Package ‘fda.usc’

February 14, 2018

Type Package
Title Functional Data Analysis and Utilities for Statistical Computing
Version 1.4.0
Date 2018-02-12
Depends R (>= 2.10), fda, splines, MASS, mgcv, rpart
Imports methods, grDevices, graphics, utils, stats, nlme
Description Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.
License GPL-2
URL http://www.jstatsoft.org/v51/i04/
LazyLoad yes
Author Manuel Febrero Bande [aut],
Manuel Oviedo de la Fuente [aut, cre],
Pedro Galeano [ctb],
Alicia Nieto [ctb],
Eduardo Garcia-Portugues [ctb]
Maintainer Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
NeedsCompilation yes
Repository CRAN
Encoding UTF-8
Date/Publication 2018-02-14 16:37:12 UTC

R topics documented:

 fda.usc-package .. 4
 aemet .. 8
 anova.hetero .. 9
 anova.onefactor .. 11
 anova.RPm .. 13
R topics documented:

classif.DD .. 15
classif.depth .. 19
classif.gkam .. 21
classif.glm .. 23
classif.gsam .. 25
classif.np ... 27
classif.tree .. 29
cond.F ... 30
cond.mode ... 32
cond.quantile .. 34
create.fdata.basis .. 35
CV.S ... 37
dcor.xy ... 39
Depth for a multivariate dataset 41
Depth for multivariate fdata .. 43
Depth for univariate fdata ... 46
Descriptive .. 49
dev.S ... 52
dfv.test ... 54
dis.cos.cor .. 57
fda.usc.internal .. 58
fdata ... 60
fdata.bootstrap ... 62
fdata.cen ... 64
fdata.deriv ... 65
fdata.methods ... 66
fdata2fd ... 67
fdata2pc ... 68
fdata2pls ... 70
FDR ... 72
flm.Ftest ... 73
flm.test ... 75
fregre.basis .. 80
fregre.basis.cv ... 83
fregre.basis.fr ... 86
fregre.bootstrap ... 89
fregre.gkam .. 91
fregre.glm ... 93
fregre.gls ... 96
fregre.gsam .. 98
fregre.igls ... 100
fregre.lm ... 103
fregre.np ... 105
fregre.np.cv .. 108
fregre.pc ... 110
fregre.pc.cv .. 113
fregre.plm .. 116
fregre.pls .. 119
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fregre.pls.cv</td>
<td>121</td>
</tr>
<tr>
<td>fregre.ppc</td>
<td>123</td>
</tr>
<tr>
<td>fregre.ppls</td>
<td>125</td>
</tr>
<tr>
<td>GCCV.S</td>
<td>127</td>
</tr>
<tr>
<td>GCV.S</td>
<td>129</td>
</tr>
<tr>
<td>gridfdata, rcombfdato</td>
<td>132</td>
</tr>
<tr>
<td>h.default</td>
<td>133</td>
</tr>
<tr>
<td>influence.quan</td>
<td>134</td>
</tr>
<tr>
<td>influence.fdata</td>
<td>136</td>
</tr>
<tr>
<td>inprod.fdata</td>
<td>137</td>
</tr>
<tr>
<td>int.simpson</td>
<td>139</td>
</tr>
<tr>
<td>Kernel</td>
<td>139</td>
</tr>
<tr>
<td>Kernel.asymmetric</td>
<td>141</td>
</tr>
<tr>
<td>Kernel.integrate</td>
<td>142</td>
</tr>
<tr>
<td>kmeans.fd</td>
<td>144</td>
</tr>
<tr>
<td>LMDC.select</td>
<td>146</td>
</tr>
<tr>
<td>MCO</td>
<td>149</td>
</tr>
<tr>
<td>metric.dist</td>
<td>150</td>
</tr>
<tr>
<td>metric.hausdorff</td>
<td>151</td>
</tr>
<tr>
<td>metric.kl</td>
<td>152</td>
</tr>
<tr>
<td>metric.lp</td>
<td>154</td>
</tr>
<tr>
<td>min.basis</td>
<td>156</td>
</tr>
<tr>
<td>min.np</td>
<td>159</td>
</tr>
<tr>
<td>na.omit.fdata</td>
<td>161</td>
</tr>
<tr>
<td>norm.fdata</td>
<td>162</td>
</tr>
<tr>
<td>order.fdata</td>
<td>163</td>
</tr>
<tr>
<td>Outliers.fdata</td>
<td>164</td>
</tr>
<tr>
<td>P.penalty</td>
<td>166</td>
</tr>
<tr>
<td>PCvM.statistic</td>
<td>167</td>
</tr>
<tr>
<td>phoneme</td>
<td>168</td>
</tr>
<tr>
<td>plot.fdata</td>
<td>170</td>
</tr>
<tr>
<td>poblenou</td>
<td>172</td>
</tr>
<tr>
<td>predict.classif</td>
<td>173</td>
</tr>
<tr>
<td>predict.classif.DD</td>
<td>174</td>
</tr>
<tr>
<td>predict.fregre.fd</td>
<td>176</td>
</tr>
<tr>
<td>predict.fregre.GAM</td>
<td>178</td>
</tr>
<tr>
<td>predict.fregre.gls</td>
<td>181</td>
</tr>
<tr>
<td>predict.functional.response</td>
<td>183</td>
</tr>
<tr>
<td>r.ou</td>
<td>184</td>
</tr>
<tr>
<td>rdir.pc</td>
<td>185</td>
</tr>
<tr>
<td>rp.fim.statistic</td>
<td>188</td>
</tr>
<tr>
<td>rp.fim.test</td>
<td>190</td>
</tr>
<tr>
<td>rproc2fdato</td>
<td>194</td>
</tr>
<tr>
<td>rwild</td>
<td>196</td>
</tr>
<tr>
<td>S.basis</td>
<td>197</td>
</tr>
<tr>
<td>S.np</td>
<td>198</td>
</tr>
<tr>
<td>semimetric.basis</td>
<td>200</td>
</tr>
<tr>
<td>semimetric.NPFDA</td>
<td>201</td>
</tr>
</tbody>
</table>
Description

This package carries out exploratory and descriptive analysis of functional data exploring its most important features: such as depth measurements or functional outliers detection, among others. It also helps to explain and model the relationship between a dependent variable and independent (regression models) and make predictions. Methods for supervised or unsupervised classification of a set of functional data regarding a feature of the data are also included. Finally, it can perform analysis of variance model (ANOVA) for functional data.

Sections of fda.usc-package:

A.- Functional Data Representation
B.- Functional Outlier Detection
C.- Functional Regression Model
D.- Functional Supervised Classification
E.- Functional Non-Supervised Classification
F.- Functional ANOVA
G.- Auxiliary functions:

A.- Functional Data Representation
The functions included in this section allow to define, transform, manipulate and represent a functional dataset in many ways including derivatives, non-parametric kernel methods or basis representation.

fdata
plot.fdata
fdata.deriv
CV.S
GCV.S
B.- Functional Depth and Functional Outlier Detection

The functional data depth calculated by the different depth functions implemented that could be use as a measure of centrality or outlyingness.

B.1-Depth methods Depth:

- depth.FM
- depth.mode
- depth.RP
- depth.RT
- depth.RPD
- Descriptive

B.2-Functional Outliers detection methods:

- outliers.depth.trim
- outliers.depth.pond
- outliers.thres.lrt
- outliers.lrt

C.- Functional Regression Models

C.1. Functional explanatory covariate and scalar response
The functions included in this section allow the estimation of different functional regression models with a scalar response and a single functional explicative covariate.
C.2. Test for the functional linear model (FLM) with scalar response.

- `flm.Ftest`, F-test for the FLM with scalar response
- `flm.test`, Goodness-of-fit test for the FLM with scalar response
- `PCvM.statistic`, PCvM statistic for the FLM with scalar response

C.3. Functional and non functional explanatory covariates.

The functions in this section extend those regression models in previous section in several ways. Semifunctional partial linear regression `fregre.plm` is an extension of functional nonparametric regression `fregre.np` allowing include non-functional variables. Functional linear regression `fregre.lm`, functional generalized linear regression `fregre.glm` and functional generalized spectral additive model `fregre.gsam` are an extensions of `fregre.basis` and `fregre.pc` allowing include more than one functional variable and other non-functional variables, as `lm` or `glm` functions.

- `fregre.plm`
- `fregre.lm`
- `fregre.glm`
- `fregre.gsam`
- `fregre.gkam`

D.- Functional Supervised Classification

This section allows the estimation of the groups in a training set of functional data `fdata` class by different nonparametric methods of supervised classification. Once these classifiers have been trained, they can be used to predict on new functional data.

Package allows the estimation of the groups in a training set of functional data by different methods of supervised classification.

- `classif.knn`
- `classif.kernel`
E.- Functional Non-Supervised Classification
This section allows the estimation of the groups in a functional data set `fdata` class by `kmeans` method.

```
kmeans.fd
```

F.- Functional ANOVA

```
anova.onefactor
anova.RPm
anova.hetero
```

G.- Utilities and auxiliary functions:

```
fdata.bootstrap
fdata2fd
fdata2pc
fdata2pls
summary.fdata.comp
cond.F
cond.quantile
cond.mode
FDR
Kernel
Kernel.asymmetric
Kernel.integrate
metric.lp
metric.kl
metric.hausdorff
metric.dist
semimetric.NPFDA
semimetric.basis
```

Details
aemet data

Description

Meteorological State Agency of Spain (AEMET), http://www.aemet.es/.

Government of Spain.

Usage

data(aemet)

Format

Elements of aemet:
.. df: Dataframe with information of each weather station:

ind: Indicated weather station.

$name$: Station Name. 36 marked UTF-8 strings

province: Province (region) of Spain. 36 marked UTF-8 strings

Author(s)

Authors: Manuel Febrero Bande <manuel.febrero@usc.es> and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Contributors: Pedro Galeano, Alicia Nieto-Reyes, Eduardo Garcia-Portugues <eduardo.garcia@usc.es> and STAPH group http://www.lsp.ups-tlse.fr/staph/

Maintainer: Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

anova.hetero

altitude: Altitude of the station (in meters).
year.ini: Start year.
year.end: End year.
longitude: x geographic coordinate of the station (in decimal degrees).
latitude: y geographic coordinate of the station (in decimal degrees).

The functional variables:

...temp: mean curve of the average daily temperature for the period 1980-2009 (in degrees Celsius, marked with UTF-8 string).
...wind.speed: mean curve of the average daily wind speed for the period 1980-2009 (in m/s).
...logprec: mean curve of the log precipitation for the period 1980-2009 (in log mm).

Details

It marks 36 UTF-8 string of names of stations and 3 UTF-8 string names of provinces through the function **iconv**.

In leap years temperatures for February 28 and 29 were averaged.
Negligible precipitation (less than 1 tenth of mm) is replaced by **0.05** and no precipitation (0.0 mm) is replaced by **0.01**. Then the logarithm is applied.

Author(s)

Manuel Febrero Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Source

The data were obtained from the FTP of AEMET in 2009.

Examples

```r
data(aemet)
names(aemet)
names(aemet$df)
par(mfrow=c(3,1))
plot(aemet$temp)
plot(aemet$wind.speed)
plot(aemet$logprec)
```

<table>
<thead>
<tr>
<th>anova.hetero</th>
<th>ANOVA for heteroscedastic data</th>
</tr>
</thead>
</table>

Description

Univariate ANOVA for heteroscedastic data.
Usage

```r
## S3 method for class 'hetero'
anova(object=NULL, formula, pr=FALSE, contrast=NULL, ...)
```

Arguments

- `object`: A data frame with dimension \((n \times p+1)\). In the first column contains the \(n\) response values and on the following \(p\) columns the explanatory variables specified in the formula.
- `formula`: as `formula`.
- `pr`: If TRUE, print intermediate results.
- `contrast`: List of special contrast to be used, by default no special contrasts are used (`contrast=NULL`).
- `...`: Further arguments passed to or from other methods.

Details

This function fits a univariate analysis of variance model and allows calculate special contrasts defined by the user. The list of special contrast to be used for some of the factors in the formula. Each matrix of the list has \(r\) rows and \(r-1\) columns.

The user can also request special predetermined contrasts, for example using `contr.helmert`, `contr.sum` or `contr.treatment` functions.

Value

Return:

- `ans`: A list with components including: the Beta estimation \(\hat{E}\), the factor degrees of freedom \(df_1\), the residual degrees of freedom \(df_2\) and \(p\)-value for each factor.
- `contrast`: List of special contrasts.

