data.frame(tecator$y)
ldata=list("df"=dataf,"x"=x,"x.d1"=x.d1)
res.bin=fregre.gsam(Fat~Protein+s(x),ldata,family=binomial())

## End(Not run)

---

**fregre.gsam.vs**  
**Variable Selection using Functional Additive Models**

### Description
Computes functional GAM model between functional covariates \((X_1(t_1), \ldots, X_q(t_q))\) and non-functional covariates \((Z_1, \ldots, Z_p)\) with a scalar response \(Y\).

### Usage
```r
def fregre.gsam.vs(data = list(), y, include = "all", exclude = "none", family = gaussian(), weights = NULL, basis.x = NULL, kbs, dcor.min = 0.1, alpha = 0.05, par.model, xydist, trace = FALSE)
```

### Arguments
- **data**: List that containing the variables in the model. "df" element is a data.frame containing the response and scalar covariates (numeric and factors variables are allowed). Functional covariates of class fdata or fd are included as named components in the data list.
- **y**: Character string with the name of the scalar response variable.
- **include**: vector with the name of variables to use. By default "all", all variables are used.
exclude vector with the name of variables to not use. By default "none", no variable is deleted.

family a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.)

weights

basis.x List of basis for functional covariates, see same argument in fregre.gsam. By default, the function uses a basis of 4 PC to represent the functional covariate.

kbs The dimension of the basis used to represent the smooth term. The default depends on the number of variables that the smooth is a function of.

dcor.min Threshold for a variable to be entered into the model. X is discarded if the distance correlation \( R(X,e) < \text{dcor.min} \) (e is the residual of previous steps).

alpha Alpha value for testing the independence among covariate X and residual e in previous steps. By default is 0.05.

par.model Model parameters.

xydist List with the inner distance matrices of each variable (all potential covariates and the response).

trace Interactive Tracing and Debugging of Call.

Details

This function is an extension of the functional generalized spectral additive regression models: fregre.gsam where the \( E[Y | X, Z] \) is related to the linear prediction \( \eta \) via a link function \( g(\cdot) \) with integrated smoothness estimation by the smooth functions \( f(\cdot) \).

\[
E[Y | X, Z]) = \eta = g^{-1}(\alpha + \sum_{i=1}^{p} f_i(Z^i) + \sum_{k=1}^{q} \sum_{j=1}^{kq} f_{kj}(\xi_{kj}))
\]

where \( \xi_{kj} \) is the coefficient of the basis function expansion of \( X^k \), (in PCA analysis \( \xi_{kj} \) is the score of the \( j \)-functional PC of \( X^k \).

The smooth functions \( f(\cdot) \) can be added to the right hand side of the formula to specify that the linear predictor depends on smooth functions of predictors using smooth terms \( s \) and \( te \) as in gam (or linear functionals of these as \( Z\beta \) and \( \langle X(t), \beta \rangle \) in fregre.glm).

Value

Return an object corresponding to the estimated additive model using the selected variables (ame output as the fregre.gsam function) and the following elements:

- gof, the goodness of fit for each step of VS algorithm.
- ipredictor, vector with 1 if the variable is selected, 0 otherwise.
- ipredictor, vector with the name of selected variables (in order of selection)
- dcor, the value of distance correlation for each potential covariate and the residual of the model in each step.
fregre.gsam.vs

Note

If the formula only contains a non functional explanatory variables (multivariate covariates), the function compute a standard gam procedure.

Author(s)

Manuel Feb-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: predict.fregre.gsam and summary.gam. Alternative methods: fregre.glm, fregre.gsam and fregre.gkam.

Examples

```r
Not run:
data(tecator)
x=tecator$absorp.fdata
x1 <- fdata.deriv(x)
x2 <- fdata.deriv(x,nderiv=2)
y=tecatoryFat
xcat0 <- cut(rnorm(length(y)),4)
xcat1 <- cut(tecatoryProtein,4)
xcat2 <- cut(tecatoryWater,4)
ind <- 1:129
dat <- data.frame("Fat"=y, x1$data, xcat1, xcat2)
ldat <- list("df"=dat[ind,],"x"=x[ind,],"x1"=x1[ind,],"x2"=x2[ind,])
3 functionals (x,x1,x2), 3 factors (xcat0, xcat1, xcat2)
and 100 scalars (impact points of x1)

Time consuming
res.gam1 <- fregre.gsam.vs(data=ldat,y="Fat") # All the covariates
summary(res.gam1)
res.gam1$ipredictors
covar <- c("xcat0","xcat1","xcat2","x","x1","x2")
res.gam2 <- fregre.gsam.vs(data=ldat, y="Fat", include=covar)
summary(res.gam2)
res.gam2$ipredictors

Prediction like fregre.gsam()
newldat <- list("df"=dat[-ind,],"x"=x[-ind,],"x1"=x1[-ind,],
 "x2"=x2[-ind,])
pred.gam1 <- predict(res.gam1,newldat)
pred.gam2 <- predict(res.gam2,newldat)
```
fregre.igls

Fit of Functional Generalized Least Squares Model Iteratively

Description

This function fits iteratively a functional linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.

1. Begin with a preliminary estimation of $\hat{\theta} = \theta_0$ (for instance, $\theta_0 = 0$). Compute $\hat{W}$.
2. Estimate $b_{\Sigma} = (Z'\hat{W}Z)^{-1}Z'\hat{W}y$
3. Based on the residuals, $\hat{e} = (y - Zb_{\Sigma})$, update $\hat{\theta} = \rho(\hat{e})$ where $\rho$ depends on the dependence structure chosen.
4. Repeats steps 2 and 3 until convergence (small changes in $b_{\Sigma}$ and/or $\hat{\theta}$).

Usage

fregre.igls(
  formula,
  data = NULL,
  basis.x = NULL,
  basis.b = NULL,
  correlation,
  maxit = 100,
  rn,
  lambda,
  weights = rep(1, n),
  control,
  ...
)

Arguments

formula A two-sided linear formula object describing the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right.
data An optional data frame containing the variables named in model, correlation, weights, and subset. By default the variables are taken from the environment from which gls is called.
basis.x List of basis for functional explanatory data estimation.
basis.b List of basis for $\beta(t)$ parameter estimation.
correlation: an optional `corStruct` object describing the within-group correlation structure. See the documentation of `corClasses` for a description of the available `corStruct` classes. If a grouping variable is to be used, it must be specified in the `form` argument to the `corStruct` constructor. Defaults to `NULL`, corresponding to uncorrelated errors.

maxit: Number of maximum of interactions.

rn: List of Ridge parameter.

lambda: List of Roughness penalty parameter.

weights: An optional `varFunc` object or one-sided formula describing the within-group heteroscedasticity structure. If given as a formula, it is used as the argument to `varFixed`, corresponding to fixed variance weights. See the documentation on `varClasses` for a description of the available `varFunc` classes. Defaults to `NULL`, corresponding to homoscedastic errors.

control: Control parameters.

...: Further arguments passed to or from other methods.

Value:

An object of class "gls" representing the functional linear model fit. Generic functions such as `print`, `plot`, and `summary` have methods to show the results of the fit.

See `glsObject` for the components of the fit. The functions `resid`, `coef` and `fitted`, can be used to extract some of its components. Beside, the class(z) is "gls", "lm" and "fregre.lm" with the following objects:

- `sr2`: Residual variance.
- `Vp`: Estimated covariance matrix for the parameters.
- `lambda`: A roughness penalty.
- `basis.x`: Basis used for `fdata` or `fd` covariates.
- `basis.b`: Basis used for beta parameter estimation.
- `data`: List that containing the variables in the model.
- `formula`: formula used in adjusted model.
- `formula.ini`: formula in call.
- `XX`: desing matrix
- `W`: inverse of covariance matrix
- `fdataob`
- `rn`
- `vs.list`
- `correlation`: See `glsObject` for the components of the fit.

References:

Examples

```r
Not run:
data(tecator)
x = tecator$absorp.fdata
x.d2 <- fdata.deriv(x, ndriv =)
tt <- x[["argvals"]]
dataf = as.data.frame(tecator$y)
plot the response
plot(ts(tecatoryFat))
ldata = list("df" = dataf, "x.d2" = x.d2)
res.gls = fregre.lm(Fat ~ x.d2, data = ldata,
correlation = list("cor.ARMA" = list()),
control = list("p" = 1))
res.gls
res.gls$corStruct

End(Not run)
```

fregre.lm  

Fitting Functional Linear Models

Description

Computes functional regression between functional (and non functional) explanatory variables and scalar response using basis representation.

Usage

```r
fregre.lm(
 formula,
 data,
 basis.x = NULL,
 basis.b = NULL,
 ...)
```

Arguments

- `formula`: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under `Details`.
- `data`: List that containing the variables in the model.
- `basis.x`: List of basis for functional explanatory data estimation.
- `basis.b`: List of basis for functional beta parameter estimation.
rn List of Ridge parameter.
lambda List of Roughness penalty parameter.
weights weights
... Further arguments passed to or from other methods.

Details
This section is presented as an extension of the linear regression models: \texttt{fregre.pc}, \texttt{fregre.pls} and \texttt{fregre.basis}. Now, the scalar response $Y$ is estimated by more than one functional covariate $X^j(t)$ and also more than one non functional covariate $Z^j$. The regression model is given by:

$$E[Y|X,Z] = \alpha + \sum_{j=1}^p \beta_j Z^j + \sum_{k=1}^q \frac{1}{\sqrt{T_k}} \int_{T_k} X^k(t) \beta_k(t)dt$$

where $Z = [Z^1, \cdots, Z^p]$ are the non functional covariates, $X(t) = [X^1(t_1), \cdots, X^q(t_q)]$ are the functional ones and $\epsilon$ are random errors with mean zero, finite variance $\sigma^2$ and $E[X(t)\epsilon] = 0$.

The first item in the data list is called "df" and is a data frame with the response and non functional explanatory variables, as \texttt{lm}. Functional covariates of class \texttt{fdata} or \texttt{fd} are introduced in the following items in the data list.

\texttt{basis.x} is a list of basis for represent each functional covariate. The basis object can be created by the function: \texttt{create.pc.basis}, \texttt{pca.fd} \texttt{create.pc.basis}, \texttt{create.fdata.basis} or \texttt{create.basis}.

\texttt{basis.b} is a list of basis for represent each functional $\beta_k$ parameter. If \texttt{basis.x} is a list of functional principal components basis (see \texttt{create.pc.basis} or \texttt{pca.fd}) the argument \texttt{basis.b} (is unnecessary and) is ignored.

The user can penalty the basis elements by: (i) \texttt{lambda} is a list of rough penalty values for the second derivative of each functional covariate, see \texttt{fregre.basis} for more details.
(ii) \texttt{rn} is a list of Ridge penalty value for each functional covariate, see \texttt{fregre.pc}, \texttt{fregre.pls} and \texttt{P.penalty} for more details.

Note: For the case of the Functional Principal Components basis two penalties are allowed (but not the two together).

Value
Return \texttt{lm} object plus:

- \texttt{sr2} Residual variance.
- \texttt{Vp} Estimated covariance matrix for the parameters.
- \texttt{lambda} A roughness penalty.
- \texttt{basis.x} Basis used for \texttt{fdata} or \texttt{fd} covariates.
- \texttt{basis.b} Basis used for beta parameter estimation.
- \texttt{beta.1} List of estimated beta parameter of functional covariates.
- \texttt{data} List that containing the variables in the model.
- \texttt{formula} formula.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as: `predict.fregre.lm` and `summary.lm`. Alternative method: `fregre.glm`.

Examples
data(tecator)
x=tecator$absorp.fdata
y=tecator$y$Fat
tt=x["argvals"]
dataf=as.data.frame(tecator$y)

nbasis.x=11
nbasis.b=7
basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b)

f=Fat~Protein+x
basis.x=list("x"=basis1)
basis.b=list("x"=basis2)
ldata=list("df"=dataf,"x"=x)
res=fregre.lm(f,ldata,basis.x=basis.x,basis.b=basis.b)
summary(res)

f2=Fat~Protein+xd
xd=fdata.deriv(x,nderiv=2,class.out='fdata',nbasis=nbasis.x)
ldata2=list("df"=adata,"xd"=xd)
basis.x2=list("xd"=basis1)
basis.b2=list("xd"=basis2)
res2=fregre.lm(f2,ldata2,basis.x=basis.x2,basis.b=basis.b2)
summary(res2)

par(mfrow=c(2,1))
plot(res$beta.l$x,main="functional beta estimation")
plot(res2$beta.l$xd,col=2)
fregre.np

Functional regression with scalar response using non-parametric kernel estimation

Description

Computes functional regression between functional explanatory variables and scalar response using kernel estimation.

Usage

fregre.np(
  fdataobj,  
  y,  
  h = NULL,  
  Ker = AKer.norm,  
  metric = metric.lp,  
  type.S = S.NW,  
  par.S = list(w = 1),  
  ...
)

Arguments

fdataobj fdata class object.
y Scalar response with length n.
h Bandwidth, \( h > 0 \). Default argument values are provided as the 5%-quantile of the distance between fdataobj curves, see h.default.
Ker Type of asymmetric kernel used, by default asymmetric normal kernel.
metric Metric function, by default metric.lp.
type.S Type of smoothing matrix \( S \). By default \( S \) is calculated by Nadaraya-Watson kernel estimator (S.NW).
par.S List of parameters for type.S: \( w \), the weights.
... Arguments to be passed for metric.lp o other metric function.

Details

The non-parametric functional regression model can be written as follows

\[ y_i = r(X_i) + \epsilon_i \]

where the unknown smooth real function \( r \) is estimated using kernel estimation by means of

\[ \hat{r}(X) = \frac{\sum_{i=1}^{n} K(h^{-1}d(X, X_i))y_i}{\sum_{i=1}^{n} K(h^{-1}d(X, X_i))} \]
where $K$ is an kernel function (see Ker argument), $h$ is the smoothing parameter and $d$ is a metric or a semi-metric (see metric argument).

The distance between curves is calculated using the `metric.lp` although any other semimetric could be used (see `semimetric.basis` or `semimetric.NPFDA` functions). The kernel is applied to a metric or semi-metrics that provides non-negative values, so it is common to use asymmetric kernels. Different asymmetric kernels can be used, see `Kernel.asymmetric`.

Value

Return:

- call The matched call.
- fitted.values Estimated scalar response.
- H Hat matrix.
- residuals y minus fitted values.
- df The residual degrees of freedom.
- r2 Coefficient of determination.
- sr2 Residual variance.
- y Response.
- fdataobj Functional explanatory data.
- mdist Distance matrix between x and newx.
- Ker Asymmetric kernel used.
- h.opt smoothing parameter or bandwidth.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: `fregre.np.cv`, `summary.fregre.fd` and `predict.fregre.fd`. Alternative method: `fregre.basis`, `cand` and `fregre.pc`. 
Examples

## Not run:
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecator$y$Fat[ind]
res.np=fregre.np(x,y,Ker=AKer.epa)
summary(res.np)
res.np2=fregre.np(x,y,Ker=AKer.tri)
summary(res.np2)

# with other semimetrics.
res.pca1=fregre.np(x,y,Ker=AKer.tri,metri=semimetric.pca,q=1)
summary(res.pca1)
res.deriv=fregre.np(x,y,metri=semimetric.deriv)
summary(res.deriv)
x.d2=fdata.deriv(x,nderiv=1,method="fmm",class.out='fdata')
res.deriv2=fregre.np(x.d2,y)
summary(res.deriv2)
x.d3=fdata.deriv(x,nderiv=1,method="bspline",class.out='fdata')
res.deriv3=fregre.np(x.d3,y)
summary(res.deriv3)

## End(Not run)

fregre.np.cv

Cross-validation functional regression with scalar response using kernel estimation.

Description

Computes functional regression between functional explanatory variables and scalar response using asymmetric kernel estimation by cross-validation method.

Usage

fregre.np.cv(
  fdatabobj,
  y,
  h = NULL,
  Ker = AKer.norm,
  metric = metric.lp,
  type.CV = GCV.S,
  type.S = S.NW,
  par.CV = list(trim = 0),
  par.S = list(w = 1),
)
Arguments

`fdataobj`  `fdata` class object.
`y`          Scalar response with length n.
`h`          Bandwidth, h>0. Default argument values are provided as the sequence of length 25 from 2.5%-quantile to 25%-quantile of the distance between `fdataobj` curves, see `h.default`.
`Ker`        Type of asymmetric kernel used, by default asymmetric normal kernel.
`metric`     Metric function, by default `metric.lp`.
`type.CV`    Type of cross-validation. By default generalized cross-validation `GCV.S` method.
`type.S`     Type of smoothing matrix S. By default S is calculated by Nadaraya-Watson kernel estimator (S.NW).
`par.CV`     List of parameters for `type.CV`: `trim`, the alpha of the trimming and `draw=TRUE`.
`par.S`      List of parameters for `type.S`: `w`, the weights.

... Arguments to be passed for `metric.lp` o other metric function.

Details

The non-parametric functional regression model can be written as follows

\[ y_i = r(X_i) + \epsilon_i \]

where the unknown smooth real function \( r \) is estimated using kernel estimation by means of

\[ \hat{r}(X) = \frac{\sum_{i=1}^{n} K(h^{-1}d(X,X_i))y_i}{\sum_{i=1}^{n} K(h^{-1}d(X,X_i))} \]

where \( K \) is an kernel function (see `Ker` argument), \( h \) is the smoothing parameter and \( d \) is a metric or a semi-metric (see `metric` argument).

The function estimates the value of smoothing parameter (also called bandwidth) \( h \) through Generalized Cross-validation `GCV` criteria, see `GCV.S` or `CV.S`.

The function estimates the value of smoothing parameter or the bandwidth through the cross validation methods: `GCV.S` or `CV.S`. It computes the distance between curves using the `metric.lp`, although any other semimetric could be used (see `semimetric.basis` or `semimetric.NPFDA` functions). Different asymmetric kernels can be used, see `Kernel.asymmetric`.

Value

Return:

- `call` The matched call.
- `residuals y` minus fitted values.
fregre.np.cv

- `fitted.values` Estimated scalar response.
- `df` The residual degrees of freedom.
- `r2` Coefficient of determination.
- `sr2` Residual variance.
- `H` Hat matrix.
- `y` Response.
- `fdataobj` Functional explanatory data.
- `mdist` Distance matrix between `x` and `newx`.
- `Ker` Asymmetric kernel used.
- `gcv` CV or GCV values.
- `h.opt` Smoothing parameter or bandwidth that minimizes CV or GCV method.
- `h` Vector of smoothing parameter or bandwidth.
- `cv` List with the fitted values and residuals estimated by CV, without the same curve.

Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as: `fregre.np`, `summary.fregre.fd` and `predict.fregre.fd`. Alternative method: `fregre.basis.cv` and `fregre.np.cv`.

Examples
```
Not run:
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecatoryFat[ind]
Ker=AKer.tri
res.np=fregre.np.cv(x,y,Ker=Ker)
summary(res.np)
res.np2=fregre.np.cv(x,y,type.CV=GCV.S,criteria="Shibata")
summary(res.np2)
```
## Example with other semimetrics (not run)
res.pca1=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.pca,q=1)
summary(res.pca1)
res.deriv=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.deriv)
summary(res.deriv)

x.d2=fdata.deriv(x,nderiv=1,method="fmm",class.out='fdata')
res.deriv2=fregre.np.cv(x.d2,y,Ker=Ker)
summary(res.deriv2)

x.d3=fdata.deriv(x,nderiv=1,method="bspline",class.out='fdata')
res.deriv3=fregre.np.cv(x.d3,y,Ker=Ker)
summary(res.deriv3)

## End(Not run)

---

**fregre.pc**

Functional Regression with scalar response using Principal Components Analysis

### Description

Computes functional (ridge or penalized) regression between functional explanatory variable $X(t)$ and scalar response $Y$ using Principal Components Analysis.

$$ Y = \langle X, \beta \rangle + \epsilon = \int_T X(t)\beta(t)dt + \epsilon $$

where $\langle \cdot, \cdot \rangle$ denotes the inner product on $L_2$ and $\epsilon$ are random errors with mean zero, finite variance $\sigma^2$ and $E[X(t)\epsilon] = 0$.

### Usage

```r
fregre.pc(
 fdataobj,
 y,
 l = NULL,
 lambda = 0,
 P = c(0, 0, 1),
 weights = rep(1, len = n),
 ...
)
```

### Arguments

- **fdataobj** : fdata class object or fdata.comp class object created by `create.pc.basis` function.
- **y** : Scalar response with length n.
Index of components to include in the model. If it is null (by default), l=1:3.

lambda Amount of penalization. Default value is 0, i.e. no penalization is used.
P If P is a vector: P are coefficients to define the penalty matrix object, see P.penalty. If P is a matrix: P is the penalty matrix object.
weights weights ...
... Further arguments passed to or from other methods.

Details
The function computes the \( \{ \nu_k \}_{k=1}^{\infty} \) orthonormal basis of functional principal components to represent the functional data as \( X_i(t) = \sum_{k=1}^{\infty} \gamma_{ik} \nu_k \) and the functional parameter as \( \beta(t) = \sum_{k=1}^{\infty} \beta_k \nu_k \),
where \( \gamma_{ik} = \langle X_i(t), \nu_k \rangle \) and \( \beta_k = \langle \beta, \nu_k \rangle \).
The response can be fitted by:

- \( \lambda = 0 \), no penalization,
  \[ \hat{y} = \nu_k^\top (\nu_k^\top \nu_k)^{-1} \nu_k^\top y \]
- Ridge regression, \( \lambda > 0 \) and \( P = 1 \),
  \[ \hat{y} = \nu_k^\top (\nu_k^\top \nu_k + \lambda I)^{-1} \nu_k^\top y \]
- Penalized regression, \( \lambda > 0 \) and \( P \neq 0 \). For example, \( P = c(0, 0, 1) \) penalizes the second derivative (curvature) by \( P=P.penalty(fdataobj["argvals"]\{P\}) \),
  \[ \hat{y} = \nu_k^\top (\nu_k^\top \nu_k + \lambda \nu_k^\top P \nu_k)^{-1} \nu_k^\top y \]

Value
Return:

- call The matched call of fregre.pc function.
- coefficients A named vector of coefficients.
- residuals y-fitted values.
- fitted.values Estimated scalar response.
- beta.est beta coefficient estimated of class fdata
- df The residual degrees of freedom. In ridge regression, df(rn) is the effective degrees of freedom.
- r2 Coefficient of determination.
- sr2 Residual variance.
- Vp Estimated covariance matrix for the parameters.
- H Hat matrix.
- l Index of principal components selected.
- lambda Amount of shrinkage.
- P Penalty matrix.
- fdata.comp Fitted object in fdata2pc function.
- lm lm object.
- fdataobj Functional explanatory data.
- y Scalar response.
Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: fregre.pc.cv, summary.fregre.fd and predict.fregre.fd.