Note

It only works with categorical variables.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as: \texttt{anova.RPm}

Examples

\begin{verbatim}
data(phoneme)
ind=1 # between 1:150
fdataobj=data.frame(phoneme$learns[["data"]][,ind])
n=dim(fdataobj)[1]
group<-factor(phoneme$classlearn)

#ex 1: real factor and random factor
group.rand=as.factor(sample(rep(1:3,n),n))
f=data.frame(group,group.rand)
mm=data.frame(fdataobj,f)
colnames(mm)=c("value","group","group.rand")
out1=anova.hetero(object=mm[-2], value=group.rand, pr=FALSE)
out2=anova.hetero(object=mm[-3], value=group, pr=FALSE)
out1
out2

#ex 2: real factor, random factor and special contrasts
cri=contr.sum(5) # each level vs last level
cri3=c(1,0,-1) # first level vs last level
out.contrast=anova.hetero(object=mm[-3], value=group, pr=FALSE,
contrast=list(group=cri3))
out.contrast
\end{verbatim}

\texttt{anova.onefactor} \hspace{1cm} \textit{One–way anova model for functional data}

Description

One–way anova model for \(k \) independent samples of functional data. The function contrasts the null hypothesis of equality of mean functions of functional data based on the an asymptotic version of the anova F–test.

\[H_0 : m_1 = \ldots = m_k \]

Usage

\begin{verbatim}
S3 method for class 'onefactor'
anova(object, group, nboot=100, plot=FALSE, verbose=FALSE,...)
\end{verbatim}
Arguments

object functional response data. fdata class object with n curves.
group a factor specifying the class for each curve.
nboot number of bootstrap samples.
plot if TRUE, plot the mean of each factor level and the results of test.
verbose if TRUE, print intermediate results.
... further arguments passed to or from other methods.

Details

The function returns the p–value of test using one–way anova model over nboot runs.

Value

returns:

pvalue p–value.
stat statistic value of test.
wm statistic values of bootstrap resamples.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as: anova.Rpm

Examples

```r
## Not run:
data(MCO)
grupoin=MCO$classintact
datosin=MCO$intact
res=anova.onefactor(datosin,grupoin,nboot=50,plot=TRUE)

grupoperm=MCO$classpermea
datosperm=MCO$permea
res=anova.onefactor(datosperm,grupoperm,nboot=50,plot=TRUE)

## End(Not run)
```
Functional ANOVA with Random Project.

Description

The procedure is based on the analysis of randomly chosen one-dimensional projections. The function tests ANOVA models for functional data with continuous covariates and perform special contrasts for the factors in the formula.

Usage

```r
# S3 method for class 'Rpm'
anova(object, formula, data.fac, RP=min(30, ncol(object)),
alpha=0.95, hetero=TRUE, pr=FALSE, w=rep(1, ncol(object)),
nboot=0, contrast=NULL,...)
```

Arguments

- `object` Functional response data. Object with class fdata with n curves discretizated in m points.
- `formula` as `formula`.
- `data.fac` Explanatory variables. Data frame with dimension (n x p), where p are the number of factors or covariate considered.
- `RP` Vector of random projections.
- `alpha` Alpha value, by defalult alpha=0.95.
- `hetero` =TRUE (by default) heteroskedastic ANOVA.
- `pr` If TRUE, print intermediate results.
- `w` Vector of weights.
- `nboot` Number of bootstrap samples, by default no bootstrap sample, nboot=0.
- `contrast` List of special contrast to be used ; by default no special contrasts are used (contrast=NULL).
- `...` Further arguments passed to or from other methods.

Details

The function allows user-defined contrasts. The list of contrast to be used for some of the factors in the formula. Each contrast matrix in the list has r rows, where r is the number of factor levels. The user can also request special predetermined contrasts, for example using the `contr.helmert`, `contr.sum` or `contr.treatment` functions.

The function returns (by default) the significance of the variables using the Bonferroni test and the False Discovery Rate test. Bootstrap procedure provides more precision.
Value

Shows:

- proj: The projection value of each point on the curves. Matrix with dimension \((RP \times m)\), where \(RP\) is the number of projection and \(m\) are the points observed in each projection curve.
- mins: minimum number for each random projection.
- result: p-value for each random projection.
- test.Bonf: significance (TRUE or FALSE) for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.
- p.Bonf: p-value for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.
- test.fdr: False Discovery Rate (TRUE or FALSE) for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.
- p.fdr: p-value of False Discovery Rate for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.
- test.Boot: False Discovery Rate (TRUE or FALSE) for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.
- p.Boot: p-value of Bootstrap sample for vector of random projections \(RP\) in columns and factor (and special contrast) by rows.

Note

If hetero=TRUE then all factors must be categorical.

Author(s)

Juan A. Cuesta-Albertos, Manuel Febrero-Bande, Manuel Oviedo de la Fuente

<manuel.oviedo@usc.es>

References

See Also

See Also as: `anova.onefactor`

Examples

```r
# ex anova.hetero
data(phoneme)
names(phoneme)
data=as.data.frame(phoneme$learn[["data"]])
```
classif.DD

DD-Classifer Based on DD-plot

Description

Fits Nonparametric Classification Procedure Based on DD-plot (depth-versus-depth plot) for G dimensions ($G = g \times h$, g levels and p data depth).

Usage

```r
classif.DD(group,fdataobj,depth="FM",classif="glm",w,
           par.classif=list(),par.depth=list(),
           control=list(verboselFALSE,draw=TRUE,col=NULL,alpah=.25))
```

Arguments

- `group`: Factor of length n with g levels.
- `fdataobj`: `data.frame`, `fdata` or list with the multivariate, functional or both covariates respectively.
- `depth`: Character vector specifying the type of depth functions to use, see Details.
- `classif`: Character vector specifying the type of classifier method to use, see Details.
- `w`: Optional case weights, weights for each value of depth argument, see Details.
- `par.depth`: List of parameters for depth function.
- `par.classif`: List of parameters for classifier procedure.
control

List of parameters for controlling the process.
If verbose=TRUE, report extra information on progress.
If draw=TRUE print DD-plot of two samples based on data depth.
col, the colors for points in DD-plot.
alpha, the alpha transparency used in the background of DD-plot, a number in [0,1].

Details

Make the group classification of a training dataset using DD-classifier estimation in the following steps.

1. The function computes the selected depth measure of the points in fdataobj w.r.t. a subsample of each g level group and p data dimension \(G = g \times p\). The user can specify the parameters for depth function in par.depth.

 (i) Type of depth function from functional data, see Depth:
 - "FM": Fraiman and Muniz depth.
 - "mode": h–modal depth.
 - "RT": random Tukey depth.
 - "RP": random project depth.
 - "RPP": double random project depth.

 (ii) Type of depth function from multivariate functional data, see Depth.pfdata:
 - "FMp": Fraiman and Muniz depth with common support. Suppose that all p–fdata objects have the same support (same rangevals), see depth.FMp.
 - "modep": h–modal depth using a p–dimensional metric, see depth.modep.
 - "RPp": random project depth using a p–variate depth with the projections, see depth.RPp.

 If the procedure requires to compute a distance such as in "knn" or "np" classifier or "mode" depth, the user must use a proper distance function: metric.lp for functional data and metric.dist for multivariate data.

 (iii) Type of depth function from multivariate data, see Depth.Multivariate:
 - "SD": Simplicial depth (for bivariate data).
 - "HS": Half-space depth.
 - "MhD": Mahalanobis dept.
 - "RD": random projections depth.
 - "LD": Likelihood depth.

2. The function calculates the misclassification rate based on data depth computed in step (1) using the following classifiers.
 - "MaxD": Maximum depth.
 - "DD1": Search the best separating polynomial of degree 1.
 - "DD2": Search the best separating polynomial of degree 2.
• "DD3": Search the best separating polynomial of degree 3.
• "glm": Logistic regression is computed using Generalized Linear Models `classif.glm`.
• "gam": Logistic regression is computed using Generalized Additive Models `classif.gsam`.
• "lda": Linear Discriminant Analysis is computed using `lda`.
• "qda": Quadratic Discriminant Analysis is computed using `qda`.
• "knn": k-Nearest Neighbour classification is computed using `classif.knn`.
• "np": Non-parametric Kernel classifier is computed using `classif.np`.

The user can be specify the parameters for classifier function in `parNclassif` such as the smoothing parameter `parNclassif["h"]`, if `classif="np"` or the k-Nearest Neighbour `parNclassif["knn"]`, if `classif="knn"`.

In the case of polynomial classifier ("DD1", "DD2" and "DD3") uses the original procedure proposed by Li et al. (2012), by defalut rotating the DD-plot (to exchange abscise and ordinate) using in `parNclassif` argument `rotate=TRUE`. Notice that the maximum depth classifier can be considered as a particular case of DD1, fixing the slope with a value of 1 (`parNclassif=list(pol=1)`).

The number of possible different polynomials depends on the sample size \(n \) and increases polynomially with order \(k \). In the case of \(g \) groups, so the procedure applies some multiple-start optimization scheme to save time:

- generate all combinations of the elements of \(n \) taken \(k \) at a time: \(g \times \text{combn}(N,k) \) candidate solutions, and, when this number is larger than \(n_{\text{max}}=10000 \), a random sample of 10000 combinations.
- smooth the empirical loss with the logistic function \(1/(1 + e^{-tx}) \). The classification rule is constructed optimizing the best \(n_{\text{optim}} \) combinations in this random sample (by default \(n_{\text{optim}}=1 \) and \(tt=50/\text{range}(\text{depth values}) \)). Note that Li et al. found that the optimization results become stable for \(t \in [50, 200] \) when the depth is standardized with upper bound 1.

The original procedure (Li et al. (2012)) not need to try many initial polynomials (\(n_{\text{max}}=10000 \)) and that the procedure optimize the best (\(n_{\text{optim}}=1 \)), but we recommended to repeat the last step for different solutions, as for example \(n_{\text{max}}=250 \) and \(n_{\text{optim}}=25 \). User can change the parameters `pol`, `rotate`, `nmax`, `noptim` and `tt` in the argument `parNclassif`.

The `classif.DD` procedure extends to multi-class problems by incorporating the method of *majority voting* in the case of polynomial classifier and the method *One vs the Rest* in the logistic case ("glm" and "gam").

Value

- `group.est` Estimated vector groups by classified method selected.
- `misclassification` Probability of misclassification.
- `prob.classification` Probability of correct classification by group level.
- `dep` Data frame with the depth of the curves for functional data (or points for multivariate data) in `fdataobj` w.r.t. each group level.
classif.DD

depth Character vector specifying the type of depth functions used.
par.depth List of parameters for depth function.
classif Type of classifier used.
par.classif List of parameters for classif procedure.
w Optional case weights.
fit Fitted object by classif method using the depth as covariate.

Author(s)

This version was created by Manuel Oviedo de la Fuente and Manuel Febrero Bande and includes the original version for polynomial classifier created by Jun Li, Juan A. Cuesta-Albertos and Regina Y. Liu.

References

See Also

See Also as predict.classif.DD

Examples

Not run:

DD-classif for functional data
data(tecator)
ab=tecator$absorp.fdata
ab1=fdata.deriv(ab,nderiv=1)
ab2=fdata.deriv(ab,nderiv=2)
gfat=as.numeric(tecatoryFat>=15))

DD-classif for p=1 functional data set
out01=classif.DD(gfat,ab,depth="mode",classif="np")
out02=classif.DD(gfat,ab2,depth="mode",classif="np")

DD-plot in gray scale
ctrl<-list(draw=T,col=gray(c(0,.5)),alpha=.2)
out02bis=classif.DD(gfat,ab2,depth="mode",classif="np",control=ctrl)

2 depth functions (same curves)
out03=classif.DD(gfat,ab2,ab2,depth=c("RP","mode"),classif="np")

DD-classif for p=2 functional data set
ldata<-list("ab"=ab2,"ab2"=ab2)

Weighted version
out04=classif.DD(gfat,ldata,depth="mode",classif="np",w=c(0.5,0.5))

Model version
classif.depth

Classifier from Functional Data

Description

Classification of functional data using maximum depth.

Usage

```r
classif.depth(group, fdataobj, newfdataobj, depth="RP", par.depth=list(), CV="none")
```

Arguments

- **group**: Factor of length \(n \)
- **fdataobj**: fdata, matrix or data.frame class object of train data.
- **newfdataobj**: fdata, matrix or data.frame class object of test data.
- **depth**: Type of depth function from functional data:
 - **FM**: Fraiman and Muniz depth.
 - **mode**: modal depth.
 - **RT**: random Tukey depth.
• RP: random project depth.
• RP0: double random project depth.

par.depth List of parameters for depth.

CV =“none” group.est=group.pred, =TRUE group.est is estimated by cross-validation, =FALSE group.est is estimated.

Value

 group.est Vector of classes of train sample data.
 group.pred Vector of classes of test sample data.
 prob.classification Probability of correct classification by group.
 max.prob Highest probability of correct classification.
 fdataobj fdata class object.
 group Factor of length n.

Author(s)

Febrero-Bande, M. and Oviedo de la Fuente, M.

References

Examples

```r
## Not run:
data(phoneme)
mlearn<-phoneme["learn"]
mtest<-phoneme["test"]
glearn<-phoneme["classlearn"]
gtest<-phoneme["class/test"]
a1<-classif.depth(glearn,mlearn,depth="RP")
table(a1$group.est,glearn)
a2<-classif.depth(glearn,mlearn,depth="RP",CV=TRUE)
a3<-classif.depth(glearn,mlearn,depth="RP",CV=FALSE)
a4<-classif.depth(glearn,mlearn,mtest,"RP")
table(a4$group.est,glearn)
a5<-classif.depth(glearn,mlearn,mtest,"RP",CV=TRUE)
table(a5$group.est,glearn)
a6<-classif.depth(glearn,mlearn,mtest,"RP",CV=FALSE)
table(a6$group.est,glearn)
## End(Not run)
```
Description

Usage

```r
classif.gkam(formula, family = binomial(), data, weights = rep(1, nobs),
par.metric = NULL, par.np= NULL, offset= NULL,
control = list(maxit = 100, epsilon = 0.001, trace = FALSE,
inverse = "solve"),...)
```

Arguments

- `formula`: an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The procedure only considers functional covariates (not implemented for non-functional covariates). The details of model specification are given under `Details`.
- `data`: List that containing the variables in the model.
- `family`: a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See `family` for details of family functions.)
- `weights`: weights
- `par.metric`: List of arguments by covariable to pass to the `metric` function by covariable.
- `par.np`: List of arguments to pass to the `fregre.np.cv` function
- `offset`: this can be used to specify an a priori known component to be included in the linear predictor during fitting.
- `control`: a list of parameters for controlling the fitting process, by default: maxit, epsilon, trace and inverse.
- `...`: Further arguments passed to or from other methods.

Details

The first item in the data list is called "df" and is a data frame with the response, as `glm`. Functional covariates of class `fdata` are introduced in the following items in the data list.
Value

Return gam object plus:

- **formula**
 - formula.
- **data**
 - List that containing the variables in the model.
- **group**
 - Factor of length \(n \)
- **group.est**
 - Estimated vector groups
- **prob.classification**
 - Probability of correct classification by group.
- **prob.group**
 - Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as: `fregre.gkam`.

Alternative method: `classif.glm`.

Examples

```r
## Time-consuming: selection of 2 levels
data(phoneme)
mlearn<-phoneme["learn"][1:100]
glearn<-as.numeric(phoneme["classlearn"][1:100])
dataf<-data.frame(glearn)
dat=list("df"=dataf,"x"=mlearn)
# a1<classif.gkam(glearn~x, data=dat)
# summary(a1)
mtest<-phoneme["test"][1:100]
gtest<-as.numeric(phoneme["clastest"][1:100])
newdat<-list("x"=mtest)
# p1<predict.classif(a1,newdat)
# table(gtest,p1)
```
Classification Fitting Functional Generalized Linear Models

Description
Computes functional classification using functional (and non functional) explanatory variables by basis representation.

Usage

\[
\text{classif.glm}(\text{formula}, \text{data}, \text{family} = \text{binomial()}, \\
\text{basis.x}=\text{NULL}, \text{basis.b}=\text{NULL}, \text{CV}=\text{FALSE}, \ldots)
\]

Arguments

- **formula**: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.
- **data**: List that containing the variables in the model.
- **family**: a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See `family` for details of family functions).
- **basis.x**: List of basis for functional explanatory data estimation.
- **basis.b**: List of basis for functional beta parameter estimation.
- **CV** = TRUE, Cross-validation (CV) is done.
- **...**: Further arguments passed to or from other methods.

Details

The first item in the `data` list is called "df" and is a data frame with the response and non functional explanatory variables, as `glm`.

Functional covariates of class `fdata` or `fd` are introduced in the following items in the `data` list. `basis.x` is a list of basis for represent each functional covariate. The basis object can be created by the function: `create.pc.basis`, `pca.fd`, `create.pc.basis`, `create.fdata.basis` or `create.basis`. `basis.b` is a list of basis for represent each functional beta parameter. If `basis.x` is a list of functional principal components basis (see `create.pc.basis` or `pca.fd`) the argument `basis.b` is ignored.

Value
Return `glm` object plus:

- **formula**: `formula`.
data List that containing the variables in the model.
group Factor of length \(n\)
group.est Estimated vector groups
prob.classification Probability of correct classification by group.
prob.group Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.

Note
If the formula only contains a non functional explanatory variables (multivariate covariates), the function compute a standard \texttt{glm} procedure.

Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente \texttt{<manuel.oviedo@usc.es>}

References

See Also
See Also as: \texttt{fregre.glm}.

Examples
```r
data(phoneme)
mlearn<-phoneme["learn"]
glearn<-phoneme["classlearn"]
mtest<-phoneme["test"]
gtest<-phoneme["classtest"]
dataf<-data.frame(glearn)
dat=list("df"=dataf,"x"=mlearn)
a1<-classif.glm(glearn~x, data = dat)
newdat<-list("x"=mtest)
p1<-predict.classif(a1,newdat)
table(gtest,p1)
sum(p1==gtest)/250
```
classif.gsam
ClassifNgsam

Description

Computes functional classification using functional (and non functional) explanatory variables by basis representation.

Usage

```r
classif.gsam(formula, data, family = binomial(), weights = NULL, 
basis.x = NULL, basis.b = NULL, CV = FALSE, ...)
```

Arguments

- `formula`: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under `Details`.
- `family`: a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See `family` for details of family functions.)
- `data`: List that containing the variables in the model.
- `weights`: weights
- `basis.x`: List of basis for functional explanatory data estimation.
- `basis.b`: List of basis for functional beta parameter estimation.
- `CV`: =TRUE, Cross-validation (CV) is done.
- `...`: Further arguments passed to or from other methods.

Details

The first item in the `data` list is called "df" and is a data frame with the response and non functional explanatory variables, as `glm`.

Functional covariates of class `fdata` or `fd` are introduced in the following items in the `data` list. `basis.x` is a list of basis for represent each functional covariate. The basis object can be created by the function: `create.pc.basis, pca.fd, create.pc.basis, create.fdata.basis` or `create.basis`. `basis.b` is a list of basis for represent each functional beta parameter. If `basis.x` is a list of functional principal components basis (see `create.pc.basis` or `pca.fd`) the argument `basis.b` is ignored.
Value

Return gam object plus:

- **formula** formula.
- **data** List that containing the variables in the model.
- **group** Factor of length n
- **group.est** Estimated vector groups
- **prob.classification** Probability of correct classification by group.
- **prob.group** Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.

Note

If the formula only contains a non functional explanatory variables (multivariate covariates), the function compute a standard glm procedure.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as: fregre.gsam.
Alternative method: classif.np, classif.glm and classif.gkam.

Examples

data(phoneme)
mlearn<-phoneme["learn"]
glearn<-phoneme["classlearn"]
mtest<-phoneme["test"]
gtest<-phoneme["class test"]
dataf<-data.frame(glearn)
dat=list("df"=dataf,"x"=mlearn)
a1<-classif.gsam(glearn~s(x,k=3),data=dat)
summary(a1)
newdat<-list("x"=mtest)
p1<-predict.classif(a1,newdat)
Kernel Classifier from Functional Data

Description

Fits Nonparametric Supervised Classification for Functional Data.

Usage

```r
classif.nnp(group,fdataobj,h=NULL,Ker=A Ker.norm,metric,
  type.CV = GCV.S,type.S=S.NW,par.CV=list(trim=0),par.S=list(),...)
classif.knn(group,fdataobj,knn=NULL,metric,type.CV = GCV.S,
  par.CV=list(cv = TRUE, trim = 0),par.S=list(),...)
classif.kernel(group,fdataobj,h=NULL,Ker=A Ker.norm,metric,
  type.CV = GCV.S,par.CV=list(trim=0),par.S=list(),...)
```

Arguments

- `group`: Factor of length `n`
- `fdataobj`: `fdata` class object.
- `h`: Vector of smoothing parameter or bandwidth.
- `knn`: Vector of number of nearest neighbors considered.
- `Ker`: Type of kernel used.
- `metric`: Metric function, by default `metric.lp`.
- `type.CV`: Type of cross-validation. By default generalized cross-validation `GCV` method.
- `type.S`: Type of smoothing matrix `S`. By default `S` is calculated by Nadaraya-Watson kernel estimator (`S.NW`).
- `par.CV`: List of parameters for `type.CV`: `trim`, the alpha of the trimming and `draw`=TRUE.
- `par.S`: List of parameters for `type.S`: `w`, the weights.
- `...`: Arguments to be passed for `metric.lp` or other metric function and `Kernel` function.

Details

Make the group classification of a training dataset using kernel or KNN estimation: `Kernel`. Different types of metric functions can be used.
Value

- fdataobj: `fdata` class object.
- group: Factor of length \(n \).
- group.est: Estimated vector groups.
- prob.group: Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
- max.prob: Highest probability of correct classification.
- h.opt: Optimal smoothing parameter or bandwidht estimated.
- D: Matrix of distances of the optimal quantile distance \(hh\opt \).
- prob.classification: Probability of correct classification by group.
- misclassification: Vector of probability of misclassification by number of neighbors \(knn \).
- h: Vector of smoothing parameter or bandwidht.
- C: A call of function `classif.kernel`.

Note

If `fdataobj` is a data.frame the function considers the case of multivariate covariates. The `metric.dist` function is used to compute the distances between the rows of a data matrix (as `dist` function).

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as `predict.classif`

Examples

data(phoneme)
mlearn<-phoneme[["learn"]]
glearn<-phoneme[["classlearn"]]

h=9:19
out=classif.np(glearn,mlearn,h=h)
summary.classif(out)
#round(out$prob.group,4)
classif.tree

Classification Fitting Functional Recursive Partitioning and Regression Trees

Description

Computes functional classification using functional (and non functional) explanatory variables by rpart model.

Usage

```r
classif.tree(formula, data, basis.x = NULL, basis.b = NULL, CV = FALSE, ...)```

#### Arguments

- **formula**: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.
- **data**: List that containing the variables in the model.
- **basis.x**: List of basis for functional explanatory data estimation.
- **basis.b**: List of basis for functional beta parameter estimation.
- **CV**: =TRUE, Cross-validation (CV) is done.
- **...**: Further arguments passed to or from other methods.

#### Details

The first item in the data list is called "df" and is a data frame with the response and non functional explanatory variables, as `glm`.

Functional covariates of class `fdata` or `fd` are introduced in the following items in the data list.

- **basis.x**: is a list of basis for represent each functional covariate. The basis object can be created by the function: `create.pc.basis, pca.fd` `create.pc.basis, create.fdata.basis` `create.basis`.
- **basis.b**: is a list of basis for represent each functional beta parameter estimation. If `basis.x` is a list of functional principal components basis (see `create.pc.basis` or `pca.fd`) the argument `basis.b` is ignored.

#### Value

Return `rpart` object plus:

- **basis.x**: Basis used for `fdata` or `fd` covariates.
- **basis.b**: Basis used for beta parameter estimation.
- **beta.l**: List of estimated beta parameter of functional covariates.
- **data**: List that containing the variables in the model.
- **formula**: formula.
- **CV**: \$y.pred predicted response by cross-validation.
Author(s)

Febrero-Bande, M. and Oviedo de la Fuente, M.

References


See Also

See Also as: `rpart`.
Alternative method: `classif.glm`.

Examples

data(phoneme)
mlearn<-phoneme["learn"]
glearn<-phoneme["classlearn"]
test<-phoneme["test"]
gtest<-phoneme["class test"]
dataf<-data.frame(glearn)
dat=list("df"=dataf,"x"=mlearn)
a1<-classif.tree(glearn~x,data=dat)
summary(a1)
newdat<-list("x"=test)
p1<-predict.classif(a1,newdat,type="class")
table(gtest,p1)
sum(p1==gtest)/250

calc.cond.f

cond.F

Conditional Distribution Function

Description

Calculate the conditional distribution function of a scalar response with functional data.

Usage

```r
calc.cond.f(fdata0,y0,fdataobj,y,h=0.15,g=0.15,metric=metric.lp, Ker=list(AKer=AKer.epa,IKer=IKer.epa),...)
```
Arguments

- **fdata0**: Conditional explanatory functional data of `fdata` class.
- **y0**: Vector of conditional response with length n.
- **fdataobj**: `fdata` class object.
- **y**: Vector of scalar response with length nn.
- **h**: Smoothing parameter or bandwidth of response y.
- **g**: Smoothing parameter or bandwidth of explanatory functional data `fdataobj`.
- **metric**: Metric function, by default `metric.lp`.
- **Ker**: List of 2 arguments. The first argument is a character string that determines the type of asymmetric kernel (see `Kernel.asymmetric`). Asymmetric Epanechnikov kernel is selected by default. The second argument is a string that determines the type of integrated kernel (see `Kernel.integrate`). Integrate Epanechnikov kernel is selected by default.
- **...**: Further arguments passed to or from other methods.

Details

If `x.dist=NULL` the distance matrix between `fdata` objects is calculated by function passed in `metric` argument.

Value

- **Fc**: Conditional distribution function.
- **y0**: Vector of conditional response.
- **g**: Smoothing parameter or bandwidth of explanatory functional data (`fdataobj`).
- **h**: Smoothing parameter or bandwidth of response y.
- **x.dist**: Distance matrix between curves of `fdataobj` object.
- **xy.dist**: Distance matrix between curves of `fdataobj` and `fdata0` objects.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: `cond.mode` and `cond.quantile`. 
Examples