Alternative method: fregre.basis and fregre.np.

Examples

## Not run:
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecator$y$Fat[ind]
res=fregre.pc(x,y)
summary(res)
res2=fregre.pc(x,y,l=c(1,3,4))
summary(res2)
# Functional Ridge Regression
res3=fregre.pc(x,y,l=c(1,3,4),lambda=1,P=1)
summary(res3)
# Functional Regression with 2nd derivative penalization
res4=fregre.pc(x,y,l=c(1,3,4),lambda=1,P=c(0,0,1))
summary(res4)
betas<-c(res$beta.est,res2$beta.est,res3$beta.est,res4$beta.est)
plot(betas)

## End(Not run)
fregre.pc.cv

Functional penalized PC regression with scalar response using selection of number of PC components

Description

Functional Regression with scalar response using selection of number of (penalized) principal components PC through cross-validation. The algorithm selects the PC with best estimates the response. The selection is performed by cross-validation (CV) or Model Selection Criteria (MSC). After is computing functional regression using the best selection of principal components.

Usage

fregre.pc.cv(
  fdataobj,
  y,
  kmax = 8,
  lambda = 0,
  P = c(0, 0, 1),
  criteria = "SIC",
  weights = rep(1, len = n),
  ...
)

Arguments

fdataobj  fdata class object.
y  Scalar response with length n.
kmax  The number of components to include in the model.
lambda  Vector with the amounts of penalization. Default value is 0, i.e. no penalization is used. If lambda=TRUE the algorithm computes a sequence of lambda values.
P  The vector of coefficients to define the penalty matrix object. For example, if P=c(1, 0, 0), ridge regression is computed and if P=c(0, 0, 1), penalized regression is computed penalizing the second derivative (curvature).
criteria  Type of cross-validation (CV) or Model Selection Criteria (MSC) applied. Possible values are "CV", "AIC", "AICc", "SIC", "SICc", "HQIC".
weights  weights
...  Further arguments passed to fregre.pc or fregre.pls

Details

The algorithm selects the best principal components pc.opt from the first kmax PC and (optionally) the best penalized parameter lambda.opt from a sequence of non-negative numbers lambda. If kmax is a integer (by default and recomended) the procedure is as follows (see example 1):
• Calculate the best principal component (pc.order[1]) between kmax by fregre.pc.
• Calculate the second-best principal component (pc.order[2]) between the (kmax-1) by fregre.pc and calculate the criteria value of the two principal components.
• The process (point 1 and 2) is repeated until kmax principal component (pc.order[kmax]).
• The process (point 1, 2 and 3) is repeated for each lambda value.
• The method selects the principal components (pc.opt=pc.order[1:k.min]) and (optionally) the lambda parameter with minimum MSC criteria.

If kmax is a sequence of integer the procedure is as follows (see example 2):
• The method selects the best principal components with minimum MSC criteria by stepwise regression using fregre.pc in each step.
• The process (point 1) is repeated for each lambda value.
• The method selects the principal components (pc.opt=pc.order[1:k.min]) and (optionally) the lambda parameter with minimum MSC criteria.

Finally, is computing functional PC regression between functional explanatory variable X(t) and scalar response Y using the best selection of PC pc.opt and ridge parameter rn.opt. The criteria selection is done by cross-validation (CV) or Model Selection Criteria (MSC).

• Predictive Cross-Validation: \( PCV(k_n) = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \hat{y}_{(-i,k_n)} \right)^2 \), criteria="CV"
• Model Selection Criteria: \( MSC(k_n) = \log \left( \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \hat{y}_i \right)^2 \right) + p_n \frac{k_n}{n} \)

\[ p_n = \frac{\log(n)}{n}, \text{criteria="SIC" (by default)} \]
\[ p_n = \frac{\log(n)}{n-k_n-2}, \text{criteria="SICc"} \]
\[ p_n = 2, \text{criteria="AIC"} \]
\[ p_n = \frac{2n}{n-k_n-2}, \text{criteria="AICc"} \]
\[ p_n = \frac{2\log(\log(n))}{n}, \text{criteria="HQIC"} \]

where criteria is an argument that controls the type of validation used in the selection of the smoothing parameter kmax= k_n and penalized parameter lambda= \( \lambda \).

Value

Return:
• fregre.pc Fitted regression object by the best (pc.opt) components.
• pc.opt Index of PC components selected.
• MSC.min Minimum Model Selection Criteria (MSC) value for the (pc.opt components.
• MSC Minimum Model Selection Criteria (MSC) value for kmax components.

Note

criteria="CV" is not recommended: time-consuming.
fregre.plm

Semi-functional partially linear model with scalar response.

Description

Computes functional regression between functional (and non functional) explanatory variables and scalar response using asymmetric kernel estimation.

Usage

fregre.plm(
  formula,
  data,
  h = NULL,
  Ker = AKer.norm,
  metric = metric.lp,
  type.CV = GCV.S,
  type.S = S.NW,
  par.CV = list(trim = 0, draw = FALSE),
  ...)
par.S = list(w = 1),
...
)

Arguments

formula an object of class \texttt{formula} (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.

data List that containing the variables in the model.

h Bandwidth, \(h>0\). Default argument values are provided as the sequence of length 51 from 2.5\%-quantile to 25\%-quantile of the distance between the functional data, see \texttt{h.default}.

Ker Type of asymmetric kernel used, by default asymmetric normal kernel.

metric Metric function, by default \texttt{metric.lp}.

type.CV Type of cross-validation. By default generalized cross-validation \texttt{GCV.S} method.

type.S Type of smothing matrix \(S\). By default \(S\) is calculated by Nadaraya-Watson kernel estimator (\texttt{S.NW}).

par.CV List of parameters for \texttt{type.CV}: \texttt{trim}, the alpha of the trimming and \texttt{draw=TRUE}.

par.S List of parameters for \texttt{type.S}: \(w\), the weights.

... Further arguments passed to or from other methods.

Details

An extension of the non-parametric functional regression models is the semi-functional partial linear model proposed in Aneiros-Perez and Vieu (2005). This model uses a non-parametric kernel procedure as that described in \texttt{fregre.np}. The output \(y\) is scalar. A functional covariate \(X\) and a multivariate non functional covariate \(Z\) are considered.

\[
y = r(X) + \sum_{j=1}^{p} Z_j \beta_j + \epsilon
\]

The unknown smooth real function \(r\) is estimated by means of

\[
\hat{r}_h(X) = \sum_{i=1}^{n} w_{n,h}(X, X_i)(Y_i - Z_i^T \hat{\beta}_h)
\]

where \(W_h\) is the weight function:

\[
w_{n,h}(X, X_i) = \frac{K(d(X, X_i)/h)}{\sum_{j=1}^{K(d(X, X_j)/h)}}
\]

with smoothing parameter \(h\), an asymmetric kernel \(K\) and a metric or semi-metric \(d\). In \texttt{fregre.plm()} by default \(W_h\) is a functional version of the Nadaraya-Watson-type weights (\texttt{type.S=S.NW}) with asymmetric normal kernel (\texttt{Ker=AKer.norm}) in \(L_2\) (\texttt{metric=metric.lp} with \(p=2\)). The unknown parameters \(\beta_j\) for the multivariate non functional covariates are estimated by means of \(\hat{\beta}_j = (\hat{Z}_h^T \hat{Z}_h)^{-1} \hat{Z}_h^T \hat{Z}_h\) where \(\hat{Z}_h = (I - W_h)Z\) with the smoothing parameter \(h\). The errors \(\epsilon\) are independent, with zero mean, finite variance \(\sigma^2\) and
\[ E[e|Z_1, \ldots, Z_p, X(t)] = 0. \]

The first item in the data list is called "df" and is a data frame with the response and non functional explanatory variables, as \texttt{lm}. If non functional data into the formula then \texttt{lm} regression is performed.

Functional variable (\texttt{fdata} or \texttt{fd} class) is introduced in the second item in the data list. If only functional variable into the formula then \texttt{fregre.np.cv} is performed.

The function estimates the value of smoothing parameter or the bandwidth \( h \) through Generalized Cross-validation \( GCV \) criteria. It computes the distance between curves using the \texttt{metric.lp}, although you can also use other metric function.

Different asymmetric kernels can be used, see \texttt{Kernel.asymmetric}.

**Value**

- \texttt{call} The matched call.
- \texttt{fitted.values} Estimated scalar response.
- \texttt{residuals} \( y \) minus fitted values.
- \texttt{df} The residual degrees of freedom.
- \texttt{H} Hat matrix.
- \texttt{r2} Coefficient of determination.
- \texttt{sr2} Residual variance.
- \texttt{y} Scalar response.
- \texttt{fdataobj} Functional explanatory data.
- \texttt{XX} Non functional explanatory data.
- \texttt{mdist} Distance matrix between curves.
- \texttt{betah} beta coefficient estimated
- \texttt{data} List that containing the variables in the model.
- \texttt{Ker} Asymmetric kernel used.
- \texttt{h.opt} Value that minimizes CV or GCV method.
- \texttt{h} Smoothing parameter or bandwidth.
- \texttt{data} List that containing the variables in the model.
- \texttt{gcv} GCV values.
- \texttt{formula} formula.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
References


See Also

See Also as: `predict.fregre.plm` and `summary.fregre.fd`

Alternative methods: `fregre.lm`, `fregre.np` and `fregre.np.cv`

Examples

```r
Not run:
data(tecator)
x=tecator$absorp.fdata[1:129]
dataf=tecator$y[1:129,]
f=Fatt-Water+x
ldata=list("df"=dataf,"x"=x)
res.plm=fregre.plm(f,ldata)
sample(res.plm)

with 2nd derivative of functional data
x.fd=fdata.deriv(x,nderiv=2)
f2=Fatt-Water+x.fd
ldata2=list("df"=dataf,"x.fd"=x.fd)
res.plm2=fregre.plm(f2,ldata2)
sample(res.plm2)
End(Not run)
```

fregre.pls

*Functional Penalized PLS regression with scalar response*

Description

Computes functional linear regression between functional explanatory variable $X(t)$ and scalar response $Y$ using penalized Partial Least Squares (PLS)

$$ Y = \langle \hat{X}, \beta \rangle + \epsilon = \int_T \hat{X}(t) \beta(t) dt + \epsilon $$

where $\langle \cdot, \cdot \rangle$ denotes the inner product on $L_2$ and $\epsilon$ are random errors with mean zero, finite variance $\sigma^2$ and $E[\hat{X}(t)\epsilon] = 0$.

$\{\nu_k\}_{k=1}^{\infty}$ orthonormal basis of PLS to represent the functional data as $X_i(t) = \sum_{k=1}^{\infty} \gamma_{ik} \nu_k$. 
Usage

fregre.pls(fdataobj, y = NULL, l = NULL, lambda = 0, P = c(0, 0, 1), ...)

Arguments

- fdataobj: fdata class object.
- y: Scalar response with length n.
- l: Index of components to include in the model.
- lambda: Amount of penalization. Default value is 0, i.e. no penalization is used.
- P: If P is a vector: P are coefficients to define the penalty matrix object. By default P=c(0,0,1) penalize the second derivative (curvature) or acceleration. If P is a matrix: P is the penalty matrix object.

Details

Functional (FPLS) algorithm maximizes the covariance between $X(t)$ and the scalar response $Y$ via the partial least squares (PLS) components. The functional penalized PLS are calculated in fdata2pls by alternative formulation of the NIPALS algorithm proposed by Kraemer and Sugiyama (2011).

Let $\{\tilde{\nu}_k\}_{k=1}^{\infty}$ the functional PLS components and $\tilde{X}_i(t) = \sum_{k=1}^{\infty} \tilde{\gamma}_{ik}\tilde{\nu}_k$ and $\tilde{\beta}(t) = \sum_{k=1}^{\infty} \tilde{\beta}_k\tilde{\nu}_k$.

The functional linear model is estimated by:

$$\tilde{y} = \langle X, \tilde{\beta} \rangle \approx \sum_{k=1}^{k_n} \tilde{\gamma}_k \tilde{\beta}_k$$

The response can be fitted by:

- $\lambda = 0$, no penalization,
  $$\tilde{y} = \nu_k^\top (\nu_k^\top \nu_k)^{-1} \nu_k^\top y$$

- Penalized regression, $\lambda > 0$ and $P \neq 0$. For example, $P = c(0,0,1)$ penalizes the second derivative (curvature) by $P=P.penalty(fdataobj["argvals"],P)$,
  $$\tilde{y} = \nu_k^\top (\nu_k^\top \nu_k + \lambda \nu_k^\top P \nu_k)^{-1} \nu_k^\top y$$

Value

Return:

- call: The matched call of fregre.pls function.
- beta.est: Beta coefficient estimated of class fdata.
- coefficients: A named vector of coefficients.
- fitted.values: Estimated scalar response.
- residuals: y-fitted values.
- H: Hat matrix.
• df The residual degrees of freedom.
• r2 Coefficient of determination.
• GCV GCV criterion.
• sr2 Residual variance.
• l Index of components to include in the model.
• lambda Amount of shrinkage.
• fdata.comp Fitted object in fdata2pls function.
• lm Fitted object in lm function
• fdataobj Functional explanatory data.
• y Scalar response.

Author(s)
 Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also
 See Also as: P.penalty and fregre.pls.cv.
Alternative method: fregre.pc.

Examples
 ## Not run:
data(tecator)
x<-tecator$absorp.fdata
y<-tecator$y$Fat
res=fregre.pls(x,y,c(1:8),lambda=10)
summary(res)

## End(Not run)
fregre.pls.cv

Functional penalized PLS regression with scalar response using selection of number of PLS components

Description

Functional Regression with scalar response using selection of number of penalized principal components PPLS through cross-validation. The algorithm selects the PPLS components with best estimates the response. The selection is performed by cross-validation (CV) or Model Selection Criteria (MSC). After is computing functional regression using the best selection of PPLS components.

Usage

fregre.pls.cv(
  fdataobj,
  y,
  kmax = 8,
  lambda = 0,
  P = c(0, 0, 1),
  criteria = "SIC",
  ...)

Arguments

- fdataobj: fdata class object.
- y: Scalar response with length n.
- kmax: The number of components to include in the model.
- lambda: Vector with the amounts of penalization. Default value is 0, i.e. no penalization is used. If lambda=True the algorithm computes a sequence of lambda values.
- P: The vector of coefficients to define the penalty matrix object. For example, if P=c(0, 0, 1), penalized regression is computed penalizing the second derivative (curvature).
- criteria: Type of cross-validation (CV) or Model Selection Criteria (MSC) applied. Possible values are "CV", "AIC", "AICc", "SIC", "SICc", "HQIC".
- ... Further arguments passed to fregre.pls.

Details

The algorithm selects the best principal components pls.opt from the first kmax PLS and (optionally) the best penalized parameter lambda.opt from a sequence of non-negative numbers lambda.

- The method selects the best principal components with minimum MSC criteria by stepwise regression using fregre.pls in each step.
• The process (point 1) is repeated for each lambda value.
• The method selects the principal components (pls.opt=pls.order[1:k.min]) and (optionally) the lambda parameter with minimum MSC criteria.

Finally, is computing functional PLS regression between functional explanatory variable $X(t)$ and scalar response $Y$ using the best selection of PLS p.ls.opt and ridge parameter rn.opt. The criteria selection is done by cross-validation (CV) or Model Selection Criteria (MSC).

• Predictive Cross-Validation: $PCV(k_n) = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \hat{y}_{(-i,k_n)} \right)^2$, criteria="CV"

• Model Selection Criteria: $MSC(k_n) = \log \left[ \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \hat{y}_i \right)^2 \right] + p_n \frac{k_n}{n}$
  - $p_n = \frac{\log(n)}{n}$, criteria="SIC" (by default)
  - $p_n = \frac{\log(n)}{n-k_n-2}$, criteria="SICc"
  - $p_n = 2$, criteria="AIC"
  - $p_n = \frac{2n}{n-k_n-2}$, criteria="AICc"
  - $p_n = \frac{2\log(\log(n))}{n}$, criteria="HQIC"
  where criteria is an argument that controls the type of validation used in the selection of the smoothing parameter $k_{max}=k_n$ and penalized parameter $\lambda_n=\lambda$.

Value

Return:

• fregre.pls Fitted regression object by the best (pls.opt) components.
• pls.opt Index of PLS components’ selected.
• MSC.min Minimum Model Selection Criteria (MSC) value for the (pls.opt) components.
• MSC Minimum Model Selection Criteria (MSC) value for $k_{max}$ components.

Note

criteria='CV' is not recommended: time-consuming.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See also as:fregre.pc.
GCCV.S

Examples

## Not run:
data(tecator)
x<-tecator$absorp.fdata[1:129]
y<-tecator$y$Fat[1:129]
# no penalization
pls1<- fregre.pls.cv(x,y,8)
# 2nd derivative penalization
pls2<-fregre.pls.cv(x,y,8,lambda=0:5,P=c(0,0,1))

## End(Not run)

GCCV.S

The generalized correlated cross-validation (GCCV) score.

Description

The generalized correlated cross-validation (GCV) score.

Usage

GCCV.S(
y,
S,
criteria = "GCCV1",
W = NULL,
trim = 0,
draw = FALSE,
metric = metric.lp,
...)

Arguments

y Response vector ith length n or Matrix of set cases with dimension (n x m), where n is the number of curves and m are the points observed in each curve.
S Smoothing matrix, see S.NW, S.LLR or S.KNN.
criteria The penalizing function. By default "Rice" criteria. "GCCV1","GCCV2","GCCV3","GCV") Possible values are "GCCV1", "GCCV2", "GCCV3", "GCV".
W Matrix of weights.
trim The alpha of the trimming.
draw =TRUE, draw the curves, the sample median and trimmed mean.
metric Metric function, by default metric.lp.
... Further arguments passed to or from other methods.
Details

\[ GCCV = \sum_{i=1}^{n} \frac{y_i - \hat{y}_{i,b}}{1 - \frac{\text{tr}(C)}{n}} \]

\[ \text{cor}(\epsilon_i, \epsilon_j) = \sigma \]

where \( S \) is the smoothing matrix \( S \) and:

A. If \( C = 2S\Sigma - S\Sigma S \)
B. If \( C = S\Sigma \)
C. If \( C = S\Sigma S' \)

with \( \Sigma \) is the \( n \times n \) covariance matrix with \( \text{cor}(\epsilon_i, \epsilon_j) = \sigma \)

Value

Returns GCCV score calculated for input parameters.

Note

Provided that \( C = I \) and the smoother matrix \( S \) is symmetric and idempotent, as is the case for many linear fitting techniques, the trace term reduces to \( n - \text{tr}[S] \), which is proportional to the familiar denominator in GCV.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as \texttt{optim.np}.
Alternative method (independent case): \texttt{GCV.S}

Examples

```r
Not run:
data(tecator)
x=tecator$absorp.fdata
x.d2<-fdata.deriv(x,nderiv=)
tt<-x["argvals"]
```
The generalized correlated cross-validation (GCCV) score

**Description**

Compute the generalized correlated cross-validation (GCV) score.

**Usage**

```r
GCV.S(
 y,
 S,
 criteria = "GCCV",
 W = NULL,
 trim = 0,
 draw = FALSE,
 metric = metric.lp,
 ...
)
```

**Arguments**

- `y` Matrix of set cases with dimension \((n \times m)\), where \(n\) is the number of curves and \(m\) are the points observed in each curve.
- `S` Smoothing matrix, see `S.NW`, `S.LLR` or
- `criteria` The penalizing function. By default "Rice" criteria. Possible values are "GCCV1", "GCCV2", "GCCV3", "GCV".
w Matrix of weights.
trim The alpha of the trimming.
draw =TRUE, draw the curves, the sample median and trimmed mean.
metric Metric function, by default metric.lp.
...
Further arguments passed to or from other methods.

Details
A.-If trim=0:

\[
GCCV = \frac{\sum_{i=1}^{n} y_i - \hat{y}_i, b^2}{1 - \frac{tr(C)}{n}}
\]

where \( S \) is the smoothing matrix \( S \) and:
A.-If \( C = 2S\Sigma - S\Sigma S \)
B.-If \( C = S\Sigma \)
C.-If \( C = S\Sigma S' \)

with \( \Sigma \) is the n x n covariance matrix with \( \text{cor}(\epsilon_i, \epsilon_j) = \sigma \) Note: Provided that \( C = I \) and the smoother matrix \( S \) is symmetric and idempotent, as is the case for many linear fitting techniques, the trace term reduces to \( n - tr[S] \), which is proportional to the familiar denominator in GCV.

Value
Returns GCV score calculated for input parameters.

Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as optim.np
Alternative method: CV.S

Examples
## Not run:
data(phoneme)
mlearn<-phoneme$learn
tt<-1:ncol(mlearn)
S1 <- S.NW(tt,2.5)
S2 <- S.LLR(tt,2.5)
Calculation of the smoothing parameter (h) for a functional data

Description

Calculation of the smoothing parameter (h) for a functional data using nonparametric kernel estimation.

Usage

h.default(
  fdataobj, 
  prob = c(0.025, 0.25),
  len = 51,
  metric = metric.lp,
  type.S = "S.NW",
  ...
)

Arguments

fdataobj  

fdata class object.

prob  

Range of probabilities for the quantiles of the distance matrix.

len  

Vector length of smoothing parameter h to return.

metric  

If is a function: name of the function to calculate the distance matrix between the curves, by default metric.lp. If is a matrix: distance matrix between the curves. kernel.

type.S  

Type of smoothing matrix S. Possible values are: Nadaraya-Watson estimator "S.NW" and K nearest neighbors estimator "S.KNN"

...

Arguments to be passed for metric argument.

Value

Returns the vector of smoothing parameter or bandwidth h.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
influence.fregre.fd

See Also

See Also as metric.lp, Kernel and S.NW.
Function used in fregre.np and fregre.np.cv function.

Examples

```r
Not run:
data(aemet)
h1<-h.default(aemet$temp,prob=c(0.025, 0.25),len=2)
mdist<-metric.lp(aemet$temp)
h2<-h.default(aemet$temp,len=2,metric=mdist)
h3<-h.default(aemet$temp,len=2,metric=semimetric.pca,q=2)
h4<-h.default(aemet$temp,len=2,metric=semimetric.pca,q=4)
h5<-h.default(aemet$temp,prob=c(.2),type.S="S.KNN")
h1;h2;h3;h4;h5
End(Not run)
```

influence.fregre.fd  Functional influence measures

Description

Once estimated the functional regression model with scalar response, influence.fregre.fd function is used to obtain the functional influence measures.

Usage

```r
S3 method for class 'fregre.fd'
influence(model, ...)
```

Arguments

- `model` fregre.pc, fregre.basis or fregre.basis.cv object.
- `...` Further arguments passed to or from other methods.

Details

Identify influential observations in the functional linear model in which the predictor is functional and the response is scalar. Three statistics are introduced for measuring the influence: Distance Cook Prediction DCP, Distance Cook Estimation DCE and Distance peña DP respectively.

Value

Return:

- DCP Cook’s Distance for Prediction.
- DCE Cook’s Distance for Estimation.
- DP Peña’s Distance.
Note

influence.fdata deprecated.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: fregre.pc, fregre.basis, influence_quan

Examples

## Not run:
data(tecator)
x=tecator$absorp.fdata[1:129]y=tecator$y$Fat[1:129]
res1=fregre.pc(x,y,1:5)# time consuming
res.infl1=influence(res1)
res2=fregre.basis(x,y)
res.infl2=influence(res2)
res<res1res.infl<res.infl1
mat=cbind(y,res$fitted.values,res.infl$DCP,res.infl$DCE,res.infl$DP)
colnames(mat)=c("Resp.","Pred.","DCP","DCE","DP")
pairs(mat)
## End(Not run)

---

influence_quan  Quantile for influence measures

Description

Estimate the quantile of measures of influence for each observation.
Usage

    influence_quan(model, out.influ, mue.boot = 500, smo = 0.1, smoX = 0.05, alpha = 0.95, kmax.fix = FALSE, ...)

Arguments

- **model**: `fregre.pc`, `fregre.basis` or `fregre.basis.cv` object.
- **out.influ**: `inflfluence.fd` object.
- **mue.boot**: Number of bootstrap samples.
- **smo**: Smoothing parameter as a proportion of response variance.
- **smoX**: Smoothing parameter for `fdata` object as a proportion of variance-covariance matrix of the explanatory functional variable.
- **alpha**: Significance level.
- **kmax.fix**: The maximum number of principal components or number of basis is fixed by `model` object.
- **...**: Further arguments passed to or from other methods.

Details

Compute the quantile of measures of influence estimated in `influence.fregre.fd` for functional regression using principal components representation (`fregre.pc`) or basis representation (`fregre.basis` or `fregre.basis.cv`).

A smoothed bootstrap method is used to estimate the quantiles of the influence measures, which allows to point out which observations have the larger influence on estimation and prediction.

Value

Return:

- `quan.cook.for` Distance Cook Prediction Quantile.
- `quan.cook.est` Distance Cook Estimation Quantile.
- `quan.cook.Pena` Pena Distance Quantile.
- `mues.est` Sample Cook generated.
- `mues.pena` Sample Pena generated.
- `beta.boot` Functional beta estimated by bootstrap method.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as: `influence.fregre.fd`, `fregre.basis`, `fregre.pc`.

Examples

```r
Not run:
data(tecator)
x = tecator$absorp.fdata
y = tecatoryFat
res = fregre.pc(x, y, 1:6)

time consuming
res.infl = influence.fregre.fd(res)
resquan = influence_quan(res, res.infl, 4, 0.01, 0.95)
plot(res$beta.est, type = "l", col = 3)
lines(resquan$betas.boot, type = "l", col = "gray")

res = fregre.basis(x, y)
res.infl = influence.fregre.fd(res)
resquan = influence_quan(res, res.infl, mue.boot = 4, kmax.fix = T)
plot(resquan$betas.boot, type = "l", col = 4)
lines(res.infl$betas, type = "l", col = 2)
lines(resquan$betas.boot, type = "l", col = "gray")

End(Not run)
```

### inprod.fdata

**Inner products of Functional Data Objects of class (fdata)**

**Description**

Computes an inner products of functional data objects of class fdata.

**Usage**

`inprod.fdata(fdata1, fdata2 = NULL, w = 1, ...)`

**Arguments**

- `fdata1`: Functional data 1 or curve 1. `fdata1$data` with dimension \( n_1 \times m \), where \( n_1 \) is the number of curves and \( m \) are the points observed in each curve.
- `fdata2`: Functional data 2 or curve 2. `fdata2$data` with dimension \( n_2 \times m \), where \( n_2 \) is the number of curves and \( m \) are the points observed in each curve.
- `w`: Vector of weights with length \( m \). If \( w = 1 \) approximates the metric \( L_p \) by Simpson’s rule. By default it uses \( w = 1 \)
- `...`: Further arguments passed to or from other methods.
Details

By default it uses weights \( w=1 \).

\[
\langle fdata_1, fdata_2 \rangle = \frac{1}{\int_a^b w(x)dx} \int_a^b fdata_1(x) * fdata_2(x)w(x)dx
\]

The observed points on each curve are equally spaced (by default) or not.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See also \texttt{inprod} and \texttt{norm.fdata}

Examples

```r
Not run:
x<-seq(0,2*pi,length=1001)
fx1<-sin(x)/sqrt(pi)
fx2<-cos(x)/sqrt(pi)
argv<-seq(0,2*pi,len=1001)
fdat0<-fdata(rep(0,len=1001),argv,range(argv))
fdat1<-fdata(fx1,x,range(x))
inprod.fdata(fdat1,fdat1)
inprod.fdata(fdat1,fdat0)
metric.lp(fdat1)
metric.lp(fdat1,fdat0)
norm.fdata(fdat1)
 # The same
integrate(function(x){(abs(sin(x)/sqrt(pi))^2)},0,2*pi)
integrate(function(x){(abs(cos(x)/sqrt(pi))^2)},0,2*pi)
End(Not run)
```

int.simpson  

\textit{Simpson integration}

Description

Computes the integral of \texttt{fdataobj$data} with respect to \texttt{fdataobj$argvals} using \texttt{simpson} or \texttt{trapezoid} rule integration.

Usage

```r
int.simpson(fdataobj, method = NULL)

int.simpson2(x, y, equi = TRUE, method = NULL)
```
Kernel

Arguments

fdataobj    fdata object.
method      Method for numerical integration, see details.
x           Sorted vector of x-axis values: argvals.
y           Vector of y-axis values.
equi        =TRUE, the observed points on each curve are equally spaced (by default).

Details

Possible values for method are:
  • "TRAPZ": Trapezoid rule integration.
  • "CSR": Composite Simpson’s rule integration.
  • "ESR": Extended Simpson’s rule integration.

If method=NULL (default), the value of par.fda.usc$int.method is used.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See also integrate.

Examples

## Not run:
x<-seq(0,2*pi,length=1001)
fx<-fdata(sin(x)/sqrt(pi),x)
fx0<-fdata(rep(0,length(x)),x)
int.simpson(fx0)
int.simpson(fx)

## End(Not run)

Kernel

Symmetric Smoothing Kernels.

Description

Represent symmetric smoothing kernels:: normal, cosine, triweight, quartic and uniform.

Usage

Kernel(u, type.Ker = "Ker.norm")
Arguments

- **u**  
  Data.

- **type.Ker**  
  Type of Kernel. By default normal kernel.

Details

- \( \text{Ker.norm} = \text{dnorm}(u) \)
- \( \text{Ker.cos} = \text{ifelse}(\text{abs}(u) \leq 1, \frac{\pi}{4} \star (\cos(\pi \star u/2)), 0) \)
- \( \text{Ker.epa} = \text{ifelse}(\text{abs}(u) \leq 1, 3/4 \star (1-u^2), 0) \)
- \( \text{Ker.tri} = \text{ifelse}(\text{abs}(u) \leq 1, 15/16 \star (1-u^2)^2, 0) \)
- \( \text{Ker.quar} = \text{ifelse}(\text{abs}(u) \leq 1, 15/16 \star (1-u^2)^2, 0) \)
- \( \text{Ker.unif} = \text{ifelse}(\text{abs}(u) \leq 1, 1/2, 0) \)

Type of kernel:

- Normal Kernel: Ker.norm
- Cosine Kernel: Ker.cos
- Epanechnikov Kernel: Ker.epa
- Triweight Kernel: Ker.tri
- Quartic Kernel: Ker.quar
- Uniform Kernel: Ker.unif

Value

Returns symmetric kernel.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


Examples

```r
y=qnorm(seq(.1,.9,len=100))
a<-Kernel(u=y)
b<-Kernel(type.Ker="Ker.tri",u=y)
c=Ker.cos(y)
```
Kernel.asymmetric

Asymmetric Smoothing Kernel

Description

Represent Asymmetric Smoothing Kernels: normal, cosine, triweight, quartic and uniform.

\[
\begin{align*}
AKer.norm &= 0.2 \times \text{dnorm}(u), \\
AKer.cos &= \pi/2 \times (\cos(\pi/2 \times u^2)), \\
AKer.epa &= 1/3 \times (1-u^2), \\
AKer.tri &= 15/16 \times (1-u^2)^3, \\
AKer.quar &= 15/8 \times (1-u^2)^2, \\
AKer.unif &= 1.
\end{align*}
\]

Usage

Kernel.asymmetric(u, type.Ker = "AKer.norm")

Arguments

- **u**: Data.
- **type.Ker**: Type of asymmetric metric kernel, by default asymmetric normal kernel.

Details

Type of Asymmetric kernel:

- Asymmetric Normal Kernel: AKer.norm
- Asymmetric Cosine Kernel: AKer.cos
- Asymmetric Epanechnikov Kernel: AKer.epa
- Asymmetric Triweight Kernel: AKer.tri
- Asymmetric Quartic Kernel: AKer.quar
- Asymmetric Uniform Kernel: AKer.unif

Value

Returns asymmetric kernel.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

Examples

```r
y <- qnorm(seq(.1,.9,len=100))
a <- Kernel.asymmetric(u=y)
b <- Kernel.asymmetric(type.Ker="AKer.tri",u=y)
c <- AKer.cos(y)
```

**Kernel.integrate**

Integrate Smoothing Kernels.

**Description**

Represent integrate kernels: normal, cosine, triweight, quartic and uniform.

**Usage**

```r
Kernel.integrate(u, Ker = Ker.norm, a = -1)
```

**Arguments**

- `u` data
- `Ker` Type of Kernel. By default normal kernel.
- `a` Lower limit of integration.

**Details**

Type of integrate kernel:

- Integrate Normal Kernel: `IKer.norm`
- Integrate Cosine Kernel: `IKer.cos`
- Integrate Epanechnikov Kernel: `IKer.epa`
- Integrate Triweight Kernel: `IKer.tri`
- Integrate Quartic Kernel: `IKer.quar`
- Integrate Uniform Kernel: `IKer.unif`

**Value**

Returns integrate kernel.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
References

See Also
See Also as: Kernel and integrate.

Examples
```r
y=qnorm(seq(.1,.9,len=100))
d=IKer.tri(y)
e=IKer.cos(y)
e2=Kernel.integrate(u=y,Ker=Ker.cos)
e-e2
f=IKer.epa(y)
f2=Kernel.integrate(u=y,Ker=Ker.epa)
f-f2
plot(d,type="l",ylab="Integrate Kernel")
lines(e,col=2,type="l")
lines(f,col=4,type="l")
```

---

**kmeans.center.ini**  
K-Means Clustering for functional data

**Description**
Perform k-means clustering on functional data.

**Usage**

```r
kmeans.center.ini(
fdataobj,
ncl = 2,
metric = metric.lp,
draw = TRUE,
method = "sample",
max.iter = 100,
max.comb = 1e+06,
par.metric = NULL,
...)
```

```r
kmeans.fd(
fdataobj,
```
ncl = 2,
metric = metric.lp,
dfunc = func.trim.FM,
max.iter = 100,
par.metric = NULL,
par.dfunc = list(trim = 0.05),
method = "sample",
cluster.size = 5,
draw = TRUE,
...
)

Arguments

fdataobj fdata class object.
ncl See details section.
metric Metric function, by default metric.lp.
draw =TRUE, draw the curves in the color of the centers.
method Method for selecting initial centers. If method="Sample" (by default) takes \( n \) times a random selection by the ncl centers. The ncl curves with greater distance are the initial centers. If method="Exact" calculated all combinations (if < 1e+6) of ncl centers. The ncl curves with greater distance are the initial centers (this method may be too slow).
max.iter Maximum number of iterations for the detection of centers.
max.comb Maximum number of initial selection of centers (only used when method="exact").
par.metric List of arguments to pass to the metric function.
... Further arguments passed to or from other methods.
dfunc Type of depth measure, by default FM depth.
par.dfunc List of arguments to pass to the dfunc function.
cluster.size Minimum cluster size (by default is 5). If a cluster has fewer curves, it is eliminated and the process is continued with a less cluster.

Details

The method searches the locations around which are grouped data (for a predetermined number of groups).

If ncl=NULL, randomizes the initial centers, ncl=2 using kmeans.center.ini function.
If ncl is an integer, indicating the number of groups to classify,
are selected ncl initial centers using kmeans.center.ini function.
If ncl is a vector of integers, indicating the position of the initial centers with length(ncl) equal to number of groups.
If ncl is a fdata class object, ncl are the initial centers curves with nrow(ncl) number of groups.
Value

Return:

- **cluster** Indexes of groups assigned.
- **centers** Curves centers.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also generic `kmeans` function.

Examples

```r
Not run:
data(phoneme)
mlearn<-phoneme$learn[c(1:50,101:150,201:250),]

Unsupervised classification
out.fd1=kmeans.fd(mlearn,ncl=3,draw=TRUE)
out.fd2=kmeans.fd(mlearn,ncl=3,draw=TRUE,method="exact")

Different Depth Function
ind=c(17,77,126)
out.fd3=kmeans.fd(mlearn,ncl=mlearn[ind,],draw=FALSE,
dfunc=func.trim.FM,par.dfunc=list(trim=0.1))
out.fd4=kmeans.fd(mlearn,ncl=mlearn[ind,],draw=FALSE,
dfunc=func.med.FM)
group=c(rep(1,50),rep(2,50),rep(3,50))
table(out.fd4$cluster,group)

End(Not run)
```

ldata

**ldata class definition and utilities**

Description

ldata is a list with two type of objects:

- **df** is a data frame with the multivariate data with n rows.
- **... fdata** objects of class fdata with n rows.
Usage

```r
ldata(df, ..., mfdata)
```

## S3 method for class 'ldata'
```r
names(x)
```

```r
is.ldata(x)
```

## S3 method for class 'ldata'
```r
x[i, row = FALSE]
```

## S3 method for class 'ldata'
```r
subset(x, subset, ...)
```

## S3 method for class 'ldata'
```r
plot(x, ask = FALSE, color, var.name, ...)
```

Arguments

df data frame

... Further arguments passed to methods.

mfdata list of fdata objects

i index

row logical If FALSE (by default), i index selects the variables. If TRUE, i index selects the observations.

subset subset

ask logical If TRUE (and the R session is interactive) the user is asked for input, before a new figure is drawn.

color colors to interpolate; must be a valid argument to colorRampPalette.

var.name name of continuous univariate variable used in color argument

ldata, x object of class ldata

Examples

data(tecator)
```r
ab0 <- tecator$absorp.fdata
ab1 <- fdata.deriv(ab0)
ab2 <- fdata.deriv(ab0,nderiv=2)
ldat<-ldata(tecator$y,ab1=ab1,ab2=ab2)
is.ldata(ldat)
class(ldat)
plot(ldat[[1]])
plot(ldat[[2]])
plot(ldat)
plot(ldat,var.name="Fat")
```
Impact points selection of functional predictor and regression using local maxima distance correlation (LMDC)

**Description**

LMDC.select function selects impact points of functional predictor using local maxima distance correlation (LMDC) for a scalar response given. LMDC.regre function fits a multivariate regression method using the selected impact points like covariates for a scalar response.

**Usage**

```r
LMDC.select(
 y, covar, data,
 tol = 0.06,
 pvalue = 0.05,
 plot = FALSE,
 local.dc = TRUE,
 smo = FALSE,
 verbose = FALSE
)

LMDC.regre(
 y, covar, data,
 newdata,
 pvalue = 0.05,
 method = "lm",
 par.method = NULL,
 plot = FALSE,
 verbose = FALSE
)
```

**Arguments**

- `y` name of the response variable.
- `covar` vector with the names of the covariables (or points of impact) with length p.
- `data` data frame with length n rows and at least p + 1 columns, containing the scalar response and the potential p covariables (or points of impact) in the model.
- `tol` Tolerance value for distance correlation and imapct point.
- `pvalue` pvalue of bias corrected distance correlation t-test.
plot  logical value, if TRUE plots the distance correlation curve for each covariate in multivariate case and in each discretization points (argvals) in the functional case.

local.dc  Compute local distance correlation.

smo  logical. If TRUE, the curve of distance correlation computed in the impact points is smoothed using B-spline representation with a suitable number of basis elements.

verbose  print iterative and relevant steps of the procedure.

newdata  An optional data frame in which to look for variables with which to predict.

method  Name of regression method used, see details. This argument is used in do.call function like "what" argument.

par.method  List of parameters used to call the method. This argument is used in do.call function like "args" argument.

Details

String of characters corresponding to the name of the regression method called. Model available options:

- "lm": Step-wise lm regression model (uses lm function, stats package). Recommended for linear models, test linearity using flm.test function.
- "gam": Step-wise gam regression model (uses gam function, mgcv package). Recommended for non-linear models.

Models that use the indicated function of the required package:

- "svm": Support vector machine (svm function, e1071 package).
- "knn": k-nearest neighbor regression (knnn.reg function, FNN package).
- "lars": Least Angle Regression using Lasso (lars function, lars package).
- "glmnet": Lasso and Elastic-Net Regularized Generalized Linear Models (glmnet and cv.glmnet function, glmnet package).
- "rpart": Recursive partitioning for regression a (rpart function, rpart package).
- "flam": Fit the Fused Lasso Additive Model for a Sequence of Tuning Parameters (flam function, flam package).
- "cosso": Fit Regularized Nonparametric Regression Models Using COSSO Penalty (cosso function, cosso package).
- "npreg": kernel regression estimate of a one (1) dimensional dependent variable on p-variate explanatory data (npreg function, np package).
- "mars": Multivariate adaptive regression splines (mars function, mda package).
- "nnet": Fit Neural Networks (nnet function, nnet package).
- "lars": Fits Least Angle Regression, Lasso and Infinitesimal Forward Stagewise regression models (lars function, lars package).
Value
LMDC.select function return a list of two elements:

- cor the value of distance correlation for each covariate.
- maxLocal index or locations of local maxima distance correlations.

LMDC.regre function return a list of following elements:

- model object corresponding to the estimated method using the selected variables
- xvar names of selected variables (impact points).
- edf Effective Degrees of Freedom.
- nvarNumber of selected variables (impact points).

Author(s)
Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as: lm, gam, dcor.xy.

Examples

```r
Not run:
data(tecator)
absorp=fdata.deriv(tecator$absorp.fdata,2)
ind=1:129
x=absorp[ind,]
y=tecatoryFat[ind]
newx=absorp[-ind,]
newy=tecatoryFat[-ind]

Functional PC regression
res.pc=fregre.pc(x,y,1:6)
pred.pc=predict(res.pc,newx)

Functional regression with basis representation
res.basis=fregre.basis.cv(x,y)
pred.basis=predict(res.basis[[1]],newx)

Functional nonparametric regression
res.np=fregre.np.cv(x,y)
pred.np=predict(res.np,newx)
```
dat <- data.frame("y"=y,x$data)
newdat <- data.frame("y"=newy,newx$data)

res.gam=fregre.gsam(y~s(x),data=list("df"=dat,"x"=x))
pred.gam=predict(res.gam,list("x"=newx))

dc.raw <- LMDC.select("y",data=dat, tol = 0.05, pvalue= 0.05,
                      plot=F, smo=T,verbose=F)
covar <- paste("X",dc.raw$maxLocal,sep="")
# Preselected design/impact points
covar

ftest<-flm.test(dat[-1],dat,"y", B=500, verbose=F,
                 plot.it=F,type.basis="pc",est.method="pc",p=4,G=50)

if (ftest$p.value>0.05) {
  # Linear relationship, step-wise lm is recommended
  out <- LMDC.regre("y",covar,dat,newdat,pvalue=.05,
                    method ="lm",plot=F,verbose=F)
} else {
  # Non-Linear relationship, step-wise gam is recommended
  out <- LMDC.regre("y",covar,dat,newdat,pvalue=.05,
                    method ="gam",plot=F,verbose=F) }

# Final design/impact points
out$xvar

# Predictions
mean((newy-pred.pc)^2)
mean((newy-pred.basis)^2)
mean((newy-pred.np)^2)
mean((newy-pred.gam)^2)
mean((newy-out$pred)^2)

## End(Not run)

---

### MCO

**Mithochondiral calcium overload (MCO) data set**

### Description

The mithochondiral calcium overload (MCO) was measured in two groups (control and treatment) every 10 seconds during an hour in isolated mouse cardiac cells. In fact, due to technical reasons, the original experiment [see Ruiz-Meana et al. (2000)] was performed twice, using both the "intact", original cells and "permeabilized" cells (a condition related to the mitochondrial membrane).

### Format

Elements of MCO:
- .$intact: fdata class object with "intact cells" curves,
• "data": Matrix of class fdata with 89 intact cells curves (rows) measured every 10 seconds during an hour in isolated mouse cardiac cell.
• "argvals": 360 discretization points from second 0 to 3590.
• "rangeval": range("argvals").
• "names" list with: main an overall title "Control Intact Treatment", xlab title for x axis "seconds" and ylab title for y axis "Ca".

.. $classintact: Factor levels of “intact cells” curves: "1" control group and "2" treatment group.

.. $permea: fdata class object with “permeabilized cells” curves (whose membrane has been removed),

• "data": Matrix of class fdata with 90 permeabilized cells curves (rows) measured every 10 seconds during an hour in isolated mouse cardiac cell.
• "argvals": 360 discretization points from second 0 to 3590.
• "rangeval": range("argvals").
• "names" list with: main an overall title "Control Intact Treatment", xlab title for x axis "seconds" and ylab title for y axis "Ca".

.. $classpermea: Factor levels of “permeabilized cells” curves: "1" control group and "2" treatment group.

Note

The structure of the curves during the initial period (first 180 seconds) of the experiment shows a erratic behavior (not very relevant in the experiment context) during this period.

References


Examples

data(MCO)
names(MCO)
par(mfrow=c(1,2))
plot(MCO$intact,col=MCO$classintact)
plot(MCO$permea,col=MCO$classpermea)
metric.dist | Distance Matrix Computation

Description

This function computes the distances between the rows of a data matrix by using the specified distance measure.

Usage

metric.dist(x, y = NULL, method = "euclidean", p = 2, dscale = 1, ...)