```r
Read data
n = 500
t = seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y = numeric(n)
x0 <- rproc2fdata(n, seq(0,1,len=101), sigma="wiener")
x1 <- rproc2fdata(n, seq(0,1,len=101), sigma=0.1)
x <- x0+x1
fbeta = fdata(beta, t)
y <- inprod.fdata(x, fbeta) + rnorm(n, sd=0.1)

prx = x[1:100]; pry = y[1:100]
ind = 101; ind2 = 102:110
pr0 = x[ind]; pr1 = x[ind2,]
ndist = 61
gridy = seq(-1.598069, 1.598069, len = ndist)
Conditional Function
res1 = cond.F(pr10, gridy, prx, pry, p=1)
res2 = cond.F(pr10, gridy, prx, pry, h=0.3)
res3 = cond.F(pr10, gridy, prx, pry, g=0.25, h=0.3)

plot(res1$fc[,1], type="l", ylim=c(0,1))
lines(res2$fc[,1], type="l", col=2)
lines(res3$fc[,1], type="l", col=3)
```

Description

Computes the mode for conditional distribution function.

Usage

```r
cond.mode(Fc, method = "monoH.FC", draw=TRUE)
```

Arguments

- `Fc` Object estimated by `cond.F` function.
- `method` Specifies the type of spline to be used. Possible values are "diff", "fmm", "natural", "periodic" and "monoH.FC".
- `draw` =TRUE, plots the conditional distribution and density function.
The conditional mode is calculated as the maximum argument of the derivative of the conditional distribution function (density function $f$).

Return the mode for conditional distribution function.

- **mode.cond**: Conditional mode.
- **x**: Grid of length $n$ where the conditional density function is evaluated.
- **f**: The conditional density function evaluated in $x$.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oveda@usc.es>

**References**


**See Also**

See Also as: `cond.F`, `cond.quantile` and `splinefun`.

**Examples**

```r
Not run:
n = 500
t = seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y = numeric(n)
x0 <- rproc2fdata(n, seq(0,1,len=101), sigma="wiener")
x1 <- rproc2fdata(n, seq(0,1,len=101), sigma=0.1)
x <- x0^3 + x1
fbeta = fdata(beta, t)
y <- inprod.fdata(x, fbeta) + rnorm(n, sd=0.1)
prx = x[1:100]; pry = y[1:100]
ind = 101; ind2 = 101:110
pr0 = x[ind]; pr1 = x[ind2]
ndist = 161
gridy = seq(-1.598069, 1.598069, len=ndist)
Conditional Function
I = 5
Time consuming
res = cond.F(pr0[1], gridy, prx, pry, h=1)
mcond = cond.mode(res)
mcond2 = cond.mode(res, method="diff")

End(Not run)
```
cond.quantile                  Conditional quantile

Description

Computes the quantile for conditional distribution function.

Usage

```
cond.quantile(qua=0.5,fdata0,fdataobj,y,fn,a=min(y),b=max(y),
tol=10^floor(log10(max(y)-min(y))-3),iter.max=100,...)
```

Arguments

- `qua`: Quantile value, by default the median (`qua=0.5`).
- `fdata0`: Conditional functional explanatory data of `fdata` class object.
- `fdataobj`: Functional explanatory data of `fdata` class object.
- `y`: Scalar Response.
- `fn`: Conditional distribution function.
- `a`: Lower limit.
- `b`: Upper limit.
- `tol`: Tolerance.
- `iter.max`: Maximum iterations allowed, by default 100.
- `...`: Further arguments passed to or from other methods.

Value

Return the quantile for conditional distribution function.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: `cond.F` and `cond.mode`. 
Examples

```r
n = 100
t = seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y = numeric(n)
x0 <- rproc2fdata(n, seq(0,1,len=101), sigma="wiener")
x1 <- rproc2fdata(n, seq(0,1,len=101), sigma=0.1)
x <- x0*3 + x1
fbeta = fdata(beta, t)
y <- inprod.fdata(x, fbeta) + rnorm(n, sd=0.1)

prx = x[1:50]; Pry = y[1:50]
ind = 50+1; ind2 = 51:60
pr0 = x[ind]; pr1 = x[ind2]
ndist = 16
gridy = seq(-1.598069, 1.598069, len=ndist)
ind4 = 5
y0 = gridy[ind4]

Conditional median
med = cond.quantile(qua=0.5, fdata0=pr0, fdataobj=prx, y=pry, fn=cond.F, h=1)

Not run
Conditional CI 95% conditional
lo = cond.quantile(qua=0.025, fdata0=pr0, fdataobj=prx, y=pry, fn=cond.F, h=1)
up = cond.quantile(qua=0.975, fdata0=pr0, fdataobj=prx, y=pry, fn=cond.F, h=1)
print(c(lo, med, up))
```

create.fdata.basis Create Basis Set for Functional Data of fdata class

Description

Compute basis for functional data.

Usage

```r
create.fdata.basis(fdataobj, l=1:5, maxl=max(l), type.basis="bspline", rangeval=fdataobj$rangeval, class.out="fd")
create.pc.basis(fdataobj, l=1:5, norm=TRUE, basis=NULL, lambda=0, P=c(0,0,1), ...)
create.pls.basis(fdataobj, y, l = 1:5, norm=TRUE, lambda=0, P=c(0,0,1), ...)
create.raw.fdata(fdataobj, l = 1:ncol(fdataobj))
```
The `create.fdata.basis` function in R is used to create a basis for functional data. Here are the details:

### Arguments

- **fdataobj**: `fdata` class object.
- **y**: Vector of response (scalar).
- **l**: Vector of basis index.
- **maxl**: Maximum number of basis.
- **type.basis**: Type of basis (see `create.basis` function).
- **rangeval**: A vector of length 2 giving the lower and upper limits of the range of permissible values for the function argument.
- **norm**: If `TRUE` the norm of eigenvectors basis is 1.
- **class.out**: `"fd"` basisfd class, `="fdata"` fdata class.
- **basis**: "fd" basis object.
- **lambda**: Amount of penalization. Default value is 0, i.e. no penalization is used.
- **P**: If P is a vector: coefficients to define the penalty matrix object. By default P=c(0,0,1) penalize the second derivative (curvature) or acceleration. If P is a matrix: the penalty matrix object.
- **...**: Further arguments passed to or from other methods.

### Value

- **basis**: basis
- **x**: Is true the value of the rotated data (the centred data multiplied by the rotation matrix) is returned
- **mean**: functional mean of `fdataobj`
- **df**: degree of freedom
- **type**: type of basis

### Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

### References


### See Also

See Also as `create.basis` and `fdata2pc`. 
Examples

data(tecator)
basis.pcc<-create.pc.basis(tecator$absorp.fdata,c(1,4,5))
plot(basis.pcc$basis,col=1)
basis.pls<-create.pls.basis(tecator$absorp.fdata,y=tecator$y[,1],c(1,4,5))
lines(basis.pls$basis,col=2)

basis.fd<-create.fd.basis(tecator$absorp.fdata,c(1,4,5),
type.basis="fourier")
plot(basis.fd)
basis.fdata<-create.fd.basis(tecator$absorp.fdata,c(1,4,5),
type.basis="fourier",class.out="fdata")
plot(basis.fd,col=2,lty=1)
lines(basis.fdata,col=3,lty=1)


---

The cross-validation (CV) score

Description

The cross-validation (CV) score.

Usage

CV.S(y,S,W=NULL,trim=0,draw=FALSE,metric=metric.lp,...)

Arguments

- **y**: Matrix of set cases with dimension \((n \times m)\), where \(n\) is the number of curves and \(m\) are the points observed in each curve.
- **S**: Smoothing matrix, see \(S.NW\), \(S.LLR\) or \(S.KNN\).  
- **W**: Matrix of weights.  
- **trim**: The alpha of the trimming.  
- **draw** =TRUE, draw the curves, the sample median and trimmed mean.  
- **metric** : Metric function, by default \texttt{metric.lp}.  
- **...** : Further arguments passed to or from other methods.

Details

Compute the leave-one-out cross-validation score.

A.-If \(trim=0\):

\[
CV(h) = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{y_i - r_i(x_i)}{1 - S_{ii}} \right)^2 w(x_i)
\]

\(S_{ii}\) is the \(i\)th diagonal element of the smoothing matrix \(S\).
B. If \( \text{trim} > 0 \):

\[
CV(h) = \frac{1}{l} \sum_{i=1}^{l} \left( \frac{y_i - r_i(x_i)}{1 - S_{ii}} \right)^2 w(x_i)
\]

\( S_{ii} \) is the \( i \)th diagonal element of the smoothing matrix \( S \) and \( l \) the index of \( (1-\text{trim}) \) curves with less error.

Value

res Returns CV score calculated for input parameters.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as \texttt{min_np}

Alternative method: \texttt{GCV.S}

Examples

data(tecator)
x<-'tecator$absorp.fdata
np<-'ncol(x)
tt<-'1:np
S1 <- S.NW(tt,3,Ker.epa)
S2 <- S.LLR(tt,3,Ker.epa)
S3 <- S.NW(tt,5,Ker.epa)
S4 <- S.LLR(tt,5,Ker.epa)
cv1 <- CV.S(x, S1)
cv2 <- CV.S(x, S2)
cv3 <- CV.S(x, S3)
cv4 <- CV.S(x, S4)
cv5 <- CV.S(x, S4,trim=0.1,draw=TRUE)
cv1;cv2;cv3;cv4;cv5
S6 <- S.KNN(tt,1,Ker.unif,cv=TRUE)
S7 <- S.KNN(tt,5,Ker.unif,cv=TRUE)
cv6 <- CV.S(x, S6)
cv7 <- CV.S(x, S7)
cv6;cv7
**Description**

Distance correlation t-test of multivariate and functional independence (wrapper functions of energy package).

**Usage**

dcor.xy(x, y, test = TRUE, metric.x, metric.y, par.metric.x, par.metric.y, n)
dcor.test(D1, D2, n)
bcdcor.dist(D1, D2, n)
dcor.dist(D1, D2)

**Arguments**

- **x** data (fdata, matrix or data.frame class) of first sample.
- **y** data (fdata, matrix or data.frame class) of second sample.
- **test** if TRUE, compute bias corrected distance correlation statistic and the corresponding t-test, else compute distance correlation statistic.
- **metric.x, metric.y** Name of metric or semi-metric function used for compute the distances of x and y object respectively. By default, metric.lp for functional data and metric.dist for multivariate data.
- **par.metric.x, par.metric.y** List of parameters for the corresponding metric function.
- **n** The sample size used in bias corrected version of distance correlation, by default is the number of rows of x.
- **D1** Distances of first sample.
- **D2** Distances of second sample.

**Details**

These wrapper functions extend the functions of the energy package for multivariate data to functional data. Distance correlation is a measure of dependence between random vectors introduced by Szekely, Rizzo, and Bakirov (2007).

dcor.xy performs a nonparametric t-test of multivariate or functional independence in high dimension. The distribution of the test statistic is approximately Student t with \(n(n - 3)/2 - 1\) degrees of freedom and for \(n \geq 10\) the statistic is approximately distributed as standard normal. Wrapper function of energy:::dcor.ttest. The t statistic is a transformation of a bias corrected version of distance correlation (see SR 2013 for details). Large values (upper tail) of the t statistic are significant.

dcor.test similar to dcor.xy but only for distance matrix.
dcor.dist compute distance correlation statistic. Wrapper function of energy::dcor but only for distance matrix.

bcdcor.dist compute bias corrected distance correlation statistic. Wrapper function of energy::bcdcor but only for distance matrix.

**Value**

dcor.test returns a list with class htest containing

- **method**: description of test
- **statistic**: observed value of the test statistic
- **parameter**: degrees of freedom
- **estimate**: bias corrected distance correlation bcdcor(x,y)
- **p.value**: p-value of the t-test
- **data.name**: description of data

dcor.xy returns the previous list with class htest and

D1 the distance matrix of x
D2 the distance matrix of y

dcor.dist returns the distance correlation statistic.

bcdcor.dist returns the bias corrected distance correlation statistic.

**Author(s)**

Manuel Oviedo de la Fuente <manuel.oviedo@usc.es> and Manuel Febrero Bande

**References**


**See Also**

metric.lp and metric.dist.

**Examples**

```r
x <- rproc2fdata(100,1:50)
y <- rproc2fdata(100,1:50)
dcor.xy(x, y, test=TRUE)
dx <- metric.lp(x)
dy <- metric.lp(y)
dcor.test(dx, dy)
```
Depth for a multivariate dataset

Provides the depth measure for multivariate data

Description

Compute measure of centrality of the multivariate data. Type of depth function: simplicial depth (SD), Mahalanobis depth (MhD), Random Half–Space depth (HS), random projection depth (RP) and Likelihood Depth (LD).

- The `mdepth.SD` function provides the simplicial depth measure for bivariate data.
- The `mdepth.MhD` function implements a Mahalanobis depth measure.
- The `mdepth.RP` function provides the depth measure using random projections for multivariate data.
- The `mdepth.LD` function provides the Likelihood depth measure for multivariate data.
- The `mdepth.TD` function provides the Tukey depth measure for multivariate data.

Usage