Arguments

- **x**: Data frame 1. The dimension is \((n1 \times m)\).
- **y**: Data frame 2. The dimension is \((n2 \times m)\).
- **method**: The distance measure to be used. This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski".
- **p**: The power of the Minkowski distance.
- **dscale**: If scale is a numeric, the distance matrix is divided by the scale value. If scale is a function (as the mean for example) the distance matrix is divided by the corresponding value from the output of the function.
- **...**: Further arguments passed to `dist` function.

Details

This function returns a distance matrix by using `dist` function. The matrix dimension is \((n1 \times n1)\) if \(y=NULL\), \((n1 \times n2)\) otherwise.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See also `dist` for multivariate date case and `metric.lp` for functional data case

Examples

```r
Not run:
data(iris)
d <- metric.dist(iris[,1:4])
matplot(d,type="l",col=as.numeric(iris[,5]))
End(Not run)
```
**metric.DTW**

*DTW: Dynamic time warping*

**Description**

Computes distances time warping for functional data

**Usage**

```r
metric.DTW(fdata1, fdata2 = NULL, p = 2, w = min(ncol(fdata1), ncol(fdata2)))
```

```r
metric.WDTW(
 fdata1,
 fdata2 = NULL,
 p = 2,
 w = min(ncol(fdata1), ncol(fdata2)),
 wmax = 1,
 g = 0.05
)
```

```r
metric.TWED(fdata1, fdata2 = NULL, p = 2, lambda = 1, nu = 0.05)
```

**Arguments**

- **fdata1**: Functional data 1 or curve 1. If `fdata` class, the dimension of `fdata1$data` object is \((n1 \times m)\), where \(n1\) is the number of curves and \(m\) are the points observed in each curve.
- **fdata2**: Functional data 2 or curve 2. If `fdata` class, the dimension of `fdata2$data` object is \((n2 \times m)\), where \(n2\) is the number of curves and \(m\) are the points observed in each curve.
- **p**: Lp norm, by default it uses \(p = 2\)
- **w**: Vector of weights with length \(m\), If \(w = 1\) approximates the metric Lp by Simpson’s rule. By default it uses \(w = 1\)
- **wmax**: numeric maximum value of weight, \((1\) by default\)
- **g**: numeric \(g=0\) (constant), \(0.05\) (linear) by default, \(0.25\) sigmoid, \(3\) two weight values
- **lambda**: numeric lambda value \((0\ by default)\)
- **nu**: numeric constant value, \((0\ by default)\)

**Details**

- DTW: Dynamic time warping
- WDTW: Weight Dynamic time warping
- TWED: twed
Value

DTW matrix

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See also `semimetric.basis` and `semimetric.NPFDA`

Examples

```r
Not run:
data(tecator)
m1=fda.usc:::DTW(tecator$absorp.fdata[1:4,])
ab=tecator[[1]]
D1=fda.usc:::DTW(ab$data[1,],ab$data[2,],p=2)
aa1=fda.usc:::findPath(D1$D)
D2=fda.usc:::DTW(ab$data[1,],ab$data[2,],p=2,w=5)
aa2=fda.usc:::findPath(D2$D)
D3=fda.usc:::WDTW(ab$data[1,],ab$data[2,],p=2,g=0.05)
aa3=fda.usc:::findPath(D3$D)
D4=fda.usc:::TWED(ab$data[1,],ab$data[2,],p=2,lambda=0,nu=0)
aa4=fda.usc:::findPath(D4$D)
par(mfrow=c(2,2))
plot(c(ab[1:2]))
segments(ab$argvals[aa1[,1]],ab[1]$data[aa1[,1]],ab$argvals[aa1[,2]],ab[2]$data[aa1[,2]],col=1)
plot(c(ab[1:2]))
segments(ab$argvals[aa2[,1]],ab[1]$data[aa2[,1]],ab$argvals[aa2[,2]],ab[2]$data[aa2[,2]],col=2)
plot(c(ab[1:2]))
segments(ab$argvals[aa3[,1]],ab[1]$data[aa3[,1]],ab$argvals[aa3[,2]],ab[2]$data[aa3[,2]],col=3)
plot(c(ab[1:2]))
End(Not run)
```

metric.hausdorff

**Compute the Hausdorff distances between two curves.**

Description

Hausdorff distance is the greatest of all the distances from a point in one curve to the closest point in the other curve (been closest the euclidean distance).
Usage

metric.hausdorff(fdata1, fdata2 = fdata1)

Arguments

fdata1
Curves 1 of fdata class. The dimension of fdata1 object is \((n1 \times m)\), where \(n1\) is the number of points observed in \(t\) coordinates with length \(m\).

fdata2
Curves 2 of fdata class. The dimension of fdata2 object is \((n2 \times m)\), where \(n2\) is the number of points observed in \(t\) coordinates with length \(m\).

Details

Let \(G(X) = \{(t, X(t)) \in \mathbb{R}^2\}\) and \(G(Y) = \{(t, Y(t)) \in \mathbb{R}^2\}\) be two graphs of the considered curves \(X\) and \(Y\) respectively, the Hausdorff distance \(d_H(X, Y)\) is defined as,

\[
d_H(X, Y) = \max \left\{ \sup_{x \in G(X)} \inf_{y \in G(Y)} d_2(x, y), \sup_{y \in G(Y)} \inf_{x \in G(X)} d_2(x, y) \right\},
\]

where \(d_2(x, y)\) is the euclidean distance, see `metric.lp`.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Examples

```r
Not run:
data(poblenou)
nox<-poblenou$nox[1:6]
Hausdorff vs maximum distance
out1<-metric.hausdorff(nox)
out2<-metric.lp(nox,lp=0)
out1
out2
par(mfrow=c(1,3))
plot(nox)
plot(hclust(as.dist(out1)))
plot(hclust(as.dist(out2)))
End(Not run)
```

Description

Measures the proximity between two groups of densities (of class fdata) by computing the Kullback–Leibler distance.
Usage

```
metric.kl(fdata1, fdata2 = NULL, symm = TRUE, base = exp(1), eps = 1e-10, ...)
```

Arguments

- `fdata1`: Functional data 1 (fdata class) with the densities. The dimension of `fdata1` object is \((n_1 \times m)\), where \(n_1\) is the number of densities and \(m\) is the number of coordinates of the points where the density is observed.
- `fdata2`: Functional data 2 (fdata class) with the densities. The dimension of `fdata2` object is \((n_2 \times m)\).
- `symm`: If `TRUE` the symmetric K–L distance is computed, see details section.
- `base`: The logarithm base used to compute the distance.
- `eps`: Tolerance value.
- `...`: Further arguments passed to or from other methods.

Details

Kullback–Leibler distance between \(f(t)\) and \(g(t)\) is

\[
metric.kl(f(t), g(t)) = \int_a^b f(t) \log \left( \frac{f(t)}{g(t)} \right) dt
\]

where \(t\) are the \(m\) coordinates of the points where the density is observed (the `argvals` of the `fdata` object).

The Kullback–Leibler distance is asymmetric,

\[
metric.kl(f(t), g(t)) \neq metric.kl(g(t), f(t))
\]

A symmetry version of K–L distance (by default) can be obtained by

\[
0.5 \left( \text{metric.kl}(f(t), g(t)) + \text{metric.kl}(g(t), f(t)) \right)
\]

If \((f_i(t) = 0 \& g_j(t) = 0) \implies \text{metric.kl}(f(t), g(t)) = 0\).

If \(|f_i(t)g_j(t)| \leq \epsilon \implies f_i(t) = f_i(t) + \epsilon\), where \(\epsilon\) is the tolerance value (by default `eps=1e-10`).

The coordinates of the points where the density is observed (discretization points \(t\)) can be equally spaced (by default) or not.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See also `metric.lp` and `fdata`
Examples

```r
Not run:

n <- 201

tt01 <- seq(0, 1, len = n)

rtt01 <- c(0, 1)

x1 <- dbeta(tt01, 20, 5)

x2 <- dbeta(tt01, 21, 5)

y1 <- dbeta(tt01, 5, 20)

y2 <- dbeta(tt01, 5, 21)

xy <- fdata(rbind(x1, x2, y1, y2), tt01, rtt01)

plot(xy)

round(metric.kl(xy, xy, eps = 1e-5), 6)

round(metric.kl(xy, eps = 1e-5), 6)

round(metric.kl(xy, eps = 1e-6), 6)

round(metric.kl(xy, xy, symm = FALSE, eps = 1e-5), 6)

round(metric.kl(xy, xy, symm = FALSE, eps = 1e-6), 6)

plot(c(fdata(y1[1:101]), fdata(y2[1:101])))

metric.kl(fdata(x1))

metric.kl(fdata(x1), fdata(x2), eps = 1e-5, symm = F)

metric.kl(fdata(y1[1:101]), fdata(y2[1:101]), eps = 1e-13, symm = F)

metric.kl(fdata(y1[1:101]), fdata(y2[1:101]), eps = 1e-14, symm = F)

End(Not run)
```

---

**metric.ldata**

**Distance Matrix Computation for ldata and mfdata class object**

**Description**

This function computes the distances between the list elements. This function returns a distance matrix by using `metric.lp` function for `fdata` objects and `metric.dist` function for `vector` and `matric` objects.

**Usage**

```r
metric.ldata(
 ldata1,
 ldata2 = NULL,
 include = "all",
 exclude = "none",
 metric,
 par.metric = NULL,
 w,
 method = "none"
)
```
Arguments

ldata1 List with of fdata objects and a data.frame object calle ‘df’.
ldata2 List with of fdata objects and a data.frame object calle ‘df’.
include vector with the name of variables to use
exclude vector with the name of variables to not use
metric Type of metric to combine, if ‘none’, the function no combine and return a list of distances for each variable included
par.metric List of metric parameters for each variable included
w, weights to combine the metric (if metric is not ‘none’)
method The distance measure to be used. This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski".
... Further arguments passed to dist function.

Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manul.oviedo@usc.es>

See Also
See also dist for multivariate date case and metric.lp for functional data case

Examples

```r
Not run:
data(tecator)
names(tecator)[2]<="df"
Example 1 (list of distances)
ldist <- metric.ldata(tecator,method="none")
lapply(ldist,names)
Example 2 (combined metric)
mdist <- metric.ldata(tecator,method="euclidean")
dim(mdist)
End(Not run)
```

metric.lp

**Approximates Lp-metric distances for functional data.**

Description

Measures the proximity between the functional data and curves approximating Lp-metric. If \( w = 1 \) approximates the Lp-metric by Simpson’s rule. By default it uses \( \text{lp} = 2 \) and weights \( w = 1 \).

Usage

`metric.lp(fdata1, fdata2 = NULL, lp = 2, w = 1, dscale = 1, ...)`
Arguments

- **fdata1**: Functional data 1 or curve 1. If `fdata` class, the dimension of `fdata1$data` object is \((n1 \times m)\), where \(n1\) is the number of curves and \(m\) are the points observed in each curve.

- **fdata2**: Functional data 2 or curve 2. If `fdata` class, the dimension of `fdata2$data` object is \((n2 \times m)\), where \(n2\) is the number of curves and \(m\) are the points observed in each curve.

- **lp**: Lp norm, by default it uses \(lp = 2\).

- **w**: Vector of weights with length \(m\). If \(w = 1\) approximates the metric Lp by Simpson’s rule. By default it uses \(w = 1\).

- **dscale**: If scale is a numeric, the distance matrix is divided by the scale value. If scale is a function (as the mean for example) the distance matrix is divided by the corresponding value from the output of the function.

... Further arguments passed to or from other methods.

Details

By default it uses the L2-norm with \(lp = 2\).

\[
\|f\|_p = \left( \frac{1}{\int_a^b w(x)dx} \int_a^b |f(x)|^p w(x)dx \right)^{1/p}
\]

The observed points on each curve are equally spaced (by default) or not.

The \(L\infty\)-norm is computed with \(lp = 0\).

\[
d(fdata1(x), fdata2(x))_\infty = \sup |fdata1(x) - fdata2(x)|
\]

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See also `semimetric.basis` and `semimetric.NPFDA`
Examples

```r
Not run:
INFERENCE PHONDAT
data(phoneme)
mlearn<-phoneme$learn[1:100]
mtest<-phoneme$test[1:100]
glearn<-phoneme$classlearn[1:100]
gtest<-phoneme$classtest[1:100]
Matrix of distances of curves of DATA1
mdist1<-metric.lp(mlearn)

Matrix of distances between curves of DATA1 and curves of DATA2
mdist2<-metric.lp(mlearn,mtest,lp=2)
mdist with L1 norm and weight=v
v=dnorm(seq(-3,3,len=dim(mlearn)[2]))
mdist3<-metric.lp(mlearn,mtest,lp=1,w=v)
plot(1:100,mdist2[1,],type="l",ylim=c(1,max(mdist3[1,])))
lines(mdist3[1,],type="l",col="2")

mdist with mlearn with different discretization points.
mlearn2=mlearn
mlearn2["argvals"]=seq(0,1,len=150)
mdist5<-metric.lp(mlearn,mlearn2)
mdist6<-metric.lp(mlearn2,mlearn)
sum(mdist5-mdist6)
sum(mdist1-mdist6)

x<-seq(0,2*pi,length=1001)
fx<-fdata(sin(x)/sqrt(pi),x)
fx0<-fdata(rep(0,length(x)),x)
metric.lp(fx,fx0)
The same
integrate(function(x){(abs(sin(x)/sqrt(pi))^2)},0,2*pi)

End(Not run)
```

---

**na.omit.fdata**

A wrapper for the `na.omit` and `na.fail` function for fdata object

**Description**

`na.fail` returns the object if it does not contain any missing values, and signals an error otherwise. `na.omit` returns the object with incomplete cases removed. If `na.omit.fdata` removes cases, the row numbers of the cases form the "na.action" attribute of the result, of class "omit", see generic function `na.omit`. 
Usage

## S3 method for class 'fdata'
na.omit(object, ...)

## S3 method for class 'fdata'
na.fail(object, ...)

Arguments

object an fdata object.
...

Value

The value returned from omi t is a fdata object with incomplete cases removed.

Author(s)

Manuel Febrero Bande and Manuel Oviedo

Examples

## Not run:
fdataobj<-fdata(MontrealTemp)
fdataobj$data[3,3]<-NA
fdataobj$data[10,.]<-NA
fdastaobj2<-na.omit(fdataobj)

## End(Not run)

---

```
Usage

norm.fdata(fdataobj, metric = metric.lp, ...)
norm.fd(fdobj)
```

Description

Approximates $L_p$-norm for functional data (fdata) object using metric or semimetric functions. Norm for functional data using by default $L_p$-metric.

---

```
Usage
	norm.fdata(fdataobj, metric = metric.lp, ...)
	norm.fd(fdobj)
```
Arguments

fdataobj  

fdata class object.

metric  

Metric function, by default metric.lp.

...  

Further arguments passed to or from other methods.

fobj  

Functional data or curves of fd class.

Details

By default it computes the L2-norm with \( p = 2 \) and weights \( w \) with length=(m-1).

\[
\|f\|_p = \left( \frac{1}{\int_a^b w(x) dx} \int_a^b |f(x)|^p w(x) dx \right)^{1/p}
\]

The observed points on each curve are equally spaced (by default) or not.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See also metric.lp and norm

Alternative method: inprod of fda-package

Examples

```r
Not run:
x<-seq(0,2*pi,length=1001)
fx1<-sin(x)/sqrt(pi)
fx2<-cos(x)/sqrt(pi)
argv<-seq(0,2*pi,len=1001)
fdat0<-fdata(rep(0,len=1001),argv,range(argv))
fdat1<-fdata(fx1,x,range(x))
metric.lp(fdat1)
metric.lp(fdat1,fdat0)
norm.fdata(fdat1)
The same
integrate(function(x){(abs(sin(x)/sqrt(pi))^2)},0,2*pi)
integrate(function(x){(abs(cos(x)/sqrt(pi))^2)},0,2*pi)

bspl1<- create.bspline.basis(c(0,2*pi),21)
fd.bspl1 <- fd(basisobj=bspl1)
fd.bspl2<-fdata2fd(fd.bspl1,nbasis=21)
norm.fd(fd.bspl1)
norm.fd(fd.bspl2)

End(Not run)
```
Description

Set or query graphical and prompt output parameters. Allow the user to set and examine a variety of global or local options which affect the way in which fda.usc functions computes and displays its results.

Usage

ops.fda.usc(
  verbose = FALSE,
  trace = FALSE,
  warning = FALSE,
  ncores = NULL,
  int.method = "TRAPZ",
  eps = as.double(.Machine[[1]] * 10)
)

Arguments

verbose logical. Should R report extra information on progress? Set to TRUE by the command-line option --verbose.

trace logical. Show internal information of procedure.

warning logical: If true, warnings are shown.

ncores integer. Number of CPU cores on the current host.

int.method see method argument in int.simpson function.

eps epsilon parameter.

Author(s)

Manuel Oviedo de la Fuente (<manuel.oviedo@usc.es>).

Examples

## Not run:
# If worker initialization failed, please execute this code
ncores <- max(parallel::detectCores() -1,1)
if (ncores==1) {
  foreach::registerDoSEQ()
} else{
  cl <- suppressWarnings(parallel::makePSOCKcluster(ncores ))
doParallel::registerDoParallel(cl)
}
ops.fda.usc()}
optim.basis

Select the number of basis using GCV method.

Description

Functional data estimation via basis representation using cross-validation (CV) or generalized cross-validation (GCV) method with a roughness penalty.

Usage

optim.basis(
  fdataobj,
  type.CV = GCV.S,  # Type of cross-validation. By default generalized cross-validation (GCV) method.
  W = NULL,  # Matrix of weights.
  lambda = 0,  # A roughness penalty. By default, no penalty lambda=0.
  numbasis = floor(seq(ncol(fdataobj)/16, ncol(fdataobj)/2, len = 10)),  # Number of basis to use.
  type.basis = "bspline",  # Character string which determines type of basis. By default "bspline".
  par.CV = list(trim = 0, draw = FALSE),  # List of parameters for type.CV: trim, the alpha of the trimming and draw=TRUE.
  verbose = FALSE,  # If TRUE information about GCV values and input parameters is printed. Default is FALSE.
  ...  # Further arguments passed to or from other methods. Arguments to be passed by default to create.basis.
)

Arguments

- **fdataobj**: `fdata` class object.
- **type.CV**: Type of cross-validation. By default generalized cross-validation (GCV) method.
- **W**: Matrix of weights.
- **lambda**: A roughness penalty. By default, no penalty lambda=0.
- **numbasis**: Number of basis to use.
- **type.basis**: Character string which determines type of basis. By default "bspline".
- **par.CV**: List of parameters for type.CV: trim, the alpha of the trimming and draw=TRUE.
- **verbose**: If TRUE information about GCV values and input parameters is printed. Default is FALSE.
- **...**: Further arguments passed to or from other methods. Arguments to be passed by default to create.basis.

Details

Provides the least GCV for functional data for a list of number of basis numbasis and lambda values lambda. You can define the type of CV to use with the type.CV, the default is used GCV.S. Smoothing matrix is performed by S.basis. W is the matrix of weights of the discretization points.
Value

• gcv Returns GCV values calculated for input parameters.
• fdata Matrix of set cases with dimension \((n \times m)\), where \(n\) is the number of curves and \(m\) are the points observed in each curve.
• fdata.est Estimated fdata class object.
• numbasis.opt numbasis value that minimizes CV or GCV method.
• lambda.opt lambda value that minimizes CV or GCV method.
• basis.opt basis for the minimum CV or GCV method.
• S. opt Smoothing matrix for the minimum CV or GCV method.
• gcv.opt Minimum of CV or GCV method.
• lambda A roughness penalty. By default, no penalty \(\lambda=0\).
• numbasis Number of basis to use.
• verbose If TRUE information about GCV values and input parameters is printed. Default is FALSE.

Note

min.basis deprecated.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as \texttt{S.basis}.
Alternative method: \texttt{optim.np}

Examples

```r
Not run:
a1<-(seq(0,1,by=.01)
a2=rnorm(length(a1),sd=0.2)
f1<-(sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
nc<50
```
optim.np

Smoothing of functional data using nonparametric kernel estimation

Description

Smoothing of functional data using nonparametric kernel estimation with cross-validation (CV) or
generalized cross-validation (GCV) methods.

Usage

optim.np(
optim.np

```r
fdataobj,
h = NULL,
W = NULL,
Ker = Ker.norm,
type.CV = GCV.S,
type.S = S.NW,
par.CV = list(trim = 0, draw = FALSE),
par.S = list(),
correl = TRUE,
verbose = FALSE,
...
)
```

Arguments

- **fdataobj**: `fdata` class object.
  - **h**: Smoothing parameter or bandwidth.
  - **W**: Matrix of weights.
  - **Ker**: Type of kernel used, by default normal kernel.
  - **type.CV**: Type of cross-validation. By default generalized cross-validation (GCV) method. Possible values are `GCV.S` and `CV.S`.
  - **type.S**: Type of smoothing matrix `S`. By default `S` is calculated by Nadaraya-Watson kernel estimator (`S.NW`). Possible values are `S.KNN`, `S.LLR`, `S.LPR`, and `S.LCR`.
  - **par.CV**: List of parameters for type.CV: trim, the alpha of the trimming and draw=TRUE.
  - **par.S**: List of parameters for type.S: tt for argvals, h for bandwidth, Ker for kernel, etc.
  - **correl**: logical. If TRUE the bandwidth parameter `h` is computed following the procedure described for De Brabanter et al. (2018). (option available since v1.6.0 version)
  - **verbose**: If TRUE information about GCV values and input parameters is printed. Default is FALSE.
  - ... Further arguments passed to or from other methods. Arguments to be passed for kernel method.

Details

Calculate the minimum GCV for a vector of values of the smoothing parameter `h`. Nonparametric smoothing is performed by the kernel function. The type of kernel to use with the parameter `Ker` and the type of smoothing matrix `S` to use with the parameter `type.S` can be selected by the user, see function `Kernel`. `W` is the matrix of weights of the discretization points.

Value

Returns GCV or CV values calculated for input parameters.

- `gcv`: GCV or CV for a vector of values of the smoothing parameter `h`.
- `fdataobj`: `fdata` class object.
• \texttt{fdata.est} Estimated fdata class object.
• \texttt{h.opt} h value that minimizes CV or GCV method.
• \texttt{S.opt} Smoothing matrix for the minimum CV or GCV method.
• \texttt{gcv.opt} Minimum of CV or GCV method.
• \texttt{h} Smoothing parameter or bandwidth.

\textbf{Note}

\texttt{min.np} deprecated.

\textbf{Author(s)}

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

\textbf{References}


\textbf{See Also}

Alternative method: \texttt{optim.basis}

\textbf{Examples}

```r
Not run:
Exemple, phoneme DATA
data(phoneme)
mlearn<-phoneme$learn[1:100]

out1<-optim.np(mlearn,type.CV=CV.S,type.S=S.NW)
np<-ncol(mlearn)
variance calculations
y<-mlearn
out<-out1
i<-1
z=qnorm(0.025/np)
fdata.est<-out$fdata.est
tt<-y["argvals"]
var.e<-Var.e(y,out$S.opt)
var.y<-Var.y(y,out$S.opt)
```
var.y2<Var.y(y,out$S.opt,var.e)

# plot estimated fdata and point confidence interval
upper.var.e<-fdata.est[i,]-z*sqrt(diag(var.e))
lower.var.e<-fdata.est[i,]+z*sqrt(diag(var.e))
dev.new()
plot(y[i,],lwd=1,
ylim=c(min(lower.var.e$data),max(upper.var.e$data)),xlab="t")
lines(fdata.est[i,],col=gray(.1),lwd=1)
lines(fdata.est[i,]+z*sqrt(diag(var.y)),col=gray(0.7),lwd=2)
lines(fdata.est[i,]-z*sqrt(diag(var.y)),col=gray(0.7),lwd=2)
lines(upper.var.e,col=gray(.3),lwd=2,lty=2)
lines(lower.var.e,col=gray(.3),lwd=2,lty=2)
legend("bottom",legend=c("Var.y","Var.error"),
col = c(gray(0.7),gray(0.3)),lty=c(1,2))

## End(Not run)

---

**Outliers.fdata**

*Outliers.fdata* is a package designed to identify functional outliers.

### Description

Procedure for detecting functional outliers.

### Usage

- `outliers.depth.pond(fdataobj, nb = 200, smo = 0.05, quan = 0.5, dfunc = depth.mode, ...)`
- `outliers.depth.trim(fdataobj, nb = 200, smo = 0.05, trim = 0.01, quan = 0.5, dfunc = depth.mode, ...)`
- `outliers.lrt(fdataobj, nb = 200, smo = 0.05, trim = 0.1, ...)`
- `outliers.thres.lrt(fdataobj, nb = 200, smo = 0.05, trim = 0.1, ...)`

---
Arguments

- **fdataobj**: `fdata` class object.
- **nb**: The number of bootstrap samples.
- **smo**: The smoothing parameter for the bootstrap samples.
- **quan**: Quantile to determine the cutoff from the Bootstrap procedure (by default=0.5)
- **dfunc**: Type of depth measure, by default `depth.mode`.
- **...**: Further arguments passed to or from other methods.
- **trim**: The alpha of the trimming.

Details

Outlier detection in functional data by likelihood ratio test (`outliers.lrt`). The threshold for outlier detection is given by the `outliers.thres.lrt`. Outlier detection in functional data by depth measures:

- `outliers.depth.pond` function weights the data according to depth.
- `outliers.depth.trim` function uses trimmed data.

`quantile.outliers.pond` and `quantile.outliers.trim` functions provides the quantiles of the bootstrap samples for functional outlier detection by, respectively, weighted and trimmed procedures. Bootstrap smoothing function (`fdata.bootstrap` with `nb` resamples) is applied to these weighted or trimmed data. If `smo=0` smoothed bootstrap is not performed. The function returns a vector of size 1xn1 with bootstrap replicas of the quantile.

Value

- `outliers`: Indexes of functional outlier.
- `dep.out`: Depth value of functional outlier.
- `dep.out`: Iteration in which the functional outlier is detected.
- `quantile`: Threshold for outlier detection.
- `dep`: Depth value of functional data.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


P.penalty


See Also

See Also: fdata.bootstrap, Depth.

Examples

```r
Not run:
data(aemet)
nb=20 # Time consuming
out.trim<-outliers.depth.trim(aemet$temp, dfunc=depth.FM, nb=nb)
plot(aemet$temp, col=1, lty=1)
lines(aemet$temp[out.trim[[1]]], col=2)
End(Not run)
```

P.penalty

Penalty matrix for higher order differences

Description

This function computes the matrix that penalizes the higher order differences.

Usage

`P.penalty(tt, P = c(0, 0, 1))`

Arguments

- `tt`: vector of the n discretization points or argvals.
- `P`: vector of coefficients with the order of the differences. Default value `P=c(0,0,1)` penalizes the second order difference.

Details

For example, if `P=c(0,1,2)`, the function return the penalty matrix the second order difference of a vector `tt`. That is

$$ v^T P_j tt = \sum_{i=3}^{n} (\Delta tt_i)^2 $$

where

$$ \Delta tt_i = tt_i - 2tt_{i-1} + tt_{i-2} $$

is the second order difference. More details can be found in Kraemer, Boulesteix, and Tutz (2008).
Value

penalty matrix of size \( \sum(n) \times \sum(n) \)

Note

The discretization points can be equidistant or not.

Author(s)

This version is created by Manuel Oviedo de la Fuente modified the original version created by Nicole Kramer in ppls package.

References


See Also

fdata2pls

Examples

```r
P.penalty((1:10)/10,P=c(0,0,1))
a more detailed example can be found under script file
```

PCvM.statistic

**PCvM statistic for the Functional Linear Model with scalar response**

Description

Projected Cramer-von Mises statistic (PCvM) for the Functional Linear Model with scalar response (FLM): \( Y = \langle X, \beta \rangle + \varepsilon \).

Usage

```r
Adot(X, inpr)
PCvM.statistic(X, residuals, p, Adot.vec)
```
Arguments

- **X**: Functional covariate for the FLM. The object must be either in the class `fdata` or in the class `fd`. It is used to compute the matrix of inner products.
- **inpr**: Matrix of inner products of X. Computed if not given.
- **residuals**: Residuals of the estimated FLM.
- **p**: Number of elements of the functional basis where the functional covariate is represented.
- **Adot.vec**: Output from the `Adot` function (see Details). Computed if not given.

Details

In order to optimize the computation of the statistic, the critical parts of these two functions are coded in FORTRAN. The hardest part corresponds to the function `Adot`, which involves the computation of a symmetric matrix of dimension $n \times n$ where each entry is a sum of $n$ elements. As this matrix is symmetric, the order of the method can be reduced from $O(n^3)$ to $O\left(\frac{n^3-n^2}{2}\right)$. The memory requirement can also be reduced to $O\left(\frac{n^2-n+2}{2}\right)$. The value of `Adot` is a vector of length $\frac{n^2-n+2}{2}$ where the first element is the common diagonal element and the rest are the lower triangle entries of the matrix, sorted by rows (see Examples).

Value

For `PCvM.statistic`, the value of the statistic. For `Adot`, a suitable output to be used in the argument `Adot.vec`.

Note

No NA’s are allowed in the functional covariate.

Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to <egarcia@math.ku.dk>

References


See Also

- `flm.test`
Examples

```r
Functional process
X=rproc2fdata(n=10,t=seq(0,1,l=101))
Adot
Adot.vec=Adot(X)

Obtain the entire matrix Adot
Ad=diag(rep(Adot.vec[1],dim(X$data)[1]))
Ad[upper.tri(Ad,diag=FALSE)]=Adot.vec[-1]
Ad=t(Ad)
Ad=Ad+t(Ad)-diag(diag(Ad))
Ad

Statistic
PCvM.statistic(X,residuals=rnorm(10),p=5)
```

### Description

**Phoneme data**

**Description**

Phoneme curves

**Format**

Elements of phoneme:

.. $learn$: learning sample of curves. fdata class object with:

i. "data": Matrix of class fdata with 250 curves (rows) discretized in 150 points or argvals (columns).

ii. "argvals", iii. "rangeval": range("argvals"), iv. "names" list with: main an overall title "Phoneme learn", xlab title for x axis "frequencies" and ylab title for y axis "log-periodograms".

.. $test$: testing sample of curves. fdata class object with:

i. "data": Matrix of class fdata with 250 curves (rows) discretized in 150 points or argvals (columns).

ii. "argvals", iii. "rangeval": range("argvals"), iv. "names" list with: main an overall title "Phoneme learn", xlab title for x axis "frequencies" and ylab title for y axis "log-periodograms".

.. $classlearn$: learning class numbers (as factor). Factor levels: "sh" 1, "iy" 2, "dcl" 3, "aa" 4 and "ao" 5.

.. $classtest$: testing class numbers (as factor). Factor levels: "sh" 1, "iy" 2, "dcl" 3, "aa" 4 and "ao" 5.

**Details**

The following instructions have been used file:

http://www.math.univ-toulouse.fr/staph/npfda/npfda-phondiscRS.txt

of Phoneme dataset file.
Author(s)
Manuel Febrero-Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Source

References

Examples

data(phoneme)
names(phoneme)
names(phoneme$learn)
class(phoneme$learn)
dim(phoneme$learn)
table(phoneme$classlearn)

plot.fdata

Plot functional data: fdata class object

Description
Plot object of class fdata.

Usage

## S3 method for class 'fdata'
plot(x, type, main, xlab, ylab, lty = 1, mfrow = c(1, 1), time = 1, ...)

## S3 method for class 'fdata'
lines(x, ...)

title.fdata(x, main = NULL, xlab = NULL, ylab = NULL, rownames = NULL)

## S3 method for class 'bifd'
plot(x, argvals.s, argvals.t, ...)

## S3 method for class 'mdepth'
plot(x, trim, levgray = 0.9, ...)

## S3 method for class 'depth'
plot(x, trim, levgray = 0.9, ...)
Arguments

x

fdata class object with:

• "data": For fdata class object as curve (1d), "data" is a matrix (by default), data.frame or array of set cases with dimension (n x m), where n is the number of curves and m are the points observed in each curve over the x–axe.

For fdata2d class object as surface (2d). "data" is a array of set cases with dimension (n x m1 x m2), where n is the number of functional data and m1 and m2 are the points observed over the x–y plane.

• "argvals": vector or list of vectors with the discretizations points values.

• "rangeval": vector or list of vectors with the range of the discretizations points values, by default range(argvals).

• "names": (optional) list with main an overall title, xlab title for x axis and ylab title for y axis.

or a two-argument functional data object, see bfd.

type

1-character string giving the type of plot desired.

The following values are possible for fdata class object: "l" for lines (by default), "p" for points, "o" for overplotted points and lines, "b", "c" for (empty if "c") points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.

The following values are possible for fdata2d class object: "image.contour" (by default) to display three-dimensional data and add the contour lines, "image" to display three-dimensional data, "contour" to display a contour plot, "persp" to display a perspective plots of a surface over the x-y plane and "filled.contour" to display a contour plot with the areas between the contours filled in solid color.

main

an overall title for the plot: see title.

xlab

xlab title for x axis, as in plot.

ylab

ylab title for y axis, as in plot.

lty

a vector of line types, see par.

mfrow

A vector of the form c(nr, nc). Subsequent figures will be drawn in an nr-by-nc array on the device by rows (mfrow).

time

The time interval to suspend plot execution for, in seconds, see Sys.sleep.

...

Further arguments passed to matplot function (for fdata class) or image, contour, persp or filled.contour (for fdata2d class).

rownames

Row names.

argvals.s

a vector of argument values for the first argument s of the functional data object to be evaluated.

argvals.t

a vector of argument values for the second argument t of the functional data object to be evaluated.

trim

The alpha of the trimming.

levgray

A vector of desired gray levels between 0 and 1; zero indicates "black" and one indicates "white".
Author(s)

Manuel Febrero Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See Also as fdata

Examples

```r
Not run:
Example for fdata class of 1 dimension (curve)
a1<-seq(0,1,by=.01)
a2=rnorm(length(a1),sd=0.2)
f1<-asin(2*pi*a1))+rnorm(length(a1),sd=0.2)
nc<10
np<-length(f1)
tt=seq(0,1,len=101)
mdata<-matrix(NA,ncol=np,nrow=nc)
for (i in 1:nc) mdata[,i]<-asin(2*pi*a1))+rnorm(length(a1),sd=0.2)
fdataobj<-fdata(mdata,tt)
res=plot.fdata(fdataobj,type="l",col=gray(1:nrow(mdata)/nrow(mdata)))
lines(func.mean(fdataobj),col=3,lwd=2) #original curve

example for fdata2d class of 2 dimension (surface)
t1 <- seq(0, 1, length= 51)
t2 <- seq(0, 1, length= 31)
z<-array(NA,dim=c(4,51,31))
for (i in 1:4) z[i,,] <- outer(t1, t2, function(a, b) (i*a)*(b)^i)
z.fdata<-fdata(z, list(t1,t2))
plot(z.fdata,time=2)
plot(z.fdata,mfrow=c(2,2),type="persp",theta=30)

End(Not run)
```

---

poblenou data

Description

NOx levels measured every hour by a control station in Poblenou in Barcelona (Spain).

Format

The format is:

.. snom: fdata class object with:
i.- "data": Matrix with 115 curves (rows) discretized in 24 points or argvals (columns).
ii.- "argvals": 0:23
iii.- "rangeval"=(0,23): range("argvals"),
iv.- "names" list with: main an overall title "NOx data set", xlab title for x axis "Hours" and ylab title for y axis "NOx (mglm^3)".

.. $df: Data Frame with (115x3) dimension.
"date" in the first column.
Second column ("day.week"). Factor levels: "Monday" 1, "Tuesday" 2, "Wednesday" 3, "Thursday" 4, "Friday" 5, "Saturday" 6 and "Sunday" 7.
Third column "day.festive". Factor levels: "non festive day" 0 and "festive day" 1.

Details

The dataset starts on 23 February and ends on 26 June, in 2005. We split the whole sample of hourly measures in a dataset of functional trajectories of 24 h observations (each curve represents the evolution of the levels in 1 day).

Twelve curves that contained missing data were eliminated.

Author(s)

Febrero-Bande, M and Oviedo de la Fuente, Manuel

Source

http://mediambient.gencat.cat

References


Examples

data(poblenou)
names(poblenou)
names(poblenou$nox)
nox<-poblenou$nox
class(nox)
ind.weekend<-as.integer(poblenou$df[,"day.week"])>5
plot(nox,col=ind.weekend+1)
predict.classif

Predicts from a fitted classif object.

Description

Classifier of functional data by kernel method using functional data object of class classif. Returns the predicted classes using a previously trained model.

Usage

```r
S3 method for class 'classif'
predict(object, new.fdataobj = NULL, type = "class", ...)
```

Arguments

- `type`: Type of prediction ("class or probability of each group membership").
- `...`: Further arguments passed to or from other methods.

Value

If type="class", produces a vector of predictions. If type="probs", a list with the following components is returned:

- `group.pred`: the vector of predictions.
- `prob.group`: the matrix of predicted probability by factor level.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See also classif.np classif.glm classif.gsam and classif.gkam.
Examples

```r
Not run:
data(phoneme)
mlearn<-phoneme["learn"][1:100]
glearn<-phoneme["classlearn"][1:100]

ESTIMATION knn
out1=classif.knn(glearn,mlearn,knn=3)
summary(out1)

PREDICTION knn
mtest<-phoneme["test"][1:100]
gtest<-phoneme["classtest"][1:100]
pred1=predict(out1,mtest)
table(pred1,gtest)

ESTIMATION kernel
h=2^(0:5)
using metric distances computed in classif.knn
out2=classif.kernel(glearn,mlearn,h=h,metric=out1$mdist)
summary(out2)
PREDICTION kernel
pred2=predict(out2,mtest)
table(pred2,gtest)

End(Not run)
```

---

**predict.classif.DD**

*Predicts from a fitted classif/DD object.*

**Description**

Classifier of functional (and multivariate) data by DD–classifier.

**Usage**

```r
S3 method for class 'classif/DD'
predict(object, new.fdataobj = NULL, type = "class", ...)
```

**Arguments**

- `object` Object object estimated by `classif.DD`.
- `new.fdataobj` By default, new p functional explanatory dataset or new multivariate data of data.frame class
- `type` !="predictive", for each row of data shows the probability of each group membership.
- `...` Further arguments passed to or from other methods.
Details

Returns the groups or classes predicted using a previously trained model.

Value

- group.predVector of groups or classes predicted
- prob.groupFor each functional data shows the probability of each group membership.

Author(s)

Febrero-Bande, M., and Oviedo de la Fuente, M.

References


See Also

See also `classif.DD`.

Examples

```r
Not run:
DD-classif for multivariate data
data(iris)
iris<-iris[1:100,]
ii<-sample(1:100,80)
group.train<-factor(iris[ii,5])
x.train<-iris[ii,1:4]
out1=classif.DD(group.train,x.train,depth="MhD",classif="lda")
out2=classif.DD(group.train,x.train,depth="MhD",classif="glm")
summary(out1)
summary(out2)
x.test<-iris[-ii,1:4]
pred1=predict(out1,x.test)
pred2=predict(out2,x.test)
group.test<-iris[-ii,5]
table(pred1,group.test)
table(pred2,group.test)

DD-classif for Functional data
data(phoneme)
mlearn<-phoneme["learn"]
glearn<-phoneme["classlearn"]

ESTIMATION
out1=classif.DD(glearn,mlearn,depth="FM",classif="glm")
summary(out1)
PREDICTION
mtest<-phoneme["test"]
```
gtest<-phoneme["classtest"]
pred1=predict(out1,mtest)
table(pred1,gtest)

## End(Not run)

---

**predict.fregre.fd**

*Predict method for functional linear model (fregre.fd class)*

**Description**

Computes predictions for regression between functional explanatory variables and scalar response using: basis representation, Principal Components Analysis, Partial least squares or nonparametric kernel estimation.

**Usage**

```r
S3 method for class 'fregre.fd'
predict(
 object,
 new.fdataobj = NULL,
 se.fit = FALSE,
 scale = NULL,
 df = df,
 interval = "none",
 level = 0.95,
 weights = 1,
 pred.var = res.var/weights,
 ...
)
```

**Arguments**

- `object`: `fregre.fd` object.
- `se.fit`: =TRUE (not default) standard error estimates are returned for each prediction.
- `scale`: Scale parameter for std.err. calculation.
- `df`: Degrees of freedom for scale.
- `interval`: Type of interval calculation.
- `level`: Tolerance/confidence level.
- `weights`: Variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in `newdata`.
- `pred.var`: The variance(s) for future observations to be assumed for prediction intervals. See link{predict.lm} for more details.
- `...`: Further arguments passed to or from other methods.
predict.fregre.fd

Details

Predicts from a fitted `fregre.basis` object, see `fregre.basis` or `fregre.basis.cv`.
Predicts from a fitted `fregre.pc` object, see `fregre.pc` or `fregre.pc.cv`.
Predicts from a fitted `fregre.pls` object, see `fregre.pls` or `fregre.pls.cv`.
Predicts from a fitted `fregre.np` object, see `fregre.np` or `fregre.np.cv`.

Value

If `se.fit = FALSE`, a vector of predictions of scalar response is returned or a matrix of predictions
and bounds with column names `fit`, `lwr`, and `upr` if interval is set. If `se.fit = TRUE` a list with the
following components is returned:

- `fit` A vector of predictions or a matrix of predictions and bounds as above
- `se.fit` Associated standard error estimates of predictions
- `residual.scale` Residual standard deviations
- `df` Degrees of freedom for residual

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

11-22.
New York.

jstatsoft.org/v51/i04/

See Also

See Also as: `fregre.basis`, `fregre.basis.cv`, `fregre.np`, `fregre.np.cv`,
`fregre.pc`, `fregre.pc.cv`, `fregre.pls`, `fregre.pls.cv` and `summary.fregre.fd`.
Examples

```r
Not run:
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecatoryFat[ind]
newx=absorp[-ind,]
newy=matrix(tecatoryFat[-ind],ncol=1)
Functional PC regression
res.pc=fregre.pc(x,y,1:6)
pred.pc=predict(res.pc,newx)
Functional PLS regression
res.pls=fregre.pls(x,y,1:6)
pred.pls=predict(res.pls,newx)
Functional nonparametric regression
res.np=fregre.np(x,y,Ker=AKer.tri,metric=semimetric.deriv)
pred.np=predict(res.np,newx)
Functional regression with basis representation
res.basis=fregre.basis.cv(x,y)
pred.basis=predict(res.basis[[1]],newx)

dev.new()
plot(pred.pc-newy)
points(pred.pls-newy,col=2,pch=2)
points(pred.np-newy,col=3,pch=3)
points(pred.basis-newy,col=4,pch=4)
sum((pred.pc-newy)^2,na.rm=TRUE)/sum((newy-mean(newy))^2,na.rm=TRUE)
sum((pred.pls-newy)^2,na.rm=TRUE)/sum((newy-mean(newy))^2,na.rm=TRUE)
sum((pred.np-newy)^2,na.rm=TRUE)/sum((newy-mean(newy))^2,na.rm=TRUE)
sum((pred.basis-newy)^2,na.rm=TRUE)/sum((newy-mean(newy))^2,na.rm=TRUE)

End(Not run)
```

predict.fregre.fr

**Predict method for functional response model**

Description

Computes predictions for regression between functional explanatory variables and functional response.

Usage

```r
S3 method for class 'fregre.fr'
predict(object, new.fdataobj = NULL, ...)
```
Arguments

object fregre.fr object.
new.fdataobj New functional explanatory data of fdata class.
... Further arguments passed to or from other methods.

Value

Return the predicted functional data.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See Also as: fregre.basis.fr

Examples

```r
Not run:
CV prediction for CandianWeather data
ttt<-(0, 365)
basisi <- create.bspline.basis(rtt,7)
basisj <- create.bspline.basis(rtt,9)
nam<-dimnames(CanadianWeather$dailyAv)[[2]]

fdata class (raw data)
for (ind in 1:35){
 res1<-- fregre.basis.fr(tempfdata[-ind], log10precfd[-ind],
 basis.s=basisi,basis.t=basisj)
pred1<-predict(res1,tempfdata[ind])
 plot(log10precfd[ind],col=1,ylim=rng,main=nam[ind])
 lines(pred1,lty=2,col=2)
 Sys.sleep(1)
}

fd class (smooth data)
basis.alpha <- create.constant.basis(rtt)
basisx <- create.bspline.basis(rtt,65)

dayfd<-Data2fd(day.5,CanadianWeather$dailyAv,basisx)
tempfd<-dayfd[,1]
log10precfd<-dayfd[,3]
for (ind in 1:35){
 res2<- fregre.basis.fr(tempfd[-ind], log10precfd[-ind],
 basis.s=basisi,basis.t=basisj)
pred2<-predict(res2,tempfd[ind])
}
```
predict.fregre.gkam

Predict method for functional regression model

Description

Computes predictions for regression between functional (and non functional) explanatory variables and scalar response.