```r
mdepth.SD(x, xx = NULL, scale=FALSE)
mdepth.HS(x, xx=x, proj=50, scale=FALSE, xeps=1e-15, random=FALSE)
mdepth.MhD(x, xx=x, scale=FALSE)
mdepth.RP(x, xx = x, proj = 50, scale=FALSE)
mdepth.TD(x, xx=x, xeps=1e-15, scale=FALSE)
mdepth.LD(x, xx=x, metric=metric.dist, h=NULL, scale=FALSE,
```

Arguments

- `x` is a set of points, a d-column matrix.
- `xx` is a d-dimension multivariate sample, a d-column matrix.
- `proj` are the directions for random projections, by default 500 random projections generated from a scaled `runif(UPLM1,1)`.
- `scale` =TRUE, scale the depth, see `scale`.
- `metric` Metric function, by default `metric.dist`. Distance matrix between x and xx is computed.
- `xeps` Accuracy. The left limit of the empirical distribution function.
- `random` =TRUE for random projections. =FALSE for deterministic projections.
- `h` Bandwidth, h>0. Default argument values are provided as the 15% quantile of the distance between x and xx.
- `...` Further arguments passed to or from other methods.
Details

Type of depth measures,

- The \texttt{mdepth.SD} calculates the simplicial depth (HD) of the points in \( x \) w.r.t. \( xx \).
- The \texttt{mdepth.HS} function calculates the random half-space depth (HS) of the points in \( x \) w.r.t. \( xx \) based on random projections \( proj \).
- The \texttt{mdepth.MhD} function calculates the Mahalanobis depth (MhD) of the points in \( x \) w.r.t. \( xx \).
- The \texttt{mdepth.RP} calculates the random projection depth (RP) of the points in \( x \) w.r.t. \( xx \) based on random projections \( proj \).
- The \texttt{mdepth.LD} calculates the Likelihood depth (LD) of the points in \( x \) w.r.t. \( xx \).

Value

- \texttt{lmed} Index of deepest element median of \( xx \).
- \texttt{ltrim} Index of set of points \( x \) with trimmed mean \( mtrim \).
- \texttt{dep} Depth of each point \( x \) w.r.t. \( xx \).
- \texttt{proj} The projection value of each point on set of points.

Author(s)

\texttt{mdepth.RP}, \texttt{mdepth.MhD} and \texttt{mdepth.HS} are versions created by Manuel Febrero Bande and Manuel Oviedo de la Fuente of the original version created by Jun Li, Juan A. Cuesta Albertos and Regina Y. Liu for polynomial classifier.

References


See Also

Functional depth functions: \texttt{depth.FM}, \texttt{depth.mode}, \texttt{depth.RP}, \texttt{depth.RPD} and \texttt{depth.RT}.

Examples

data(iris)
group<-iris[,5]
x<-iris[,1:2]

MhD<-mdepth.MhD(x)
PD<-mdepth.RP(x)
HD<-mdepth.HS(x)
SD<-mdepth.SD(x)

x.setosa<-x[group=="setosa",]
x.versicolor<-x[group=="versicolor",]
x.virginica<-x[group=="virginica",]
Depth for multivariate fdata

Provides the depth measure for a list of p–functional data objects

Description

This function computes the depth measure for a list of p–functional data objects. The procedure extends the Fraiman and Muniz (FM), modal, and random project depth functions from 1 functional dataset to p functional datasets.

Usage

```r
d1 <- mdepth.SD(x, x, setosa)$dep
d2 <- mdepth.SD(x, x, versicolor)$dep
d3 <- mdepth.SD(x, x, virginica)$dep
```

Arguments

- `lfdata` A list of new curves (list of fdata objects) to evaluate the depth.
- `lfdataref` A set of reference curves (list of fdata objects) w.r.t. the depth of `lfdata` is computed.
- `trim` The alpha of the trimming.
- `dfunc` Type of multivariate depth (of order p) function used in Framiman and Muniz depth, `depth.FMp` or in Random Projection depth, `depth.FMp`:
  - The `mdepth.SD` function provides the simplicial depth measure for bivariate data.
  - The `mdepth.LD` function provides the Likelihood depth measure based on Nadaraya–Watson estimator of empirical density function.
  - The `mdepth.HS` function implements a half-space depth measure based on random projections.
  - The `mdepth.TD` function implements a Tukey depth measure.
• The `mdepth.MhD` function implements a Mahalanobis depth measure.

• The `mdepth.RP` function provides the depth measure using random projections for multivariate data.

par.df

- `dfunc`: list of parameters for the `dfunc` depth function, see `Depth.Multivariate`.
- `nproj`: The number of projection.
- `proj`: if is a character: create the random projection using a covariance matrix by process indicated in the argument (by default, `proj=1`, sigma=diag(ncol(fdataobj))), else if is a matrix of random projection provided by the user.
- `h`: Bandwidth, h>0. Default argument values are provided as the 15%–quantile of the distance between `fdataobj` and `fdataori`.
- `metric`: Metric or semi–metric function used for compute the distance between each element in `ldata` w.r.t. `ldataref`, by default `metric.lp`.
- `par.metric`: list of parameters for the metric function.
- `method`: Type of the distance measure (by default `euclidean`) to compute the metric between the p–distance matrix computed from the p functional data elements.
- `scale`: =TRUE, scale the depth.
- `draw`: =TRUE, draw the curves, the sample median and trimmed mean.
- `ask`: logical. If TRUE (and the R session is interactive) the user is asked for input, before a new figure is drawn.
- `...`: Further arguments passed to or from other methods.

Details

• `depth.FM`: this procedure suposes that each curve of the `fdataobj` have the same support [0,T] (same argvals and rangeval). The FM depth is defined as: $FM^p_i = \int_0^T Z^p_i(t) dt$ where $Z^p_i(t)$ is a p–variate depth of the vector $(x^1_i(t), \ldots, x^p_i(t))$ w.r.t. the sample at $t$.

• The `depth.RP` function calculates the depth in two steps. It builds random projections for the each curve of the `fdata` w.r.t. each curve of the `fdataref` object. Then it applies a multivariate depth function specified in `dfunc` argument to the set of random projections. This procedure is a generalization of Random Projection with derivatives (RPD) implemented in `depth.RPD` function. Now, the procedure computes a p-variate depth with the projections using the p functional dataset.

• The modal depth `depth.mode` function calculates the depth in three steps. First, the function calculates a suitable metrics or semi–metrics $m_1 + \cdots + m_p$ for each curve of the `fdata` w.r.t. each curve of the `fdataref` object using the metric and `par.metric` arguments, see `metric.lp` or `semimetric.NPFDA` for more details. Second, the function uses the p–dimensional metrics to construct a new metric, specified in `method` argument, by default if `method"euclidean", i.e. m := \sqrt{m_1^2 + \cdots + m_p^2}$. Finally, the empirical $h$–depth is computed as:

$$\hat{f}_h(x_0) = N^{-1} \sum_{i=1}^N K(m/h)$$

where $x$ is dataset with p observed funcntional data, $m$ is a suitable metric or semi–metric, $K(t)$ is an asymmetric kernel function and $h$ is the bandwidth parameter.
Depth for multivariate fdata

Value

- `lmed`: Index deepest element median.
- `ltrim`: Index of curves with trimmed mean mtrim.
- `dep`: Depth of each curve of fdataobj w.r.t. fdataori.
- `dfunc`: Second depth function used as multivariate depth, see details section.
- `par.dfunc`: List of parameters for the dfunc depth function.
- `proj`: The projection value of each point on the curves.
- `dist`: Distance matrix between curves or functional data.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as Descriptive.

Examples

```r
Not run:
data(tecator)
x<-tecator$absorp
xx1<-fdata.deriv(xx,1)
lx<-list(xx=xx,xx=xx1)
Frawian-Muniz Depth
par.df<-list(scale =TRUE)
out.FM1p=depth.FMp(lx,trim=0.1,draw=TRUE, par.dfunc = par.df)
out.FM2p=depth.FMp(lx,trim=0.1,dfunc = "mdepth.LD",
par.dfunc = par.df, draw=TRUE)

Random Project Depth
out.RP1p=depth.RPp(lx,trim=0.1,dfunc = "mdepth.TD",
draw=TRUE,par.dfunc = par.df)
out.RP2p=depth.RPp(lx,trim=0.1,dfunc = "mdepth.LD",
draw=TRUE,par.dfunc = par.df)

#Modal Depth
out.mode1p=depth.modep(lx,trim=0.1,draw=T, scale=T)
out.mode2p=depth.modep(lx,trim=0.1,method="manhattan",
draw=T, scale=T)

par(mfrow=c(2,3))
plot(out.FM1p$dep,out.FM2p$dep)
plot(out.RP1p$dep,out.RP2p$dep)
```
Depth for univariate fdata

Provides the depth measure for functional data

Description

Compute measure of centrality of the functional data. Type of depth function: Fraiman and Muniz (FM) depth, modal depth, random tukey (RT), random project (RP) depth and double random project depth (RPD).

- **depth.FM** computes the integration of an univariate depth along the axis x (see Fraiman and Muniz 2001). It is also known as Integrated Depth.
- **depth.mode** implements the modal depth (see Cuevas et al 2007).
- **depth.RT** implements the Random Tukey depth (see Cuesta–Albertos and Nieto–Reyes 2008).
- **depth.RP** computes the Random Projection depth (see Cuevas et al. 2007).
- **depth.RPD** implements a depth measure based on random projections possibly using several derivatives (see Cuevas et al. 2007).
- **depth.FSD** computes the Functional Spatial Depth (see Sguera et al. 2014).
- **depth.KFSD** implements the Kernelized Functional Spatial Depth (see Sguera et al. 2014).

Usage

```r
depth.FM(fdataobj, fdataori=fdataobj, trim=0.25, scale=FALSE, dfunc="FM1", par.dfunc = list(scale = TRUE), draw = FALSE)

depth.mode(fdataobj, fdataori=fdataobj, trim=0.25, metric=metric.lp, h=NULL, scale=FALSE, draw=FALSE,...)

depth.RT(fdataobj, fdataori=fdataobj, trim = 0.25, nproj = 10, proj = 1, xeps = 1e-07, draw = FALSE, ...)

depth.RP(fdataobj, fdataori=fdataobj, trim=0.25, nproj=50, proj="vexponential", dfunc="TD1", par.dfunc=list(), scale=FALSE, draw=FALSE,...)

depth.RPD(fdataobj, fdataori=fdataobj, nproj=50, proj=1, deriv=c(0,1), trim=0.25, dfunc2=depth.mode, method="fmm", draw=FALSE,...)
```
**Depth for univariate fdata**

\[ \text{depth.FSD}(\text{fdataobj}, \text{fdataori} = \text{fdataobj}, \text{trim} = 0.25, \text{scale} = \text{FALSE}, \text{draw} = \text{FALSE}) \]

\[ \text{depth.KFSD}(\text{fdataobj}, \text{fdataori} = \text{fdataobj}, \text{trim} = 0.25, \text{h} = \text{NULL}, \text{scale} = \text{FALSE}, \text{draw} = \text{FALSE}) \]

**Arguments**

- **fdataobj**: A set of new curves to evaluate the depth. *fdata* class object.
- **fdataori**: A set of original curves where the depth is computed. *fdata* class object.
- **trim**: The alpha of the trimming.
- **nproj**: The number of projections.
- **proj**: matrix or *fdata* class object with a random projection provided by the user. If is a character: create the random projection using a covariance matrix by process indicated in the argument. Otherwise, it is a sigma parameter of *rproc2fdata* function.
- **dfunc**: type of univariate depth function used inside depth function: "FM1" refers to the original Fraiman and Muniz univariate depth (default), "TD1" Tukey (Half-space), "Liu" for simplicial depth, "LD1" for Likelihood depth and "MhD1" for Mahalanobis 1D depth. Also, any user function fulfilling the following pattern \( \text{FUN.USER}(x, xx,...) \) and returning a dep component can be included.
- **par.dfunc**: List of parameters for *dfunc*.
- **dfunc2**: Second depth function in RPD depth, by default *depth.mode*.
- **deriv**: Number of derivatives described in integer vector deriv. =0 means no derivative.
- **method**: Type of derivative method. See *fdata.deriv* for more details.
- **h**: Bandwidth parameter.
  1. If *h* is a numerical value, the procedure considers the argument value as bandwidth.
  2. If is NULL (by default) the bandwidth is provided as the 15%-quantile of the distance between *fdataobj* and *fdataori*.
  3. If *h* is a character string (like "q=0.15"), the procedure reads the numeric value from the third position of the character to the end and uses it to compute the quantile of the distance between *fdataobj* and *fdataori* (as in the second case).
- **metric**: Metric function, by default *metric.lp*. Distance matrix between *fdataobj* and *fdataori*.
- **scale** = TRUE, scale the depth.
- **xeps**: Accuracy. The left limit of the empirical distribution function.
- **draw** = TRUE, draw the curves, the sample median and trimmed mean.
- **...**: Further arguments passed to or from other methods.
Details

- The modal depth function calculates the depth of a datum accounting the number of curves in its neighbourhood. By default, the distance is calculated using the \texttt{metric.lp} function although any other distance could be employed through argument \texttt{metric} (with the general pattern USER.DIST(fdataobj,fdataori)).

- The \texttt{depth.RP} function summarizes the random projections through averages whereas the \texttt{depth.RT} function uses the minimum of all projections.

- The \texttt{depth.RPD} function involves the original trajectories and the derivatives of each curve in two steps. It builds random projections for the function and their derivatives (indicated in the parameter \texttt{deriv}) and then applies a depth function (by default \texttt{depth.mode}) to this set of random projections (by default the Tukey one).

- The \texttt{depth.FSD} and \texttt{depth.KFSD} are the implementations of the default versions of the functional spatial depths proposed in Sguera et al 2014. At this moment, it is not possible to change the kernel in the second one.

Value

\texttt{median}	Deepest curve.
\texttt{lmed}	Index deepest element \texttt{median}.
\texttt{mtrim}	\texttt{fdata} class object with the average from the (1-trim)% deepest curves.
\texttt{ltrim}	Indexes of curves that conform the trimmed mean \texttt{mtrim}.
\texttt{dep}	Depth of each curve of \texttt{fdataobj} \texttt{w.r.t.} \texttt{fdatalori}.
\texttt{dep.ori}	Depth of each curve of \texttt{fdatalori} \texttt{w.r.t.} \texttt{fdatalori}.
\texttt{proj}	The projection value of each point on the curves.
\texttt{dist}	Distance matrix between curves or functional data.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


Descriptive measures for functional data.

Description

Central and dispersion measures for functional data.

Usage