- `predict.fregre.lm`, Predict method for functional linear model of `fregre.lm` fits object using basis or principal component representation.
- `predict.fregre.glm`, Predict method for functional generalized linear model of `fregre.glm` fits object using basis or principal component representation.
- `predict.fregre.gsam`, Predict method for functional generalized spectral additive model of `fregre.gsam` fits object using basis or principal component representation.
- `predict.fregre.gkam`, Predict method for functional generalized kernel additive model of `fregre.gkam` fits object using backfitting algorithm.

These functions use the model fitting function `lm`, `glm` or `gam` properties. If using functional data derived, is recommended to use a number of bases to represent beta lower than the number of bases used to represent the functional data. The first item in the data list of newx argument is called "df" and is a data frame with the response and non functional explanatory variables, as `lm`, `glm` or `gam`. Functional variables (fdata and fd class) are introduced in the following items in the data list of newx argument.

Usage

```r
S3 method for class 'fregre.gkam'
predict(object, newx = NULL, type = "response", ...)

S3 method for class 'fregre.glm'
predict(object, newx = NULL, type = "response", ...)

S3 method for class 'fregre.gsam'
predict(object, newx = NULL, type = "response", ...)

S3 method for class 'fregre.lm'
predict(
```
object, newx = NULL,  
type = "response", 
se.fit = FALSE, 
scale = NULL, 
 df = df,  
 interval = "none", 
 level = 0.95,  
 weights = 1, 
 pred.var = res.var/weights,  
...  
)

## S3 method for class 'fregre.plm'
predict(object, newx = NULL, ...)

Arguments

object fregre.lm, fregre.plm, fregre.glm, fregre.gsam
or fregre.gkam object.

newx An optional data list in which to look for variables with which to predict. If omitted, the fitted values are used. List of new explanatory data.

type Type of prediction (response or model term).

... Further arguments passed to or from other methods.

se.fit =TRUE (not default) standard error estimates are returned for each prediction.

scale Scale parameter for std.err. calculation.

df Degrees of freedom for scale.

interval Type of interval calculation.

level Tolerance/confidence level.

weights variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in newdata

pred.var the variance(s) for future observations to be assumed for prediction intervals. See link{predict.lm} for more details.

Value

Return the predicted values and optionally:

- predict.lm,predict.glm,predict.gam produces a vector of predictions or a matrix of predictions and bounds with column names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the following components is returned: fit vector or matrix as above.
- se.fit standard error of predicted means.
- residual.scale residual standard deviations.
- df degrees of freedom for residual.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as: fregre.lm, fregre.plm, fregre.glm, fregre.gsam and fregre.gkam.

Examples
```r
Not run:
data(tectar)
ind<-1:129
x=tectar$absorp.fdata
x.d2<-fdata.deriv(x,nderiv=2)
tt<-x["argvals"]
dataf=as.data.frame(tectar$y)
nbasis.x=11;nbasis.b=7
basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b)
basis.x=list("x.d2"=basis1)
basis.b=list("x.d2"=basis2)
ldata=list("df"=dataf[ind,],"x.d2"=x.d2[ind])
res=fregre.gsam(Fat~s(Water,k=3)+s(x.d2,k=3),data=ldata,
family=gaussian(),basis.x=basis.x,basis.b=basis.b)
newldata=list("df"=dataf[-ind,],"x.d2"=x.d2[-ind])
pred<-predict(res,newldata)
plot(pred,tectaryFat[-ind])
res glm=fregre.glm(Fat~Water+x.d2,data=ldata,family=gaussian(),
basis.x=basis.x,basis.b=basis.b)
pred.glm<-predict(res glm,newldata)
newy<-tectaryFat[-ind]
points(pred.glm,tectaryFat[-ind],col=2)

Time-consuming
res.gkam=fregre.gkam(Fat~x.d2,data=ldata)
pred.gkam=predict(res.gkam,newldata)
points(pred.gkam,tectaryFat[-ind],col=4)

((1/length(newy))*sum((drop(newy)-pred)^2))/var(newy)
((1/length(newy))*sum((newy-pred.glm)^2))/var(newy)
((1/length(newy))*sum((newy-pred.gkam)^2))/var(newy)

End(Not run)
```
**predict.fregre.gls**

**Predictions from a functional gls object**

**Description**

The predictions for the functional generalized least squares fitted linear model represented by object are obtained at the covariate values defined in newx.

**Usage**

```r
S3 method for class 'fregre.gls'
predict(
 object,
 newx = NULL,
 type = "response",
 se.fit = FALSE,
 scale = NULL,
 df,
 interval = "none",
 ...
)
```

```r
S3 method for class 'fregre.igls'
predict(
 object,
 newx = NULL,
 data,
 df = df,
 weights = 1,
 pred.var,
 n.ahead = 1L,
 ...
)
```

**Arguments**

- **object**  
  fregre.gls object.
- **newx**  
  An optional data list in which to look for variables with which to predict. If omitted, the fitted values are used. List of new explanatory data.
- **type**  
  Type of prediction (response or model term).
- **se.fit**  
  =TRUE (not default) standard error estimates are returned for each prediction.
- **scale**  
  Scale parameter for std.err. calculation.
- **df**  
  Degrees of freedom for scale.
- **interval**  
  Type of interval calculation.
- **...**  
  Further arguments passed to or from other methods.
data frame with the time or spatial index

weights variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in newdata

pred.var the variance(s) for future observations to be assumed for prediction intervals. See link{predict.lm} for more details.

n.ahead number of steps ahead at which to predict.

Value

a vector with the predicted values.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

fregre.gls

Examples

## Not run:
data(tecator)
ind<-1:190
x <- fdata.deriv(tecator$absorp.fdata,nderiv=1)
dataf=as.data.frame(tecator$y)
dataf$time <- 1:nrow(x)
ldat=list("df"=dataf[ind,],"x"=x[ind])
newldat=list("df"=dataf[-ind,],"x"=x[-ind])
newy <- tecator$y$Fat[-ind]
ff <- Fat ~ x
res.lm <- fregre.lm(ff,data=ldat)
summary(res.lm)
res.gls <- fregre.gls(ff,data=ldat, correlation=corAR1())
summary(res.gls)
par.cor <- list("cor.AMA"=list("p"=1))
par.cor <- list("cor.AMA"=list("index"="time","p"=1))
res.igls <- fregre.igls(ff,data=ldat,correlation=par.cor)
pred.lm <- predict(res.lm,newldat)
pred.gls <- predict(res.gls,newldat)
pred.igls <- predict(res.igls,newldat)
mean((pred.lm-newldat$Fat)^2)
mean((pred.gls-newldat$Fat)^2)
mean((pred.igls-newldat$Fat)^2)
r.ou  Ornstein-Uhlenbeck process

Description
Sampling of paths of the Ornstein-Uhlenbeck process.

Usage
r.ou(
  n,
  t = seq(0, 1, len = 201),
  mu = 0,
  alpha = 1,
  sigma = 1,
  x0 = rnorm(n, mean = mu, sd = sigma/sqrt(2 * alpha))
)

Arguments

  n    number of curves.
  t    discretization points.
  mu   mean of the process.
  alpha strength of the drift.
  sigma diffusion coefficient.
  x0   a number or a vector of length n giving the initial value(s) of the Ornstein-Uhlenbeck process. By default, n points are sampled from the stationary distribution.

Value
Functional sample, an fdata object of length n.

Author(s)
Eduardo Garcia-Portugues (<edgarcia@est-econ.uc3m.es>).

Examples
plot(r.ou(n = 100))
plot(r.ou(n = 100, alpha = 2, sigma = 4, x0 = 1:100))
Description

gridfdata generates \( n \) curves as linear combination of the original curves \( fdataobj \) plus a functional trend \( \mu \).

Usage

\[
\text{rcombfdata}(n = 10, fdataobj, \mu, \text{sdarg} = \text{rep}(1, \text{nrow}(fdataobj)), \text{norm} = 1)
\]

\[
\text{gridfdata}(\text{coef}, \ fdataobj, \mu)
\]

Arguments

- \( n \) Number of curves to be generated
- \( fdataobj \) \textit{fdata} class object.
- \( \mu \) Functional trend, by default \( \mu(t) = 0 \). An object of class \texttt{fdata}. \( t = \text{argvals}(\mu) \).
- \( \text{sdarg} \) Standard deviation of the coefficients.
- \( \text{norm} \) Norm of the coefficients. The norm is adjusted before the transformation for \( \text{sdarg} \) is performed.
- \( \text{coef} \) Coefficients of the combination. A matrix with number of columns equal to number of curves in \( fdataobj \).

Details

\texttt{rcombfdata} generates \( n \) random linear combinations of the \( fdataobj \) curves plus a functional trend \( \mu \). The coefficients of the combinations follow a normal distribution with zero mean and standard deviation \( \text{sdarg} \).

Value

Return the functional trajectories as a \texttt{fdata} class object.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente \texttt{<manuel.oviedo@usc.es>}

See Also

See Also as \texttt{rproc2fdata}
Examples

```r
Not run:
 tt=seq(0,1,len=51)
 fou3=create.fourier.basis(c(0,1), nbasis=3)
 fdataobj=fdata(t(eval.basis(tt,fou3)), argvals=tt)

 coef=expand.grid(0,seq(-1,1,len=11),seq(-1,1,len=11))
 grid=gridfdata(coef, fdataobj)
 plot(grid, lty=1)

 rcomb=rcombfdata(n=51, fdataobj, mu=fdata(30*tt*(1-tt), tt))
 plot(rcomb, lty=1)

End(Not run)
```

**rdir.pc**  
*Data-driven sampling of random directions guided by sample of functional data*

**Description**

Generation of random directions based on the principal components \( \hat{e}_1, \ldots, \hat{e}_k \) of a sample of functional data \( X_1, \ldots, X_n \). The random directions are sampled as

\[
h = \sum_{j=1}^{k} h_j \hat{e}_j,
\]

with \( h_j \sim \mathcal{N}(0, \sigma_j^2) \), \( j = 1, \ldots, k \). Useful for sampling non-orthogonal random directions \( h \) such that they are non-orthogonal for the random sample.

**Usage**

```r
rdir.pc(
 n,
 X.fdata,
 ncomp = 0.95,
 fdata2pc.obj = fdata2pc(X.fdata, ncomp = min(length(X.fdata$argvals), nrow(X.fdata))),
 sd = 0,
 zero.mean = TRUE,
 norm = FALSE
)
```

**Arguments**

- `n` number of curves to be generated.
- `X.fdata` an `fdata` object used to compute the functional principal components.
if an integer vector is provided, the index for the principal components to be considered. If a threshold between 0 and 1 is given, the number of components \( k \) is determined automatically as the minimum number that explains at least the \( n_{\text{comp}} \) proportion of the total variance of \( X.fdata \).

- **fdata2pc.obj** output of `fdata2pc` containing as many components as the ones to be selected by `ncomp`. Otherwise, it is computed internally.

- **sd** if 0, the standard deviations \( \sigma_j \) are estimated by the standard deviations of the scores for \( e_j \). If not, the \( \sigma_j \)'s are set to \( sd \).

- **zero.mean** whether the projections should have zero mean. If not, the mean is set to the mean of \( X.fdata \).

- **norm** whether the samples should be L2-normalized or not.

### Value

A `fdata` object with the sampled directions.

### Author(s)

Eduardo Garcia-Portugues (<edgarcia@est-econ.uc3m.es>) and Manuel Febrero-Bande (<manuel.febrero@usc.es>).

### Examples

```r
Not run:
Simulate some data
set.seed(345673)
X.fdata <- r.ou(n = 200, mu = 0, alpha = 1, sigma = 2, t = seq(0, 1, l = 201),
 x0 = rep(0, 200))
pc <- fdata2pc(X.fdata, ncomp = 20)

Samples
set.seed(34567)
rdir.pc(n = 5, X.fdata = X.fdata, zero.mean = FALSE)$data[, 1:5]
set.seed(34567)
rdir.pc(n = 5, X.fdata = X.fdata, fdata2pc.obj = pc)$data[, 1:5]

Comparison for the variance type
set.seed(456732)
n.proj <- 100
set.seed(456732)
samp1 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 1, norm = FALSE, ncomp = 0.99)
set.seed(456732)
samp2 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 0, norm = FALSE, ncomp = 0.99)
set.seed(456732)
samp3 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 1, norm = TRUE, ncomp = 0.99)
set.seed(456732)
samp4 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 0, norm = TRUE, ncomp = 0.99)
par(mfrow = c(1, 2))
plot(X.fdata, col = gray(0.85), lty = 1)
lines(samp1[,1:10], col = 2, lty = 1)
lines(samp2[,1:10], col = 4, lty = 1)
```
legend("topleft", legend = c("Data", "Different variances", "Equal variances"),
col = c(gray(0.85), 2, 4), lwd = 2)
plot(X.fdata, col = gray(0.85), lty = 1)
lines(samp3[1:10], col = 5, lty = 1)
lines(samp4[1:10], col = 6, lty = 1)
legend("topleft", legend = c("Data", "Different variances, normalized", "Equal variances, normalized"),
col = c(gray(0.85), 5:6), lwd = 2)

# Correlations (stronger with different variances and unnormalized; # stronger with lower ncomp)
ind <- lower.tri(matrix(nrow = n.proj, ncol = n.proj))
midd <- median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp1[i])))[[ind]]))
midd <- median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp2[i])))[[ind]]))
midd <- median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp3[i])))[[ind]]))
midd <- median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp4[i])))[[ind]]))

# Comparison for the threshold
samp1 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.25, fdata2pc.obj = pc)
samp2 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.50, fdata2pc.obj = pc)
samp3 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.90, fdata2pc.obj = pc)
samp4 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.95, fdata2pc.obj = pc)
samp5 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.99, fdata2pc.obj = pc)
cols <- rainbow(5, alpha = 0.25)
par(mfrow = c(3, 2))
plot(X.fdata, col = gray(0.75), lty = 1, main = "Data")
plot(samp1, col = cols[1], lty = 1, main = "Threshold = 0.25")
plot(samp2, col = cols[2], lty = 1, main = "Threshold = 0.50")
plot(samp3, col = cols[3], lty = 1, main = "Threshold = 0.90")
plot(samp4, col = cols[4], lty = 1, main = "Threshold = 0.95")
plot(samp5, col = cols[5], lty = 1, main = "Threshold = 0.99")

# Normalizing
samp1 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.50, fdata2pc.obj = pc, norm = TRUE)
samp2 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.90, fdata2pc.obj = pc, norm = TRUE)
samp3 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.95, fdata2pc.obj = pc, norm = TRUE)
samp4 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.99, fdata2pc.obj = pc, norm = TRUE)
samp5 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.999, fdata2pc.obj = pc, norm = TRUE)
cols <- rainbow(5, alpha = 0.25)
par(mfrow = c(3, 2))
plot(X.fdata, col = gray(0.75), lty = 1, main = "Data")
plot(samp1, col = cols[1], lty = 1, main = "Threshold = 0.50")
plot(samp2, col = cols[2], lty = 1, main = "Threshold = 0.90")
plot(samp3, col = cols[3], lty = 1, main = "Threshold = 0.95")
plot(samp4, col = cols[4], lty = 1, main = "Threshold = 0.99")
plot(samp5, col = cols[5], lty = 1, main = "Threshold = 0.999")

## End(Not run)
Statistics for testing the functional linear model using random projections

Description

Computes the Cramer-von Mises (CvM) and Kolmogorv-Smirnov (kS) statistics on the projected process

\[ T_{n,h}(u) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \langle X_i, \hat{\beta} \rangle) I_{\{ \langle X_i, h \rangle \leq u \}}, \]

designed to test the goodness-of-fit of a functional linear model with scalar response. NA’s are not allowed neither in the functional covariate nor in the scalar response.

Usage

`rp.flm.statistic(proj.X, residuals, proj.X.ord = NULL, F.code = TRUE)`

Arguments

- `proj.X`: matrix of size \(c(n, n.proj)\) containing, for each column, the projections of the functional data \(X_1, \ldots, X_n\) into a random direction \(h\). Not required if `proj.X.ord` is provided.
- `residuals`: the residuals of the fitted functional linear model, \(Y_i - \langle X_i, \hat{\beta} \rangle\). Either a vector of length \(n\) (same residuals for all projections) or a matrix of size \(c(n.proj, n)\) (each projection has an associated set residuals).
- `proj.X.ord`: matrix containing the row permutations of `proj.X` which rearranges them increasingly, for each column. So, for example `proj.X[proj.X.ord[,1],1]` equals `sort(proj.X[,1])`. If not provided, it is computed internally.
- `F.code`: whether to use faster FORTRAN code or R code.

Value

A list containing:

- list("statistic") a matrix of size \(c(n.proj, 2)\) with the the CvM (first column) and KS (second) statistics, for the \(n.proj\) different projections.
- list("proj.X.ord") the computed row permutations of `proj.X`, useful for recycling in subsequent calls to `rp.flm.statistic` with the same projections but different residuals.

Author(s)

Eduardo Garcia-Portugues (<edgarcia@est-econ.uc3m.es>) and Manuel Febrero-Bande (<manuel.febrero@usc.es>).
References


Examples

```r
Not run:
Simulated example
set.seed(345678)
t <- seq(0, 1, l = 101)
n <- 100
X <- r.ou(n = n, t = t)
beta0 <- fdata(mdata = cos(2 * pi * t) - (t - 0.5)^2, argvals = t,
 rangeval = c(0, 1))
Y <- inprod.fdata(X, beta0) + rnorm(n, sd = 0.1)

Linear model
mod <- fregre.pc(fdataobj = X, y = Y, l = 1:3)

Projections
proj.X1 <- inprod.fdata(X, r.ou(n = 1, t = t))
proj.X2 <- inprod.fdata(X, r.ou(n = 1, t = t))
proj.X12 <- cbind(proj.X1, proj.X2)

Statistics
rp.flm.statistic(proj.X = proj.X1, residuals = mod$residuals)
rp.flm.statistic(proj.X = proj.X2, residuals = mod$residuals)
rp.flm.statistic(proj.X = proj.X12, residuals = mod$residuals)

End(Not run)
```
Description

Tests the composite null hypothesis of a Functional Linear Model with scalar response (FLM),

\[ H_0 : Y = \langle X, \beta \rangle + \epsilon \quad \text{vs} \quad H_1 : Y \neq \langle X, \beta \rangle + \epsilon. \]

If \( \beta = \beta_0 \) is provided, then the simple hypothesis \( H_0 : Y = \langle X, \beta_0 \rangle + \epsilon \) is tested. The way of testing the null hypothesis is via a norm (Cramer-von Mises or Kolmogorov-Smirnov) in the empirical process indexed by the projections.

No NA's are allowed neither in the functional covariate nor in the scalar response.

Usage

```r
rp.flm.test(
 X.fdata, # functional observations in the class fdata.
 Y, # scalar responses for the FLM. Must be a vector with the same number of elements as functions are in X.fdata.
 beta0.fdata = NULL, # functional parameter for the simple null hypothesis, in the fdata class. The argvals and rangeval arguments of beta0.fdata must be the same of X.fdata. If beta0.fdata=NULL (default), the function will test for the composite null hypothesis.
 B = 1000, # number of bootstrap replicates to calibrate the distribution of the test statistic.
 n.proj = 10,
 est.method = "pc",
 p = NULL,
 p.criterion = "SICc",
 pmax = 20,
 type.basis = "bspline",
 projs = 0.95,
 verbose = TRUE,
 same.rwild = FALSE,
 ...
)
```

Arguments

- `X.fdata` functional observations in the class `fdata`.
- `Y` scalar responses for the FLM. Must be a vector with the same number of elements as functions are in `X.fdata`.
- `beta0.fdata` functional parameter for the simple null hypothesis, in the `fdata` class. The argvals and rangeval arguments of `beta0.fdata` must be the same of `X.fdata`. If `beta0.fdata=NULL` (default), the function will test for the composite null hypothesis.
- `B` number of bootstrap replicates to calibrate the distribution of the test statistic.
n.proj vector with the number of projections to consider.
est.method estimation method for $\beta$, only used in the composite case. There are three methods:

- list(""pc""") if $p$ is given, then $\beta$ is estimated by `fregre.pc`. Otherwise, $p$ is chosen using `fregre.pc.cv` and the p.criterion criterion.
- list(""pls""") if $p$ is given, $\beta$ is estimated by `fregre.pls`. Otherwise, $p$ is chosen using `fregre.pls.cv` and the p.criterion criterion.
- list(""basis""") if $p$ is given, $\beta$ is estimated by `fregre.basis`. Otherwise, $p$ is chosen using `fregre.basis.cv` and the p.criterion criterion. Both in `fregre.basis` and `fregre.basis.cv`, the same basis for `basis.x` and `basis.b` is considered.

$p$ number of elements for the basis representation of `beta0.fdata` and `X.fdata` with the est.method (only composite hypothesis). If not supplied, it is estimated from the data.
p.criterion for est.method equal to "pc" or "pls", either "SIC", "SICc" or one of the criterions described in `fregre.pc.cv`. For "basis" a value for type.CV in `fregre.basis.cv` such as GCV.S.
pmax maximum size of the basis expansion to consider in when using p.criterion.
type.basis type of basis if est.method = "basis".
projs a `fdata` object containing the random directions employed to project `X.fdata`. If numeric, the convenient value for ncomp in `rdir.pc`.
verbose whether to show or not information about the testing progress.
same.rwild whether to employ the same wild bootstrap residuals for different projections or not.

Value

An object with class "htest" whose underlying structure is a list containing the following components:

- list("p.values.fdr") a matrix of size c(n.proj, 2), containing in each row the FDR p-values of the CvM and KS tests up to that projection.
- list("proj.statistics") a matrix of size c(max(n.proj), 2) with the value of the test statistic on each projection.
- list("boot.proj.statistics") an array of size c(max(n.proj), 2, B) with the values of the bootstrap test statistics for each projection.
- list("proj.p.values") a matrix of size c(max(n.proj), 2)
- list("method") information about the test performed and the kind of estimation performed.
- list("B") number of bootstrap replicates used.
- list("n.proj") number of projections specified
- list("projs") random directions employed to project `X.fdata`.

... further arguments passed to `create.basis` (not rangeval that is taken as the rangeval of `X.fdata`).
• list("type.basis") type of basis for est.method = "basis".
• list("beta.est") estimated functional parameter \( \hat{\beta} \) in the composite hypothesis. For the simple hypothesis, beta0.fdata.
• list("p") number of basis elements considered for estimation of \( \beta \).
• list("p.criterion") criterion employed for selecting \( p \).
• list("data.name") the character string "Y = <X, b> + e"

Author(s)
Eduardo Garcia-Portugues (<edgarcia@est-econ.uc3m.es>) and Manuel Febrero-Bande (<manuel.febrero@usc.es>).

References

Examples
## Not run:
# Simulated example
set.seed(345678)
t <- seq(0, 1, l = 101)
n <- 100
X <- r.ou(n = n, t = t, alpha = 2, sigma = 0.5)
beta0 <- fdata(mdata = cos(2 * pi * t) - (t - 0.5)^2, argvals = t, rangeval = c(0,1))
Y <- inprod.fdata(X, beta0) + rnorm(n, sd = 0.1)

# Test all cases
rp.flm.test(X.fdata = X, Y = Y, est.method = "pc")
rp.flm.test(X.fdata = X, Y = Y, est.method = "pls")
rp.flm.test(X.fdata = X, Y = Y, est.method = "basis",
    p.criterion = fda.usc::GCV.S)
rp.flm.test(X.fdata = X, Y = Y, est.method = "pc", p = 5)
rp.flm.test(X.fdata = X, Y = Y, est.method = "pls", p = 5)
rp.flm.test(X.fdata = X, Y = Y, est.method = "basis", p = 5)
rp.flm.test(X.fdata = X, Y = Y, beta0.fdata = beta0)

# Composite hypothesis: do not reject FLM
rp.test <- rp.flm.test(X.fdata = X, Y = Y, est.method = "pc")
rp.test$p.values.fdr
pcvm.test <- flm.test(X.fdata = X, Y = Y, est.method = "pc", B = 1e3, plot.it = FALSE)
pcvm.test
# Estimation of beta
par(mfrow = c(1, 3))
plot(X, main = "X")
plot(beta0, main = "beta")
lines(rp.test$beta.est, col = 2)
lines(pcvm.test$beta.est, col = 3)
plot(density(Y), main = "Density of Y", xlab = "Y", ylab = "Density")
rug(Y)

# Simple hypothesis: do not reject beta = beta0
rp.flm.test(X.fdata = X, Y = Y, beta0.fdata = beta0)$p.values.fdr
flm.test(X.fdata = X, Y = Y, beta0.fdata = beta0, B = 1e3, plot.it = FALSE)

# Simple hypothesis: reject beta = beta0^2
rp.flm.test(X.fdata = X, Y = Y, beta0.fdata = beta0^2)$p.values.fdr
flm.test(X.fdata = X, Y = Y, beta0.fdata = beta0^2, B = 1e3, plot.it = FALSE)

# Tecator dataset
# Load data
data(tecator)
absorp <- tecator$absorp.fdata
ind <- 1:129 # or ind <- 1:215
x <- absorp[ind, ]
y <- tecator$y$Fat[ind]

# Composite hypothesis
rp.tecat <- rp.flm.test(X.fdata = x, Y = y, est.method = "pc")
pcvm.tecat <- flm.test(X.fdata = x, Y = y, est.method = "pc", B = 1e3,
plot.it = FALSE)
rp.tecat$p.values.fdr[c(5, 10), ]
pcvm.tecat

# Simple hypothesis
zero <- fdata(mdata = rep(0, length(x$argvals)), argvals = x$argvals,
rangeval = x$rangeval)
rp.flm.test(X.fdata = x, Y = y, beta0.fdata = zero)
flm.test(X.fdata = x, Y = y, beta0.fdata = zero, B = 1e3)

# With derivatives
rp.tecat <- rp.flm.test(X.fdata = fdata.deriv(x, 1), Y = y, est.method = "pc")
rp.tecat$p.values.fdr
rp.tecat <- rp.flm.test(X.fdata = fdata.deriv(x, 2), Y = y, est.method = "pc")
rp.tecat$p.values.fdr

# AEMET dataset
# Load data
data(aemet)
wind.speed <- apply(aemet$wind.speed$data, 1, mean)
temp <- aemet$temp

# Remove the 5% of the curves with less depth (i.e. 4 curves)
par(mfrow = c(1, 1))
res.FM <- depth.FM(temp, draw = TRUE)
qu <- quantile(res.FM$dep, prob = 0.05)
l <- which(res.FM$dep <= qu)
lines(aemet$temp[l], col = 3)

# Data without outliers
wind.speed <- wind.speed[-l]
temp <- temp[-l]

# Composite hypothesis
rp.aemet <- rp.flm.test(X.fdata = temp, Y = wind.speed, est.method = "pc")
pcvm.aemet <- flm.test(X.fdata = temp, Y = wind.speed, B = 1e3,
est.method = "pc", plot.it = FALSE)

rp.aemet$p.values.fdr
apply(rp.aemet$p.values.fdr[, 2], range)

## End(Not run)

---

### rproc2fdata

Simulate several random processes.

#### Description

Simulate Functional Data from different processes: Ornstein Uhlenbeck, Brownian, Fractional Brownian, Gaussian or Exponential variogram.

#### Usage

```r
rproc2fdata(
 n,
 t = NULL,
 mu = rep(0, length(t)),
 sigma = 1,
 par.list = list(scale = 1, theta = 0.2 * diff(rtt), H = 0.5),
 norm = FALSE,
 verbose = FALSE,
 ...
)
```

Arguments

- **n**: Number of functional curves to be generated.
- **t**: Discretization points.
- **mu**: Vector which specifies the trend values at the discretization points, by default $\mu(t) = 0$. If mu is a fdata class object, $t = \text{argvals}(\mu)$.
- **sigma**: A positive-definite symmetric matrix, $\Sigma_{s,t}$, specifying the covariance matrix among grid points. If sigma is a scalar, creates a random Gaussian process with $\Sigma_{s,t} = \sigma I$ (by default $\sigma = 1$). If sigma is a vector, creates a random Gaussian process with $\Sigma_{s,t} = \text{diag}(\sigma)$. If sigma is a character: create a random process using the covariance matrix $\Sigma_{s,t}$ indicated in the argument,
  - "OU" or "OrnsteinUhlenbeck", creates a random Ornstein Uhlenbeck process with $\Sigma_{s,t} = \frac{\sigma^2}{2\theta} e^{-\theta(s+t)} (e^{2\theta(s+t)} - 1)$, by default $\theta = 1/(3 \text{range}(t))$, $\sigma^2 = 1$.
  - "brownian" or "wiener", creates a random Wiener process with $\Sigma_{s,t} = \sigma^2 \text{min}(s,t)$, by default $\sigma^2 = 1$.
  - "fbrownian", creates a random fractional brownian process with $\Sigma_{s,t} = \frac{\sigma^2 H}{2} |s|^{2H} + |t|^{2H} - |s-t|^{2H}$, by default $\sigma^2 = 1$ and $H = 0.5$ (brownian process).
  - "vexponential", creates a random gaussian process with exponential variogram $\Sigma_{s,t} = \sigma^2 e^{-\frac{|s-t|}{\theta}}$, by default $\theta = 0.2 \text{range}(t)$, $\sigma^2 = 1$.
- **par.list**: List of parameter to process, by default "scale" $\sigma^2 = 1$, "theta" $\theta = 0.2 \text{range}(t)$ and "H"=0.5.
- **norm**: If TRUE the norm of random projection is 1. Default is FALSE
- **verbose**: If TRUE, information about procedure is printed. Default is FALSE.
- **...**: Further arguments passed to or from other methods.

Value

Return the functional random processes as a fdata class object.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Examples

```r
Not run:
par(mfrow=c(3,2))
lent<-30
tt<-seq(0,1,len=lent)
mu<-fdata(rep(0,lent),tt)
plot(rproc2fdata(200,t=tt,sigma="OU",par.list=list("scale"=1)))
plot(rproc2fdata(200,mu=mu,sigma="OU",par.list=list("scale"=1)))
plot(rproc2fdata(200,t=tt,sigma="vexponential"))
plot(rproc2fdata(200,t=tt,sigma=1:lent))
```
plot(rproc2fdata(200,t=tt,sigma="brownian"))
plot(rproc2fdata(200,t=tt,sigma="wiener"))
#plot(rproc2fdata(200,seq(0,1,len=30),sigma="oo")) # this is an error

## End(Not run)

### rwild

**Wild bootstrap residuals**

#### Description

The wild bootstrap residuals are computed as \( \text{residuals} \ast V \), where \( V \) is a sampling from a random variable (see details section).

#### Usage

```r
rwild(residuals, type = "golden")
```

#### Arguments

- `residuals`: residuals
- `type`: Type of distribution of \( V \).

#### Details

For the construction of wild bootstrap residuals, sampling from a random variable \( V \) such that \( E[V^2] = 0 \) and \( E[V] = 0 \) is needed. A simple and suitable \( V \) is obtained with a discrete variable of the form:

  
  \[
  P \left( V = \frac{1 - \sqrt{5}}{2} \right) = \frac{5 + \sqrt{5}}{10} \quad \text{and} \quad P \left( V = \frac{1 + \sqrt{5}}{2} \right) = \frac{5 - \sqrt{5}}{10},
  \]

  which leads to the *golden section bootstrap*.

- “Rademacher”, Sampling from Rademacher distribution values \( \{-1, 1\} \) with probabilities \( \left\{ \frac{1}{2}, \frac{1}{2} \right\} \), respectively.

- “normal”, Sampling from a standard normal distribution.

#### Value

The wild bootstrap residuals computed using a sample of the random variable \( V \).

#### Author(s)

Eduardo Garcia-Portugues, Manuel Febrero-Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>.
References


See Also

`flm.test, flm.Ftest, dfv.test, fregre.bootstrap`

Examples

```r
n<-100
For golden wild bootstrap variable
e.boot0=rwild(rep(1,len=n),"golden")
Construction of wild bootstrap residuals
e=rnorm(n)
e.boot1=rwild(e,"golden")
e.boot2=rwild(e,"Rademacher")
e.boot3=rwild(e,"normal")
summary(e.boot1)
summary(e.boot2)
summary(e.boot3)
```

### S.basis

*Smoothing matrix with roughness penalties by basis representation.*

**Description**

Provides the smoothing matrix $S$ with roughness penalties.

**Usage**

```r
S.basis(tt, basis, lambda = 0, Lfdobj = vec2Lfd(c(0, 0)), w = NULL, ...)
```

**Arguments**

- `tt`: Discretization points.
- `basis`: Basis to use. See `create.basis`.
- `lambda`: A roughness penalty. By default, no penalty `lambda`=0.
- `Lfdobj`: See `eval.penalty`.
- `w`: Optional case weights.
- `...`: Further arguments passed to or from other methods. Arguments to be passed by default to `create.basis`
Details

Provides the smoothing matrix \( S \) for the discretization points \( tt \) and \( bbasis \) with roughness penalties. If \( \lambda = 0 \) is not used penalty, else a basis roughness penalty matrix is calculated using \( \text{getbasispenalty} \).

Value

Return the smoothing matrix \( S \).

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as \( \text{S.np} \)

Examples

```r
Not run:
np=101
tt=seq(0,1,len=np)
nbasis=11
base1 <- create.bspline.basis(c(0, np), nbasis)
base2 <- create.fourier.basis(c(0, np), nbasis)

S1<-S.basis(tt,basis=base1,lambda=3)
image(S1)
S2<-S.basis(tt,basis=base2,lambda=3)
image(S2)
End(Not run)
```

---

**S.np**

*Smoothing matrix by nonparametric methods*

Description

Provides the smoothing matrix \( S \) for the discretization points \( tt \)
Usage

S.LLR(tt, h, Ker = Ker.norm, w = NULL, cv = FALSE)
S.LPR(tt, h, p = 1, Ker = Ker.norm, w = NULL, cv = FALSE)
S.LCR(tt, h, Ker = Ker.norm, w = NULL, cv = FALSE)
S.NW(tt, h = NULL, Ker = Ker.norm, w = NULL, cv = FALSE)
S.KNN(tt, h = NULL, Ker = Ker.unif, w = NULL, cv = FALSE)

Arguments

- **tt**: Vector of discretization points or distance matrix mdist
- **h**: Smoothing parameter or bandwidth. In S.KNN, number of k-nearest neighbors.
- **Ker**: Type of kernel used, by default normal kernel.
- **w**: Optional case weights.
- **cv**: If TRUE, cross-validation is done.
- **p**: Polynomial degree.
- **...**: Further arguments passed to or from other methods. Arguments to be passed by default to `create.basis`

Details

Options:
- Nadaraya-Watson kernel estimator (S.NW) with bandwidth parameter `h`.
- Local Linear Smoothing (S.LLR) with bandwidth parameter `h`.
- K nearest neighbors estimator (S.KNN) with parameter `knn`.
- Polynomial Local Regression Estimator (S.LCR) with parameter of polynomial `p` and of kernel Ker.
- Local Cubic Regression Estimator (S.LPR) with kernel Ker.

Value

Return the smoothing matrix `S`.

- **S.LLR** return the smoothing matrix by Local Linear Smoothing.
- **S.NW** return the smoothing matrix by Nadaraya-Watson kernel estimator.
- **S.KNN** return the smoothing matrix by k nearest neighbors estimator.
- **S.LPR** return the smoothing matrix by Local Polynomial Regression Estimator.
- **S.LCR** return the smoothing matrix by Cubic Polynomial Regression.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
References


See Also

See Also as `S.basis`

Examples

```r
Not run:

tt=1:101
S=S.LLR(tt,h=5)
S2=S.LLR(tt,h=10,Ker=Ker.tri)
S3=S.NW(tt,h=10,Ker=Ker.tri)
S4=S.KNN(tt,h=5,Ker=Ker.tri)
par(mfrow=c(2,3))
image(S)
image(S2)
image(S3)
image(S4)
S5=S.LPR(tt,h=10,p=1, Ker=Ker.tri)
S6=S.LCR(tt,h=10,Ker=Ker.tri)
image(S5)
image(S6)

End(Not run)
```

---

**semimetric.basis**  
*Proximities between functional data*

**Description**

Approximates semi-metric distances for functional data of class `fdata` or `fd`.

**Usage**

```r
semimetric.basis(
 fdata1,
 fdata2 = fdata1,
 nderiv = 0,
 type.basis1 = NULL,
 nbasis1 = NULL,
 type.basis2 = type.basis1,
 nbasis2 = NULL,
)```
Arguments

- `fdata1`: Functional data 1 or curve 1.
- `fdata2`: Functional data 2 or curve 2.
- `nderiv`: Order of derivation, used in `deriv.fd`.
- `type.basis1`: Type of Basis for `fdata1`.
- `nbasis1`: Number of Basis for `fdata1`.
- `type.basis2`: Type of Basis for `fdata2`.
- `nbasis2`: Number of Basis for `fdata2`.
- ... Further arguments passed to or from other methods.

Details

Approximates semi-metric distances for functional data of two `fd` class objects. If functional data are not functional `fd` class, the `semimetric.basis` function creates a basis to represent the functional data, by default is used `create.bspline.basis` and the `fdata` class object is converted to `fd` class using the `Data2fd` function.

The function calculates distances between the derivative of order `nderiv` of curves using `deriv.fd` function.

Value

Returns a proximities matrix between functional data.

References

See Also

See also `metric.lp`, `semimetric.NPFDA` and `deriv.fd`.

Examples

```r
## Not run:
data(phoneme)
DATA1<-phoneme$learn[c(30:50,210:230)]
DATA2<-phoneme$test[231:250]
a1=semimetric.basis(DATA1,DATA2)
a2=semimetric.basis(DATA1,DATA2,type.basis1="fourier",
                 nbasis1=11, type.basis2="fourier",nbasis2=11)
fd1 <- fdata2fd(DATA1)
fd2 <- fdata2fd(DATA2)
a3=semimetric.basis(fd1,fd2)
a4=semimetric.basis(fd1,fd2,nderiv=1)
```
End(Not run)

Proximities between functional data (semi-metrics)

Description

Usage

```r
semimetric.deriv(
  fdata1,
  fdata2 = fdata1,
  nderv = 1,
  nknot = ifelse(floor(ncol(DATA1)/3) > floor((ncol(DATA1) - nderv - 4)/2),
                floor((ncol(DATA1) - nderv - 4)/2), floor(ncol(DATA1)/3)),
  ...
)
```

```r
semimetric.fourier(
  fdata1,
  fdata2 = fdata1,
  nderv = 0,
  nbasis = ifelse(floor(ncol(DATA1)/3) > floor((ncol(DATA1) - nderv - 4)/2),
                  floor((ncol(DATA1) - nderv - 4)/2), floor(ncol(DATA1)/3)),
  period = NULL,
  ...
)
```

```r
semimetric.hshift(fdata1, fdata2 = fdata1, t = 1:ncol(DATA1), ...)
```

```r
semimetric.mplsr(fdata1, fdata2 = fdata1, q = 2, class1, ...)
```

```r
semimetric.pca(fdata1, fdata2 = fdata1, q = 1, ...)
```

Arguments

- **fdata1**: Functional data 1 or curve 1. DATA1 with dimension (n1 x m), where n1 is the number of curves and m are the points observed in each curve.

- **fdata2**: Functional data 2 or curve 2. DATA1 with dimension (n2 x m), where n2 is the number of curves and m are the points observed in each curve.

- **nderiv**: Order of derivation, used in semimetric.deriv and semimetric.fourier
nknot semimetric.deriv argument: number of interior knots (needed for defining the B-spline basis).

Further arguments passed to or from other methods.

nbasis semimetric.fourier: size of the basis.

period semimetric.fourier: allows to select the period for the fourier expansion.

t semimetric.hshift: vector which defines t (one can choose 1,2,...,nbt where nbt is the number of points of the discretization)

q If semimetric.pca: the retained number of principal components. If semimetric.mpls: the retained number of factors.

class1 semimetric.mpls: vector containing a categorical response which corresponds to class number for units stored in DATA1.

Details

semimetric.deriv: approximates \(L_2 \) metric between derivatives of the curves based on their B-spline representation. The derivatives set with the argument nderiv.

semimetric.fourier: approximates \(L_2 \) metric between the curves based on their B-spline representation. The derivatives set with the argument nderiv.

semimetric.hshift: computes distance between curves taking into account an horizontal shift effect.

semimetric.mpls: computes distance between curves based on the partial least squares method.

semimetric.pca: computes distance between curves based on the functional principal components analysis method.

In the next semi-metric functions the functional data \(X \) is approximated by \(k_n \) elements of the Fourier, B–spline, PC or PLS basis using, \(\hat{X}_i = \sum_{k=1}^{k_n} \nu_{k,i} \xi_k \), where \(\nu_k \) are the coefficient of the expansion on the basis function \(\{\xi_k\}_{k=1}^{\infty} \).

The distances between the q-order derivatives of two curves \(X_1 \) and \(X_2 \) is,

\[
d_2^{(q)}(X_1, X_2)_{k_n} = \sqrt{\frac{1}{T} \int_T \left(X_1^{(q)}(t) - X_2^{(q)}(t) \right)^2 dt}
\]

where \(X_i^{(q)}(t) \) denot the q derivative of \(X_i \).

semimetric.deriv and semimetric.fourier function use a B-spline and Fourier approximation respectively for each curve and the derivatives are directly computed by differentiating several times their analytic form, by default q=1 and q=0 respectively. semimetric.pca and semimetric.mpls function compute proximities between curves based on the functional principal components analysis (FPCA) and the functional partial least square analysis (FPLS), respectively. The FPC and FPLS reduce the functional data in a reduced dimensional space (q components). semimetric.mpls function requires a scalar response.

\[
d_2^{(q)}(X_1, X_2)_{k_n} \approx \sqrt{\sum_{k=1}^{k_n} (\nu_{k,1} - \nu_{k,2})^2 \| \xi_k^{(q)} \| \ dt}
\]

semimetric.hshift computes proximities between curves taking into account an horizontal shift effect.
\[d_{\text{hshift}}(X_1, X_2) = \min_{h \in [-mh, mh]} d_2(X_1(t), X_2(t + h)) \]

where \(mh \) is the maximum horizontal shifted allowed.

Value

Returns a proximities matrix between two functional datasets.

Source

http://www.math.univ-toulouse.fr/staph/npfda/

References

See Also

See also `metric.lp` and `semimetric.basis`

Examples

```r
## Not run:
# INFEERENCE PHONDAT
data(phoneme)
ind=1:100 # 2 groups
mlearn<-phoneme$learn[ind,]
mtest<-phoneme$test[ind,]
n=nrow(mlearn["data")])
np=ncol(mlearn["data")]
mdist1=semimetric.pca(mlearn,mtest)
mdist2=semimetric.pca(mlearn,mtest,q=2)
mdist3=semimetric.deriv(mlearn,mtest,nderiv=0)
mdist4=semimetric.fourier(mlearn,mtest,nderiv=2,nbasis=21)
# Uses hshift function
#mdist5=semimetric.hshift(mlearn,mtest) # Takes a lot
glearn<-phoneme$classlearn[ind]
# Uses mplsr function
mdist6=semimetric.mplsr(mlearn,mtest,5,glearn)
mdist0=metric.lp(mlearn,mtest)
b=as.dist(mdist6)
c2=hclust(b)
plot(c2)
memb <- cutree(c2, k = 2)
table(memb,phoneme$classlearn[ind])
```
subset.fdata

End(Not run)

subset.fdata Subsetting

Description

Return subsets of fdata which meet conditions.

Usage

```r
## S3 method for class 'fdata'
subset(x, subset, select, drop = TRUE, ...)
```

Arguments

- `x` object to be subsetted (fdata class).
- `subset` logical expression indicating elements or rows to keep.
- `select` logical expression indicating points or columns to keep.
- `drop` passed on to `[]` indexing operator.
- `...` Further arguments passed to or from other methods.

Value

An object similar to `x` contain just the selected elements.

See Also

See `subset` and `fdata`.

summary.classif Summarizes information from kernel classification methods.

Description

Summary function for `classif.knn` or `classif.kernel`.

Usage

```r
## S3 method for class 'classif'
summary(object, ...)
```

```r
## S3 method for class 'classif'
print(x, digits = max(3,getOption("digits") - 3), ...)
```
Arguments

- **object**
 - Estimated by kernel classification.
- **...**
 - Further arguments passed to or from other methods.
- **x**
 - Estimated by kernel classification.
- **digits**
 - how many significant digits are to be used for numeric and complex x.

Details

Object from *classif.knn* or *classif.kernel*

Value

Shows:

- Probability of correct classification by group *prob.classification*.
- Confusion matrix between the theoretical groups and estimated groups.
- Highest probability of correct classification *max.prob*.

If the object is returned from the function *classif.knn*

- Vector of probability of correct classification by number of neighbors *knn*.
- Optimal number of neighbors: *knn.opt*.

If the object is returned from the function: *classif.kernel*

- Vector of probability of correct classification by bandwidth *h*.
- Functional measure of closeness (optimal distance, *h.opt*).

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See Also as: *classif.knn, classif.kernel* and *summary.classif*

Examples