```
S3 method for class 'formula'
func.mean(formula, data = NULL,...,drop=FALSE)
func.mean(fdataobj)
func.var(fdataobj)
func.trim.FM(fdataobj,...)
func.trim.mode(fdataobj,...)
func.trim.RP(fdataobj,...)
func.trim.RT(fdataobj,...)
func.trim.RPD(fdataobj,...)
```
func.med.FM(fdataobj,...)
func.med.mode(fdataobj,...)
func.med.RP(fdataobj,...)
func.med.RT(fdataobj,...)
func.med.RPD(fdataobj,...)
func.trimvar.FM(fdataobj,...)
func.trimvar.mode(fdataobj,...)
func.trimvar.RP(fdataobj,...)
func.trimvar.RT(fdataobj,...)
func.trimvar.RPD(fdataobj,...)

Arguments

- **formula**: a formula, such as y ~ group, where y is a fdata object to be split into groups according to the grouping variable group (usually a factor).
- **data**: List that containing the variables in the formula. The item called "df" is a data frame with the grouping variable. The item called "y" is a fdata object.
- **drop**: logical indicating if levels that do not occur should be dropped (if f is a factor or a list).
- **fdataobj**: fdata class object.

... Further arguments passed to or from other methods. If the argument p is passed, it used metric.lp function, by default p=2. If the argument trim (alpha of the trimming) is passed, it used metric.lp function. If the argument deriv (number of derivatives to use) is passed. This parameter is used in depth.RPD function, by default it uses deriv = (0,1).

Value

**func.mean.formula** The value returned from split is a list of fdata containing the mean curves for the groups. The components of the list are named by the levels of f (after converting to a factor, or if already a factor and drop = TRUE, dropping unused levels).

- **func.mean** gives mean curve.
- **func.var** gives variance curve.
- **func.trim.FM** Returns the average from the (1-trim)% deepest curves following FM criteria.
- **func.trim.mode** Returns the average from the (1-trim)% deepest curves following mode criteria.
- **func.trim.RP** Returns the average from the (1-trim)% deepest curves following RP criteria.
- **func.trim.RT** Returns the average from the (1-trim)% deepest curves following RT criteria.
- **func.med.FM** Returns the deepest curve following FM criteria.
- **func.med.mode** Returns the deepest curve following mode criteria.
- **func.med.RP** Returns the deepest curve following RP criteria.
- **func.med.RPD** Returns the deepest curve following RPD criteria.
- **func.trimvar.FM** Returns the marginal variance from the deepest curves following FM criteria.
- **func.trimvar.mode** Returns the marginal variance from the deepest curves following mode criteria.
**func.trimvar.RP** Returns the marginal variance from the deepest curves following RP criteria.

**func.trimvar.RT** Returns the marginal variance from the deepest curves following RT criteria.

**func.trimvar.RPD** Returns the marginal variance from the deepest curves following RPD criteria.

**Author(s)**
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**

**Examples**

```r
Example with Montreal Daily Temperature (fda-package)
fdatabj<-fdata(MontrealTemp)

Measures of central tendency by group
fac<-factor(c(rep(1,len=17),rep(2,len=17)))
ldata=list("df"=data.frame(fac),"fdatabj"=fdatabj)
a1<-func.mean.formula(fdatabj~fac,ldata)
plot(a1)

Not run:
Measures of central tendency
a1<-func.mean(fdatabj)
a2<-func.trim.FM(fdatabj)
a3<-func.trim.mode(fdatabj)
a4<-func.trim.RP(fdatabj)
a5<func.trim.RPD(fdatabj,deriv=c(0,1)) # Time-consuming
a6<-func.med.FM(fdatabj)
a7<-func.med.mode(fdatabj)
a8<-func.med.RP(fdatabj)
a9<-func.med.RPD(fdatabj,deriv=c(0,1)) # Time-consuming
a10<func.med.RT(fdatabj)

dev.new()
par(mfrow=c(1,2))
plot(c(a1,a2,a3,a4),ylim=c(-26,29),main="Central tendency: trimmed mean")
plot(c(a1,a6,a7,a8),ylim=c(-26,29),main="Central tendency: median")

Measures of dispersion
b1<-func.var(fdatabj)
b2<-func.trimvar.FM(fdatabj)
b3<-func.trimvar.FM(fdatabj,trim=0.1)
b4<-func.trimvar.mode(fdatabj)
b5<-func.trimvar.mode(fdatabj,p=1)
```
The deviance score.

Description

Returns the deviance of a fitted model object by GCV score.

Usage

```
dev.S(y, S, obs, family = gaussian(), off, offdf, criteria = "GCV",
W = diag(1, ncol = ncol(S), nrow = nrow(S)), trim = 0,
draw = FALSE,...)
```

Arguments

- `y` Matrix of set cases with dimension (n x m), where n is the number of curves and m are the points observed in each curve.
- `obs` observed response.
- `S` Smoothing matrix.
- `family` a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See `family` for details of family functions.)
- `off` off
- `offdf` off, degrees of freedom
- `criteria` The penalizing function. By default "Rice" criteria. Possible values are "GCV", "AIC", "FPE", "Shibata", "Rice".
- `W` Matrix of weights.
- `trim` The alpha of the trimming.
- `draw` =TRUE, draw the curves, the sample median and trimmed mean.
- `...` Further arguments passed to or from other methods.
**Details**

up to a constant, minus twice the maximized log-likelihood. Where sensible, the constant is chosen so that a saturated model has deviance zero.

\[ GCV(h) = p(h)\Xi(n^{-1}h^{-1}) \]

Where

\[ p(h) = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - r_i(x_i) \right)^2 w(x_i) \]

and penalty function

\[ \Xi() \]

can be selected from the following criteria:

**Generalized Cross-validation (GCV):**

\[ \Xi_{GCV}(n^{-1}h^{-1}) = (1 - n^{-1}S_{ii})^{-2} \]

**Akaike’s Information Criterion (AIC):**

\[ \Xi_{AIC}(n^{-1}h^{-1}) = \exp(2n^{-1}S_{ii}) \]

**Finite Prediction Error (FPE)**

\[ \Xi_{FPE}(n^{-1}h^{-1}) = \frac{(1 + n^{-1}S_{ii})}{(1 - n^{-1}S_{ii})} \]

**Shibata’s model selector (Shibata):**

\[ \Xi_{Shibata}(n^{-1}h^{-1}) = (1 + 2n^{-1}S_{ii}) \]

**Rice’s bandwidth selector (Rice):**

\[ \Xi_{Rice}(n^{-1}h^{-1}) = (1 - 2n^{-1}S_{ii})^{-1} \]

**Value**

**res** Returns GCV score calculated for input parameters.
dfv.test

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as GCV.S.

Alternative method: CV.S

Examples

data(phoneme)
mlearn<-phoneme$learn
np<-ncol(mlearn)
tt<-mlearn["argvals"]
S1 <- S.WW(tt,2.5)
gcv1 <- dev.S(mlearn$data[1,],obs=(sample(150)),
S1,off=rep(1,150),offdf=3)
gcv2 <- dev.S(mlearn$data[1,],obs=sort(sample(150)),
S1,off=rep(1,150),offdf=3)

Description

The function dfv.test tests the null hypothesis of no interaction between a functional covariate and a scalar response in a general framework. The null hypothesis is

\[ H_0 : m(X) = 0, \]

where \( m(\cdot) \) denotes the regression function of the functional variate \( X \) over the centred scalar response \( Y \) (\( E[Y] = 0 \)). The null hypothesis is tested by the smoothed integrated square error of the response (see Details).
dfv.statistic (X.fdata, Y, h=quantile(x=metric.lp(X.fdata),
            probs=c(0.05, 0.10, 0.15, 0.25, 0.50)),
            K=function(x)2*dnorm(abs(x)),
            weights=rep(1,dim(X.fdata$data)[1]),
            d=metric.lp, 
            dist=NULL)

dfv.test (X.fdata, Y, B=5000, h=quantile(x=metric.lp(X.fdata),
            probs=c(0.05, 0.10, 0.15, 0.25, 0.50)),
            K=function(x)2*dnorm(abs(x)),
            weights=rep(1,dim(X.fdata$data)[1]),
            d=metric.lp, 
            verbose=TRUE)

Arguments

X.fdata  Functional covariate. The object must be in the class fdata.

Y  Scalar response. Must be a vector with the same number of elements as func-
tions are in X.fdata.

h  Bandwidth parameter for the kernel smoothing. This is a crucial parameter that
affects the power performance of the test. One possibility to choose it is con-
sidering the Cross-validatory bandwidth of the nonparametric functional regres-
sion, given by the function fregre.np (see Examples). Other possibility is to
consider a grid of bandwidths. This is the default option, considering the grid
given by the quantiles 0.05, 0.10, 0.15, 0.25 and 0.50 of the functional $L^2$
distances of the data.

B  Number of bootstrap replicates to calibrate the distribution of the test statistic.
B=5000 replicates are the recommended for carry out the test, although for ex-
ploratory analysis (not inferential), an acceptable less time-consuming option
is B=500.

K  Kernel function. If no specified it is taken to be the rescaled right part of the
normal density.

weights  A vector of weights for the sample data. The default is the uniform weights
rep(1,dim(X.fdata$data)[1]).

d  Semimetric to use in the kernel smoothers. By default is the $L^2$ distance given
by metric.lp.

dist  Matrix of distances of the functional data, used to save time in the bootstrap cali-
bration. If not given, the matrix is automatically computed using the semimetric
d.

verbose  Either to show or not information about computing progress.

Details

The Delsol, Ferraty and Vieu statistic is defined as

$$T_n = \int \left( \sum_{i=1}^{n} (Y_i - m(X_i))K \left( \frac{d(X, X_i)}{h} \right) \right)^2 \omega(X) dP_X(X)$$
and in the case of no interaction with centred scalar response (when \( H_0: \, m(X) = 0 \) holds), its sample version is computed from

\[
T_n = \frac{1}{n} \sum_{j=1}^{n} \left( \sum_{i=1}^{n} Y_i K\left( \frac{d(X_j, X_i)}{h} \right) \right)^2 \omega(X_j).
\]

The sample version implemented here does not consider a splitting of the sample, as the authors comment in their paper. The statistic is computed by the function `dfv.statistic` and, before applying the test, the response \( Y \) is centred. The distribution of the test statistic is approximated by a wild bootstrap on the residuals, using the golden section bootstrap.

Please note that if a grid of bandwidths is passed, a harmless warning message will prompt at the end of the test (it comes from returning several p-values in the `htest` class).

**Value**

The value of `dfv.statistic` is a vector of length `length(h)` with the values of the statistic for each bandwidth. The value of `dfv.test` is an object with class "htest" whose underlying structure is a list containing the following components:

- `statistic`: The value of the Delsol, Ferraty and Vieu test statistic.
- `boot.statistics`: A vector of length `B` with the values of the bootstrap test statistics.
- `p.value`: The p-value of the test.
- `method`: The character string "Delsol, Ferraty and Vieu test for no functional-scalar interaction".
- `B`: The number of bootstrap replicates used.
- `h`: Bandwidth parameters for the test.
- `K`: Kernel function used.
- `weights`: The weights considered.
- `d`: Matrix of distances of the functional data.
- `data.name`: The character string "Y=0+e"

**Note**

No NA's are allowed neither in the functional covariate nor in the scalar response.

**Author(s)**

Eduardo Garcia-Portugues. Please, report bugs and suggestions to <egarcia@math.ku.dk>

**References**


Delsol, L. (2013). No effect tests in regression on functional variable and some applications to spectrometric studies. Computational Statistics, 28(4), 1775-1811. [http://dx.doi.org/10.1007/s00180-012-0378-1](http://dx.doi.org/10.1007/s00180-012-0378-1)
See Also
rwild, flm.test, flm.Ftest, fregre.np

Examples