```r
## Not run:
data(phoneme)
mlearn<-phoneme["learn"]
glearn<-phoneme["classlearn"]
out=classif.knn(glearn,mlearn,knn=c(3,5,7))
summary(out)
out2=classif.kernel(glearn,mlearn,h=2^0:5)
summary(out2)
## End(Not run)
```
Correlation for functional data by Principal Component Analysis

Description

Compute correlation principal components of functional data and scalar response \(y \).

Usage

```r
## S3 method for class 'fdata.comp'
summary(object, y = NULL, biplot = TRUE, corplot = FALSE, ...)
```

Arguments

- `object` fdata.comp class object calculated by: `fdata2pc`, `fdata2pls`, `fregre.pc` or `fregre.pls`.
- `y` (optional) The argument is only necessary if `corplot=TRUE`.
- `biplot` =TRUE draw the biplot and PC (or PLS) components.
- `corplot` =TRUE draw correlations between \(y \) and PC (or PLS) components.
- `...` Further arguments passed to or from other methods.

Value

If `corplot=TRUE`, are displaying the biplot between the PC (or PLS) components.
If `corplot=TRUE`, are displaying the correlations between the PC (or PLS) components and response \(y \).
If `ask=TRUE`, draw each graph in a window, waiting to confirm the change of page with a click of the mouse or pressing ENTER. If `ask=FALSE` draw graphs in one window.

Author(s)

Manuel Febrero-Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as `fdata2pc`, `fdata2pls` and `cor`
Example

```r
## Not run:
n <- 200
tt <- seq(0,1,len=101)
x0 <- rproc2fdata(n,tt,sigma="wiener")
x1 <- rproc2fdata(n,tt,sigma=0.1)
x <- x0*3+x1
beta = tt*sin(2*pi*tt)^2
fbeta = fdata(beta,tt)
y <- inprod.fdata(x,fbeta) + rnorm(n,sd=0.1)
pc1 = fdata2pc(x)
summary(pc1, y)
pls1 = fdata2pls(x, y)
summary(pls1, cor=TRUE)

## End(Not run)
```

summary.fregre.fd

Summarizes information from fregre.fd objects.

Description

Summary function for `fregre.pc`, `fregre.basis`, `fregre.pls`, `fregre.np` and `fregre.plm` functions.

Usage

```r
## S3 method for class 'fregre.fd'
summary(object, times.influ = 3, times.sigma = 3, draw = TRUE, ...)
```

Arguments

- **object**: Estimated by functional regression, `fregre.fd` object.
- **times.influ**: Limit for detect possible influence curves.
- **times.sigma**: Limit for detect possible outliers or atypical curves.
- **draw**: =TRUE draw estimation and residuals graphics.
- **...**: Further arguments passed to or from other methods.

Details

Shows:

- Call.
- R squared.
- Residual variance.
- Index of possible atypical curves or possible outliers.
- Index of possible influence curves.
If the *fregre.fd* object comes from the *fregre.pc* then shows:

- Variability of explicative variables explained by Principal Components.
- Variability for each principal components -PC-.

If `draw=TRUE` plot:

- `y` vs `y` fitted values.
- Residuals vs fitted values.
- Standarized residuals vs fitted values.
- Leverage.
- Residual boxplot.
- Quantile-Quantile Plot (qqnorm).

If `ask=FALSE` draw graphs in one window, by default. If `ask=TRUE`, draw each graph in a window, waiting to confirm.

Value

- Influence Vector of influence measures.
- `i.influence` Index of possible influence curves.
- `i.atypical` Index of possible atypical curves or possible outliers.

Author(s)

Manuel Febrero-Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

Summary function for *fregre.pc*, *fregre.basis*, *fregre.pls*, *fregre.np* and *fregre.plm*.

Examples

```r
## Not run:
# Ex 1. Simulated data
n= 200;tt= seq(0,1,len=101)
x0<-rproc2fdata(n,tt,sigma="wiener")
x1<-rproc2fdata(n,tt,sigma=0.1)
x<-x0*3+x1
beta = tt*sin(2*pi*tt)^2
fbeta = fdata(beta,tt)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)

# Functional regression
res=fregre.pc(x,y,l=c(1:5))
```
summary(res, 3, ask = TRUE)

res2 = fregre.pls(x, y, l = c(1:4))
summary(res2)

res3 = fregre.pls(x, y)
summary(res3)

End(Not run)

summary.fregre.gkam Summarizes information from fregre.gkam objects.

Description

Summary function for fregre.gkam function.

Usage

S3 method for class 'fregre.gkam'
summary(object, draw = TRUE, selec = NULL, times.influ = 3, ...)

Arguments

object Estimated by functional regression, fregre.fd object.
draw = TRUE draw estimation and residuals graphics.
selec Allows the plot for a single model term to be selected for printing. e.g.
 if you just want the plot for the second smooth term set selec=2.
times.influ Limit for detect possible influence curves.
...
 Further arguments passed to or from other methods.

Details

- Family used.
- Number or iteration of algorithm and if it has converged.
- Residual and null deviance.
- Number of data.

Produces a list of summary information for a fitted fregre.np object for each functional covariate.

- Call.
- R squared.
- Residual variance.
- Index of possible atypical curves or possible outliers.
-Index of possible influence curves.

If draw=TRUE plot:

-y vs y fitted values.
-Residuals vs fitted values.
-Residual boxplot.
-Quantile-Quantile Plot (qqnorm).
-Plot for a each single model term.

If ask=FALSE draw graphs in one window, by default. If ask=TRUE, draw each graph in a window, waiting to confirm.

Author(s)
Manuel Febrero-Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also
Summary function for fregre.gkam.

Examples
Not run:
Time consuming
data(tecator)
ind<1:129
ab=tecator$absorp.fdata[ind]
ab2=fdata.deriv(ab,2)
yfat=as.integer(cut(tecator$y[ind,"Fat"],c(0,15,100)))-1
xlist=list("df"=data.frame(yfat),"ab2"=ab2,"ab"=ab)
f<-yfat~ab+ab2
res=fregre.gkam(f,data=xlist,family=binomial("logit"),control=list(maxit=2))
summary(res)
res

End(Not run)

tecator data

Description
Water, Fat and Protein content of meat samples
Format

The format is:

.. absorp.fdata: absorbance data. fdata class object with:

- "data": Matrix of class fdata with 215 curves (rows) discretized in 100 points or argvals (columns).
- "argvals": 100 discretization points from 850 to 1050mm
- "rangeval"=(850,1050): range("argvals")
- "names" list with: main an overall title "Tecator data set", xlab title for x axis "Wavelength (mm)" and ylab title for y axis "Absorbances".

.. y: the percentages of Fat, Water and Protein. The three contents are determined by analytic chemistry.

Details

absorp.fdata absorbance data for 215 samples. The first 129 were originally used as a training set endpoints the percentages of Fat, Water and Protein.

for more details see tecator package

Author(s)

Manuel Febrero-Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Examples

data(tecator)
names(tecator)
names(tecator$absorp.fdata)
names(tecator$y)
class(tecator$absorp.fdata)
class(tecator$y)
dim(tecator$absorp.fdata)
dim(tecator$y)

<table>
<thead>
<tr>
<th>Var.y</th>
<th>Sampling Variance estimates</th>
</tr>
</thead>
</table>

Description

Sampling variance or error variance estimates for regression estimates.
Usage

Var.y(y, S, Var.e = NULL)

Arguments

y fdata class object.
S Smoothing matrix calculated by S.basis or S.NW functions.
Var.e Error Variance Estimates. If Var.e=NULL, Var.e is calculated.

Value

Var.y: returns the sampling variance of the functional data. Var.e: returns the sampling error variance of the functional data.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as Var.e

Examples

```r
a1<-seq(0,1,by=.01)
a2=rnorm(length(a1),sd=0.2)
f1<-sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
n<50
np<length(f1)
tt=1:101
mdata<-matrix(NA,ncol=np,nrow=nc)
for (i in 1:nc) mdata[i,]<- (sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
mdata<-fdata(mdata,tt)
S=S.NW(tt,h=0.15)
var.e<-Var.e(mdata,S)
var.y<-Var.y(mdata,S)
var.y2<-Var.y(mdata,S,var.e) #the same
```
weights4class | Weighting tools

Description

computes inverse probability weighting.

Usage

weights4class(x, type = c("equal", "inverse"))

Arguments

- **x**: A vector of the labels, true class or observed response. Can be numeric, character, or factor.
- **type**: Type of weights.

See Also

Other performance: accuracy
Index

*=.fdata(fda.usc.internal), 70
*Topic anova
 fanova.hetero, 64
 fanova.onefactor, 66
 fanova.RPm, 67
*Topic classif
 classif.DD, 11
 classif.depth, 15
 classif.gkam, 17
 classif.glm, 19
 classif.gsam, 21
 classif.kfold, 24
 classif.ML, 26
 classif.np, 30
 predict.classif, 191
 predict.classif.DD, 192
*Topic cluster
 dis.cos.cor, 63
 inprod.fdata, 149
 int.simpson, 150
 kmeans.center.ini, 155
 metric.dist, 164
 metric.DTW, 165
 metric.hausdorff, 166
 metric.kl, 167
 metric.ldata, 169
 metric.lp, 170
 semimetric.basis, 220
 semimetric.NPFDA, 222
*Topic datagen
 fdata.bootstrap, 74
 rproc2fdata, 214
*Topic datasets
 aemet, 10
 MCO, 162
 phoneme, 186
 poblenou, 189
 tector, 231
*Topic descriptive
 depth.fdata, 44
 depth.mdata, 48
 depth.mfdata, 51
 Descriptive, 54
 fdata.methods, 79
 na.omit.fdata, 172
*Topic distribution
 cond.F, 32
 cond.mode, 34
 cond.quantile, 36
 rwild, 216
*Topic generation
 rcombfdata, 204
*Topic hplot
 plot.fdata, 187
*Topic htest
 dcor.xy, 41
 dfv.test, 60
 flm.Ftest, 86
 flm.test, 88
 PCvM.statistic, 184
*Topic kernel
 Kernel, 151
 Kernel.asymmetric, 153
 Kernel.integrate, 154
*Topic manip
 fdata, 73
 fdata.cen, 76
 fdata.deriv, 77
 fdata2fd, 80
*Topic math
 fda.usc.internal, 70
 fdata.methods, 79
 norm.fdata, 173
 P.penalty, 183
*Topic models
 dfv.test, 60
 flm.Ftest, 86
 flm.test, 88
classif.gsam, 7, 13, 21, 21, 25, 29, 191
classif.kernel, 7, 225, 226
classif.kernel(classif.np), 30
classif.kfold, 7, 24
classif.knn, 7, 13, 225, 226
classif.knn(classif.np), 30
classif.ksvm, 26
classif.lda(classif.ML), 26
classif.multinom(classif.ML), 26
classif.naiveBayes(classif.ML), 26
classif.nnet(classif.ML), 26
classif.np, 13, 23, 25, 29, 30, 191
classif.qda(classif.ML), 26
classif.randomForest(classif.ML), 26
classif.rpart(classif.ML), 26
classif.svm, 25
classif.svm(classif.ML), 26
coeff, 111, 119
colnames.fdata(fda.usc.internal), 70
Complex, 80
cond.F, 8, 32, 35, 37
cond.mode, 8, 34, 34, 37
cond.quantile, 8, 34, 35, 36
contour, 188
contr.helmert, 64, 69
contr.sum, 64, 69
contr.treatment, 64, 69
cor, 227
corClasses, 110, 119
corStruct, 110, 119
count.na.fdata(fda.usc.internal), 70
create.basis, 20, 22, 28, 39, 89, 90, 92, 108, 113, 121, 176, 211, 217, 219
create.bspine.basis, 95, 100, 221
create.fdata.basis, 20, 22, 28, 38, 108, 113, 121
create.pc.basis, 20, 22, 28, 108, 113, 121, 128
create.pc.basis(create.fdata.basis), 38
create.pls.basis(create.fdata.basis), 38
create.raw.fdata(create.fdata.basis), 38
CV.S, 5, 40, 59, 126, 144
data.frame, 12
Data2Fdf, 77, 81, 221
dcor.dist(dcor.xy), 41
dcor.test(dcor.xy), 41
dcor.xy, 41, 161
Depth, 5, 12, 183
Depth(depth.fdata), 44
depth.fdata, 44
depth.FM, 5, 46, 50
depth.FM(depth.fdata), 44
depth.FMp, 12, 52
depth.FMm(depth.mdata), 51
depth.FSD, 46, 47
depth.FSD(depth.fdata), 44
depth.KFSD, 46, 47
depth.KFSD(depth.fdata), 44
depth.mdata, 48
depth.mdata, 12, 51
depth.mode, 5, 46, 47, 50
depth.mode(depth.fdata), 44
depth.modep, 12, 53
depth.modep(depth.mdata), 51
Depth.Multivariate, 13, 52
Depth.Multivariate(depth.mdata), 48
depth.RP, 5, 46, 47, 50
depth.RP(depth.fdata), 44
depth.RPD, 5, 46, 47, 50, 53, 55
depth.RPD(depth.fdata), 44
depth.RPp, 12, 53
depth.RPp(depth.mdata), 51
depth.RTP, 5, 46, 47, 50
depth.RTP(depth.fdata), 44
depth.RTPp, 12, 53
Descriptive, 5, 48, 53, 54, 75, 76
dev.S, 57
dfv.statistic(dfv.test), 60
dfv.test, 60, 87, 92, 217
dim.fdata(fda.usc.internal), 70
dis.cos.cor, 63
dist, 32, 164, 170
eval.penalty, 94, 97, 100, 217
family, 17, 20, 22, 58, 105, 108, 113, 116
fanova.hetero, 7, 64
fanova.onefactor, 7, 66, 69
fanova.RPm, 7, 65, 67, 67, 86
fd, 174, 185
fda.usc (fda.usc-package), 4
fda.usc-package, 4
fda.usc.internal, 70
INDEX

fdata. 5, 12, 16, 31, 33, 36, 38, 45, 55, 60, 73, 76–78, 81, 82, 84, 86, 89, 94, 95, 97, 123, 126, 128, 131, 137, 139, 145, 156, 168, 174, 176, 179, 182, 185, 189, 203–206, 210, 211, 225, 233
fdata.bootstrap, 7, 74, 182, 183
fdata.cen, 76
fdata.deriv, 5, 46, 77
fdata.methods, 79
fdata.trace (fda.usc.internal), 70
fdata2fd, 8, 80
fdata2pc, 8, 39, 82, 85, 129, 206, 227
fdata2pls, 8, 83, 137, 138, 184, 227
FDR, 8, 85
filled.contour, 188
fitted, 111, 119
flm.Ftest, 6, 62, 86, 92, 217
flm.test, 6, 62, 87, 88, 160, 185, 217
formula, 64, 68
fregre.basis, 6, 68, 92, 93, 99, 103, 104, 121, 124, 130, 147–149, 195, 211, 228, 229
fregre.basis.cv, 6, 89, 92, 96, 127, 148, 195, 211
fregre.basis.fr, 6, 99, 197
fregre.bootstrap, 102, 217
fregre.gkam, 6, 18, 104, 114, 117, 198, 200, 230, 231
fregre.glm, 6, 21, 106, 107, 113, 114, 116, 117, 122, 198, 200
fregre.gls, 6, 110, 202
fregre.gsam, 6, 23, 106, 112, 116, 117, 198, 200
fregre.gsam.vs, 6, 115
fregre.igls, 6, 118
fregre.lm, 6, 108, 109, 120, 136, 198, 200
fregre.np, 6, 60, 62, 96, 123, 127, 130, 134, 136, 146, 195, 228, 229
fregre.np.cv, 6, 99, 105, 106, 124, 125, 127, 135, 136, 146, 195
fregre.pc, 6, 89, 92, 96, 103, 104, 121, 124, 128, 129, 131–133, 138, 140, 147–149, 195, 211, 228, 229
fregre.pc.cv, 6, 89, 91, 92, 99, 130, 131, 195, 211
fregre.plm, 6, 133, 198, 200, 228, 229
fregre.pls, 6, 85, 89, 92, 103, 104, 121, 131, 136, 137, 139, 195, 211, 228, 229
fregre.pls.cv, 6, 85, 89, 91, 92, 138, 139, 195, 211
flm.test, 86
func.mean, 56, 75
func.mean (Descriptive), 54
func.mean.formula, 56
func.med.FM, 56
func.med.FM (Descriptive), 54
func.med.mode, 56
func.med.mode (Descriptive), 54
func.med.RP, 56
func.med.RP (Descriptive), 54
func.med.RPD, 56
func.med.RPD (Descriptive), 54
func.med.RT (Descriptive), 54
func.trim.FM, 56
func.trim.FM (Descriptive), 54
func.trim.mode, 56
func.trim.mode (Descriptive), 54
func.trim.RP, 56
func.trim.RP (Descriptive), 54
func.trim.RPD, 56
func.trim.RPD (Descriptive), 54
func.trim.RT, 56
func.trim.RT (Descriptive), 54
func.trimvar.FM, 56
func.trimvar.FM (Descriptive), 54
func.trimvar.mode, 56
func.trimvar.mode (Descriptive), 54
func.trimvar.RP, 56
func.trimvar.RP (Descriptive), 54
func.trimvar.RPD, 56
func.trimvar.RPD (Descriptive), 54
func.trimvar.RT, 56
func.trimvar.RT (Descriptive), 54
func.var, 56
func.var (Descriptive), 54
gam, 6, 113, 116, 117, 161, 198
GCV.V.S, 111, 141
GCV.S, 5, 41, 59, 97, 126, 134, 142, 143
getbasispenalty, 218
glm, 6, 18, 20, 22, 23, 28, 108, 109, 114, 198
glsControl, 111
glsObject, 111, 119
gridfdata (rcombfdata), 204
h.default, 123, 126, 134, 145
INDEX

conv, 11
IKer.cos (Kernel.integrate), 154
IKer.epa (Kernel.integrate), 154
IKer.norm (Kernel.integrate), 154
IKer.quar (Kernel.integrate), 154
IKer.tri (Kernel.integrate), 154
IKer.unif (Kernel.integrate), 154
image, 188
influence.fregre.fd, 146, 148, 149
influence_quan, 147, 147
inprod, 150, 174
inprod.fdata, 149
int.simpson, 150, 175
int.simpson2 (int.simpson), 150
integrate, 151, 155
is.fdata (fdata.methods), 79
is.ldata (ldata), 157
is.na.fdata (fda.usc.internal), 70
Ker.cos (Kernel), 151
Ker.epa (Kernel), 151
Ker.norm (Kernel), 151
Ker.quar (Kernel), 151
Ker.tri (Kernel), 151
Ker.unif (Kernel), 151
Kernel, 8, 31, 146, 151, 155, 179
Kernel.asymmetric, 8, 33, 124, 126, 135, 153
Kernel.integrate, 8, 33, 154
kmeans, 157
kmeans.center.ini, 155
kmeans.centers.update
(kmeans.center.ini), 155
kmeans.fd, 7
kmeans.fd (kmeans.center.ini), 155
lda, 13
ldata, 55, 157
length.fdata (fda.usc.internal), 70
lines.fdata (plot.fdata), 187
limod, 100, 101
lm, 6, 121, 135, 138, 161, 198
LMDC.regre (LMDC.select), 159
LMDC.select, 159
Math.fdata (fdata.methods), 79
Math.ldata (ldata), 157
matplot, 188
MCO, 162
mdepth.FM (depth.mdata), 48
mdepth.FSD (depth.mdata), 48
mdepth.HS (depth.mdata), 48
mdepth.KFSD (depth.mdata), 48
mdepth.LD, 46, 49, 52
mdepth.LD (depth.mdata), 48
mdepth.MhD, 49, 50, 52
mdepth.MhD (depth.mdata), 48
mdepth.RP, 49, 50, 52
mdepth.RP (depth.mdata), 48
mdepth.SD, 49, 52
mdepth.SD (depth.mdata), 48
mdepth.TD, 49, 52
mdepth.TD (depth.mdata), 48
mean.fdata (ldata), 157
mean.ldata (ldata), 157
metric.dist, 8, 13, 32, 42, 43, 49, 164, 169
metric.DTW, 8, 165
metric.hausdorff, 8, 166
metric.kl, 8, 167
metric.ldata, 169
metric.lp, 8, 33, 40, 42, 43, 45, 47,
52, 53, 55, 61, 63, 123, 124, 126,
134, 135, 141, 144–146, 156, 164,
167–170, 170, 174, 221, 224
metric.mfdata (metric.ldata), 169
metric.TWED (metric.DTW), 165
metric.WDTW (metric.DTW), 165
min.basis (optim.basis), 176
min.np (optim.np), 178
missing.fdata (fda.usc.internal), 70
na.fail.fdata (na.omit.fdata), 172
na.omit, 172
na.omit.fdata, 172
names.ldata (ldata), 157
NCOL.fdata (fda.usc.internal), 70
ncol.fdata (fda.usc.internal), 70
NROW.ldata, 157
nrow.ldata, 157
norm, 174
norm.fd (norm.fdata), 173
norm.fdata, 150, 173
NROW.fdata (fda.usc.internal), 70
nrow.fdata (fda.usc.internal), 70
NROW.ldata (ldata), 157
nrow.ldata (ldata), 157
omit.fdata (fda.usc.internal), 70
scale, 49
semimetric.basis, 8, 124, 126, 166, 171, 220, 224
semimetric.deriv(semimetric.NPFDA), 222
semimetric.fourier(semimetric.NPFDA), 222
semimetric.hshift(semimetric.NPFDA), 222
semimetric.mplsr(semimetric.NPFDA), 222
semimetric.NPFDA, 8, 53, 63, 124, 126, 166, 171, 221, 222
semimetric.pca(semimetric.NPFDA), 222
splinefun, 35, 77, 78
split.fdata(fdata.methods), 79
subset, 225
subset.fdata, 225
subset.ldata(ldata), 157
Summary, 80
summary.classif, 225, 226
summary.fanova.RPm(fanova.RPm), 67
Summary.fdata(fdata.methods), 79
summary.fdata.comp, 8, 227
summary.fregre.fd, 96, 99, 124, 127, 130, 136, 195, 228
summary.fregre.gkam, 230
summary.fregre.igls
(summary.fregre.fd), 228
summary.fregre.lm(summary.fregre.fd), 228
summary.gam, 114, 117
summary.glm, 109
Summary.ldata(ldata), 157
summary.lm, 122
svd, 83
Sys.sleep, 188
tab2meas, 9
tab2meas(accuracy), 9
te, 113, 116
tecator, 231
title, 188
title.fdata(plot.fdata), 187
trace.matrix(fda.usc.internal), 70
unlist_fdata(fda.usc.internal), 70
Var.e, 5, 233
Var.e(Var.y), 232
Var.y, 5, 232
varClasses, 111, 119
varFixed, 111, 119
varFunc, 111, 119
varimax, 83
weights4class, 10, 234