```r
Simulated example

X = rproc2fdata(n = 50, t = seq(0, 1, l = 101), sigma = "OU")

beta0 = fdata(mdata = rep(0, length = 101) + rnorm(101, sd = 0.05),
argvals = seq(0, 1, l = 101), rangeval = c(0, 1))
beta1 = fdata(mdata = cos(2*pi*seq(0, 1, l = 101)) - (seq(0, 1, l = 101) - 0.5)^2 +
 rnorm(101, sd = 0.05), argvals = seq(0, 1, l = 101), rangeval = c(0, 1))

Null hypothesis holds
Y0 = drop(inprod.fdata(X, beta0) + rnorm(50, sd = 0.1))

Null hypothesis does not hold
Y1 = drop(inprod.fdata(X, beta1) + rnorm(50, sd = 0.1))

We use the CV bandwidth given by fregre.np
Do not reject H0
dfv.test(X, Y0, h = fregre.np(X, Y0)$h.opt, B = 100)
dfv.test(X, Y0, B = 5000)

Reject H0
dfv.test(X, Y1, B = 100)
dfv.test(X, Y1, B = 5000)
```

---

dis.cos.cor  Proximities between functional data

Description
Computes the cosine correlation distance between two functional dataset.

Usage

dis.cos.cor(fdata1, fdata2 = NULL, as.dis = FALSE)

Arguments

- `fdata1`: Functional data 1 or curve 1.
- `fdata2`: Functional data 2 or curve 2.
- `as.dis`: Returns the distance matrix from class dist.
Details

Computes the cosine correlation distance between two functional dataset of class \texttt{fdata}.

Value

Returns a proximities matrix between functional data.

References


See Also

See also \texttt{metric.lp} and \texttt{semimetric.NPFD}

Examples

```r
r1<-rnorm(1001, sd=.01)
r2<-rnorm(1001, sd=.01)
x<-seq(0,2*pi,length=1001)
fx<-fdata(sin(x)/sqrt(pi)+r1,x)
dis.cos.cor(fx,fx)
dis.cos.cor(c(fx,fx), as.dis=TRUE)
fx0<-fdata(rep(0,length(x))+r2,x)
plot(c(fx,fx0))
dis.cos.cor(c(fx,fx0), as.dis=TRUE)
```

---

\textit{fda.usc.internal} \hspace{1cm} \textit{fda.usc internal functions}

Description

Internal undocumentation functions for fda.usc package.

Usage

```r
S3 method for class 'fdata'
fdataobj[i = TRUE, j = TRUE, drop=FALSE]
S3 method for class 'fdist'
fdataobj[i = TRUE, j = TRUE, drop=FALSE]
S3 method for class 'fdata'
fdatal == fdata2
S3 method for class 'fdata'
fdatal != fdata2
S3 method for class 'fdata'
```
fdata1 + fdata2  
## S3 method for class 'fdata'
fdata1 - fdata2  
## S3 method for class 'fdata'
fdata1 * fdata2  
## S3 method for class 'fdata'
fdata1 / fdata2  
## S3 method for class 'fdata'
fdataobj ^ pot  
## S3 method for class 'fdata'
c(...)  
## S3 method for class 'fdata'
dim(x)  
## S3 method for class 'fdata'
nrow(x)  
## S3 method for class 'fdata'
ncol(x)  
## S3 method for class 'fdata'
NROW(x)  
## S3 method for class 'fdata'
NCOL(x)  
## S3 method for class 'fdata'
length(x)  
## S3 method for class 'fdata'
is(fdataobj)  
## S3 method for class 'fdata'
omit(fdataobj,y=NULL)  
## S3 method for class 'fdata'
omit2(fdataobj,index.na=FALSE)  
## S3 method for class 'fdata'
missing(fdataobj,basis=NULL)  
## S3 method for class 'fdata'
is.na(x)  
## S3 method for class 'fdata'
anyNA(x, recursive = FALSE)
count.na.fdata( x )  
arvals(fdataobj)  
rangeval(fdataobj)

Arguments

x, fdataobj, fdata1, fdata2
    fdata class object.
i, j  
    Indices specifying elements to extract, replace. Indices are numeric or character vectors or empty
pot  
    Numeric value for exponentiation.
drop  
    For fdata class object. If TRUE the result is coerced to the lowest possible
dimension of element data. This only works for extracting elements, not for the replacement.

... fdata objects to be concatenated.

y Vector

basis fd basis

index.na Return the index of NA elements

recursive should anyNA be applied recursively to lists and pairlists?

Note

In "Ops" functions "+.fdata", "- .fdata", ".fdata" and "/ .fdata": The lengths of the objects fdata1 and fdata2 may be different because operates recycled into minimum size as necessary.

References


fdata

Converts raw data or other functional data classes into fdata class.

Description

Create a functional data object of class fdata from (matrix, data.frame, numeric, integer, fd, fds, fts or sfts) class data.

Usage

fdata(mdata, argvals=NULL, rangeval=NULL, names=NULL, fdata2d=FALSE)

Arguments

mdata Matrix of set cases with dimension (n x m), where n is the number of curves and m are the points observed in each curve.

argvals Argvals, by default: 1:m.

rangeval (optional) Range of discretization points, by default: range(argvals).

names (optional) list with tree components: main an overall title, xlab title for x axis and ylab title for y axis.

fdata2d TRUE class fdata2d, the functional data is observed in at least a two grids (the argvals is a list of vectors). By default fdata2d=FALSE the functional data is observed in a single grid (the argvals is a vector).
Value

Return fdata class object with:

- "data": matrix of set cases with dimension \((n \times m)\), where \(n\) is the number of curves and \(m\) are the points observed in each curve
- "rangeval": the discretizations points values, if not provided: \(1:m\)
- "rangeval": range of the discretizations points values, by default: range(argvals)
- "names": (optional) list with main an overall title, xlab title for x axis and ylab title for y axis.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as plot.fdata

Examples

data(phoneme)
mlearn<-phoneme$mlearn[1:4,1:150]
# Center curves
fdata.c=fdata.cen(mlearn)$Xcen
par(mfrow=c(2,1))
plot.fdata(mlearn,type="l")
plot.fdata(fdata.c,type="l")

# Convert from class fda to fdata
bsp1 <- create.bspline.basis(c(1,150),21)
fd1 <- Data2fd(1:150,y=mlearn$data,basisobj=bsp1)
fdataobj=fdata(fd1)

# Convert from class fds, fts or sfts to fdata
#require(fds)
#a=fds(x = 1:20, y = Simulation$data$y, xname = "x", # yname = "Simulated value")
#b=fts(x = 15:49, y = Australia$smoothfertility$y, xname = "Age", # yname = "Fertility rate")
#c=sfts(ts(as.numeric(EINino$y), frequency = 12), xname = "Month", #yname = "Sea surface temperature")
#class(a);class(b);class(c)
#fdataobj=fdata(b)
fdata.bootstrap

Bootstrap samples of a functional statistic

Description

fdata.bootstrap provides bootstrap samples for functional data.

Usage

fdataNbootstrap(fdataobj, statistic=func.mean, alpha=0.05,
nb=200, smo=0.0, draw=FALSE, draw.control=NULL,...)

Arguments

fdataobj fdata class object.
statistic Sample statistic. It must be a function that returns an object of class fdata. By
default, it uses sample mean func.mean. See Descriptive for other statistics.
alpha Significance value.
nb Number of bootstrap resamples.
smo The smoothing parameter for the bootstrap samples as a proportion of the sample
variance matrix.
draw =TRUE, plot the bootstrap samples and the statistic.
draw.control list that it specifies the col, lty and lwd for objects: fdataobj, statistic, IN
and OUT.
... Further arguments passed to or from other methods.

Details

The fdata.bootstrap() computes a confidence ball using bootstrap in the following way:

- Let \( X_1(t), \ldots, X_n(t) \) the original data and \( T = T(X_1(t), \ldots, X_n(t)) \) the sample statistic.
- Calculate the nb bootstrap resamples \( \{ X_1^*(t), \ldots, X_n^*(t) \} \), using the following scheme \( X_i^*(t) = X_i(t) + Z(t) \) where \( Z(t) \) is normally distributed with mean 0 and covariance matrix \( \gamma \Sigma_x \), where \( \Sigma_x \) is the covariance matrix of \( \{ X_1(t), \ldots, X_n(t) \} \) and \( \gamma \) is the smoothing parameter.
- Let \( T^*j = T(X_1^{*j}(t), \ldots, X_n^{*j}(t)) \) the estimate using the j resample.
- Compute \( d(T, T^*j), j = 1, \ldots, nb \). Define the bootstrap confidence ball of level \( 1 - \alpha \) as \( CB(\alpha) = X \in E \) such that \( d(T, X) \leq d_\alpha \) being \( d_\alpha \) the quantile \( (1 - \alpha) \) of the distances between the bootstrap resamples and the sample estimate.

The fdata.bootstrap function allows us to define a statistic calculated on the nb resamples, control the degree of smoothing by smo argument and represent the confidence ball with level \( 1 - \alpha \) as those resamples that fulfill the condition of belonging to \( CB(\alpha) \). The statistic used by default is the mean (func.mean) but also other depth-based functions can be used (see help(Descriptive)).
**Value**

- `statistic`: fdata class object with the statistic estimate from nb bootstrap samples.
- `dband`: Bootstrap estimate of (1-\alpha)\% distance.
- `rep.dist`: Distance from every replicate.
- `resamples`: fdata class object with the bootstrap resamples.
- `fdataobj`: fdata class object.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**


**See Also**

See Also as [Descriptive](#)

**Examples**

```r
Not run:
data(tecator)
absorp<-tecator$absorp$fdata
Time consuming
#Bootstrap for Trimmed Mean with depth mode
out.boot=fdata.bootstrap(absorp,statistic=func.trim.FM,nb=200,draw=TRUE)
names(out.boot)
#Bootstrap for Median with depth mode
control=list("col"=c("grey","blue","cyan"),"lty"=c(2,1,1),"lwd"=c(1,3,1))
out.boot=fdata.bootstrap(absorp,statistic=func.med.mode,
draw=TRUE,draw.control=control)
End(Not run)
```
fdata.cen

Functional data centred (subtract the mean of each discretization point)

Description

The function fdata.cen centres the curves by subtracting the functional mean.

Usage

fdata.cen(fdataobj, meanX = func.mean(fdataobj))

Arguments

- fdataobj: fdata class object.
- meanX: The functional mean subtracted in the fdataobj.

Value

Return:
- two fdata class objects with:
  - Xcen: The centered fdata.
  - meanX: Functional mean substracted.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See Also as fdata

Examples

data(phoneme)
mlearn <- phoneme[["learn"]][13:15, ]
fdata.c = fdata.cen(mlearn)$Xcen
par(mfrow=c(1,2))
plot.fdata(mlearn,type="l")
plot.fdata(fdata.c,type="l")
fdata.deriv  Computes the derivative of functional data object.

Description
Computes the derivative of functional data.

Usage
fdata.deriv(fdataobj,nderiv=1,method="bspline",class.out='fdata'
, nbasis=NULL,...)

Arguments
fdataobj      fdata class object.
nderiv           Order of derivation, by default nderiv=1.
method          Type of derivative method, for more information see details.
class.out       Class of functional data returned: fdata or fd class.
nbasis            Number of Basis for fdataobj$DATA. It is only used if method ="bspline",
                             "exponential", "fourier", "monomial" or "polynomial"
...                      Further arguments passed to or from other methods.

Details
- If method ="bspline", "exponential", "fourier", "monomial" or "polynomial" fdata.deriv
  function creates a basis to represent the functional data. The functional data are converted to
class fd using the Data2fd function and the basis indicated in the method. Finally, the func-
tion calculates the derivative of order nderiv of curves using deriv.fd function.

- If method="fmm", "periodic", "natural" or "monoH.FC" is used splinefun function.

- If method="diff", raw derivation is applied. Not recommended to use this method when the
  values are not equally spaced.

Value
Returns the derivative of functional data of fd class if class.out="fd" or
fdata class if class.out="fdata".

See Also
See also deriv.fd, splinefun and fdata
Examples

data(tecator)
absorp=tecator$absorp.fdata
tecator.fd1=fdata2fd(absorp)
teator.fd2=fdata2fd(absorp,"fourier",9)
teator.fd3=fdata2fd(absorp,"fourier",nbasis=9,nnderiv=1)
#teator.fd1;teator.fd2;teator.fd3
teator.fdata1=fdata(teator.fd1)
teator.fdata2=fdata(teator.fd2)
teator.fdata3=fdata(teator.fd3)
teator.fdata4=fdata.deriv(absorp,nnderiv=1,method="bspline",
class.out='fdata',nbasis=9)
teator.fd4=fdata.deriv(teator.fd3,nnderiv=0,class.out='fd',nbasis=9)
plot(teator.fdata4)
plot(fdata.deriv(absorp,nnderiv=1,method="bspline",class.out='fd',nbasis=11))

fdata.methods  fdata S3 Group Generic Functions

Description

fdata Group generic methods defined for four specified groups of functions, Math, Ops, Summary and Complex.

Usage

## S3 method for class 'fdata'
Math(x, ...)
## S3 method for class 'fdata'
Ops(e1, e2)
## S3 method for class 'fdata'
Summary(..., na.rm = FALSE)

Arguments

- `x,e1,e2`  fdata class object.
- `...`  Further arguments passed to methods.
- `na.rm`  logical: should missing values be removed?

See Also

See Summary and Complex.
Examples

# Convert tecator fdata object to fd object
fdataobj <- tecator$absorp.fdata
absor2 <- fdata.deriv(absor, 1)
absor2[1:5, 1:4]

data(tecator)
absor <- tecator$absorp.fdata
absor2 <- fdata.deriv(absor, 1)
absor2[1:5, 1:4]
sum(absor)
round(absor, 4)
log1 <- log(absor)

---

fdata2fd  

Converts fdata class object into fd class object

Description

Converts fdata class object into fd class object using Data2fd function.

Usage

fdata2fd(fdataobj, type.basis=NULL, nbasis=NULL, nderiv=0, lambda=NULL, ...)

Arguments

- `fdataobj`: fdata class object.
- `type.basis`: Type of basis. A function create."type.basis".basis must exists. By default, bspline basis is used.
- `nbasis`: Number of basis which is used in create.basis function.
- `nderiv`: Order of derivation which is used in deriv.fd function (optional).
- `lambda`: Weight on the smoothing operator specified by nderiv.
- `...`: Further arguments passed to or from other methods.

Value

Return an object of the fd class.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as fdata and Data2fd

Examples

data(phoneme)
mlearn<-phoneme$mlearn[1,]
fdata2=fdata2fd(mlearn)
class(mlearn)
class(fdata2)
fdata3=fdata2fd(mlearn,type.basis="fourier",nbasis=7)
plot(mlearn)
lines(fdata2,col=2)
lines(fdata3,col=3)
fdata5=fdata2fd(mlearn,nderiv=1)

fdata2pc  Principal components for functional data

Description

Compute (penalized) principal components for functional data. fdata2ppc is deprecated.

Usage

fdata2pc(fdataobj, ncomp = 2, norm = TRUE, lambda = 0, P = c(0, 0, 1), ...)
fdata2ppc(fdataobj, ncomp = 2, norm = TRUE, lambda = 0, P = c(0, 0, 1), ...)

Arguments

fdataobj  fdata class object.
ncomp  Number of principal comonents.
norm  =TRUE the norm of eigenvectors (rotation) is 1.
lambda  Amount of penalization. Default value is 0, i.e. no penalization is used.
P  If P is a vector: coefficients to define the penalty matrix object. By default P=c(0,0,1) penalize the second derivative (curvature) or acceleration. If P is a matrix: the penalty matrix object.
...  Further arguments passed to or from other methods.
Details

Smoothing is achieved by penalizing the integral of the square of the derivative of order \( m \) over rangeval:

- \( m = 0 \) penalizes the squared difference from 0 of the function
- \( m = 1 \) penalize the square of the slope or velocity
- \( m = 2 \) penalize the squared acceleration
- \( m = 3 \) penalize the squared rate of change of acceleration

Value

d
The standard deviations of the functional principal components.

rotation
are also known as loadings. A fdata class object whose rows contain the eigenvectors.

x
are also known as scores. The value of the rotated functional data is returned.

fdataobj.cen
The centered fdataobj object.

mean
The functional mean of fdataobj object.

l
Vector of index of principal components.

C
The matched call.

lambda
Amount of penalization.

p
Penalty matrix.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as svd and varimax.
## Examples

```r
Not run:
n = 100; tt = seq(0,1,len=51)
x0 <- rproc2fdata(n, tt, sigma="wiener")
x1 <- rproc2fdata(n, tt, sigma=0.1)
x <- x0*x0+x1
pc = fdata2ppc(x, lambda=1)
summary(pc)
End(Not run)
```

## Description

Compute penalized partial least squares (PLS) components for functional data. `fdata2ppls` is deprecated.

## Usage

```r
fdata2pls(fdataobj, y, ncomp = 2, lambda = 0, P = c(0, 0, 1), norm=TRUE,...)
fdata2ppls(fdataobj, y, ncomp = 2, lambda = 0, P = c(0, 0, 1), norm=TRUE,...)
```

## Arguments

- `fdataobj`: `fdata` class object.
- `y`: Scalar response with length `n`.
- `ncomp`: The number of components to include in the model.
- `lambda`: Amount of penalization. Default value is 0, i.e. no penalization is used.
- `P`: If `P` is a vector: coefficients to define the penalty matrix object. By default `P=c(0,0,1)` penalize the second derivative (curvature) or acceleration. If `P` is a matrix: the penalty matrix object.
- `norm`: =TRUE the `fdataobj` are centered and scaled.
- `...`: Further arguments passed to or from other methods.

## Details

If `norm=TRUE`, computes the PLS by NIPALS algorithm and the Degrees of Freedom using the Krylov representation of PLS, see Kraemer and Sugiyama (2011).

If `norm=FALSE`, computes the PLS by Orthogonal Scores Algorithm and the Degrees of Freedom are the number of components `ncomp`, see Martens and Naes (1989).
Value

fdata2pls function return:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>degree of freedom</td>
</tr>
<tr>
<td>rotation</td>
<td>fdata class object.</td>
</tr>
<tr>
<td>x</td>
<td>Is true the value of the rotated data (the centred data multiplied by the rotation matrix) is returned.</td>
</tr>
<tr>
<td>fdataobj.cen</td>
<td>The centered fdataobj object.</td>
</tr>
<tr>
<td>mean</td>
<td>mean of fdataobj.</td>
</tr>
<tr>
<td>l</td>
<td>Vector of index of principal components.</td>
</tr>
<tr>
<td>C</td>
<td>The matched call.</td>
</tr>
<tr>
<td>lambda</td>
<td>Amount of penalization.</td>
</tr>
<tr>
<td>P</td>
<td>Penalty matrix.</td>
</tr>
</tbody>
</table>

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

Used in: *fregre.pls, fregre.pls.cv*. Alternative method: *fdata2pc*.

Examples

```r
Not run:
n = 500; tt = seq(0,1,len=101)
x0<-rproc2fdata(n,tt,sigma="wiener")
x1<-rproc2fdata(n,tt,sigma=0.1)
x<-x0*3+x1
beta = tt*sin(2*pi*tt)^2
fbeta = fdata(beta,tt)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)
pls1=fdata2pls(x,y)
norm.fdata(pls1$rotation)

End(Not run)
```
**FDR**

*False Discorvery Rate (FDR)*

**Description**

Compute the False Discovery Rate for a vector of p-values and alpha value.

**Usage**

```r
FDR(pvalues, alpha=0.95, dep=1)
pvalue.FDR(pvalues, dep=1)
```

**Arguments**

- `pvalues` Vector of p-values
- `alpha` Alpha value (level of significance).
- `dep` Parameter dependence test. By default `dep = 1`, direct dependence between tests.

**Details**

FDR method is used for multiple hypothesis testing to correct problems of multiple contrasts.

If `dep = 1`, the tests are positively correlated, for example when many tests are the same contrast.

If `dep < 1` the tests are negatively correlated.

**Value**

Return:

- `out.FDR` = TRUE. If there are significative differences.
- `pv.FDR` p-value for False Discovery Rate test.

**Author(s)**

Febrero-Bande, M. and Oviedo de la Fuente, M.

**References**


**See Also**

Function used in `anova.RPm`
**Examples**

```r
p = seq(1:50)/1000
FDR(p)
pvalue.FDR(p)
FDR(p, alpha=0.9999)
FDR(p, alpha=0.9)
FDR(p, alpha=0.9, dep=-1)
```

---

**flm.Ftest**  
F-test for the Functional Linear Model with scalar response

**Description**

The function `flm.Ftest` tests the null hypothesis of no interaction between a functional covariate and a scalar response inside the Functional Linear Model (FLM): \( Y = \langle X, \beta \rangle + \epsilon \). The null hypothesis is \( H_0 : \beta = 0 \) and the alternative is \( H_1 : \beta \neq 0 \). The null hypothesis is tested by a functional extension of the classical F-test (see Details).

**Usage**

```r
ftest.statistic (X.fdata, Y)
flm.Ftest (X.fdata, Y, B=5000, verbose=TRUE)
```

**Arguments**

- `X.fdata`: Functional covariate for the FLM. The object must be in the class `fdata`.
- `Y`: Scalar response for the FLM. Must be a vector with the same number of elements as functions are in `X.fdata`.
- `B`: Number of bootstrap replicates to calibrate the distribution of the test statistic. `B=5000` replicates are the recommended for carry out the test, although for exploratory analysis (not inferential), an acceptable less time-consuming option is `B=500`.
- `verbose`: Either to show or not information about computing progress.

**Details**

The Functional Linear Model with scalar response (FLM), is defined as \( Y = \langle X, \beta \rangle + \epsilon \), for a functional process \( X \) such that \( E[X(t)] = 0 \), \( E[X(t)e] = 0 \) for all \( t \) and for a scalar variable \( Y \) such that \( E[Y] = 0 \). The functional F-test is defined as

\[
T_n = \left\| \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) \right\|,
\]

where \( \bar{X} \) is the functional mean of \( X \), \( \bar{Y} \) is the ordinary mean of \( Y \) and \( \| \cdot \| \) is the \( L^2 \) functional norm. The statistic is computed with the function `ftest.statistic`. The distribution of the test statistic is approximated by a wild bootstrap resampling on the residuals, using the golden section bootstrap.
Value

The value for `ftest.statistic` is simply the F-test statistic. The value for `flm.Ftest` is an object with class "htest" whose underlying structure is a list containing the following components:

- **statistic**: The value of the F-test statistic.
- **boot.statistics**: A vector of length B with the values of the bootstrap F-test statistics.
- **p.value**: The p-value of the test.
- **method**: The character string "Functional Linear Model F-test".
- **B**: The number of bootstrap replicates used.
- **data.name**: The character string "Y=<X,0>+e"

Note

No NA's are allowed neither in the functional covariate nor in the scalar response.

Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to <egarcia@math.ku.dk>

References


See Also

`rwild`, `flm.test`, `dfv.test`

Examples

```r
Simulated example

X=rproc2fdata(n=50, t=seq(0,1,l=101), sigma="OU")
beta0=fdata(mdata=rep(0,length=101)+rnorm(101, sd=0.05),
 argvals=seq(0,1,l=101), rangeval=c(0,1))
beta1=fdata(mdata=cos(2*pi*seq(0,1,l=101))-seq(0,1,l=101)-0.5)^2+
 rnorm(101, sd=0.05), argvals=seq(0,1,l=101), rangeval=c(0,1))

Null hypothesis holds
Y0=drop(inpred.fdata(X,beta0)+rnorm(50, sd=0.1))
```
# Null hypothesis does not hold
Y1=drop(inprod.fdata(X,beta)+rnorm(50, sd=0.1))

## Not run:
## Do not reject H0
flm.ftest(X,Y0,B=100)
flm.ftest(X,Y0,B=5000)

## Reject H0
flm.ftest(X,Y1,B=100)
flm.ftest(X,Y1,B=5000)

## End(Not run)

flm.test  

**Goodness-of-fit test for the Functional Linear Model with scalar response**

**Description**

The function `flm.test` tests the composite null hypothesis of a Functional Linear Model with scalar response (FLM),

\[ H_0 : Y = \langle X, \beta \rangle + \epsilon, \]

everse a general alternative. If \( \beta = \beta_0 \) is provided, then the simple hypothesis \( H_0 : Y = \langle X, \beta_0 \rangle + \epsilon \) is tested. The testing of the null hypothesis is done by a Projected Cramer-von Mises statistic (see Details).

**Usage**

```r
flm.test (X.fdata, Y, beta0.fdata = NULL, B = 5000,
est.method = "pls", p = NULL, type.basis = "bspline",
verbose = TRUE, plot.it = TRUE, B.plot = 100,
G = 200,...)
```

**Arguments**

- **X.fdata**  
  Functional covariate for the FLM. The object must be in the class `fdata`.

- **Y**  
  Scalar response for the FLM. Must be a vector with the same number of elements as functions are in `X.fdata`.

- **beta0.fdata**  
  Functional parameter for the simple null hypothesis, in the `fdata` class. Recall that the `argvals` and `rangeval` arguments of `beta0.fdata` must be the same of `X.fdata`. A possibility to do this is to consider, for example for \( \beta_0 = 0 \) (the simple null hypothesis of no interaction),

  ```r
 beta0.fdata=fdata(mdata=rep(0,length(X.fdata$argvals)),
 argvals=X.fdata$argvals,rangeval=X.fdata$rangeval).
  ```

  If `beta0.fdata=NULL` (default), the function will test for the composite null hypothesis.
**B** Number of bootstrap replicates to calibrate the distribution of the test statistic. B=5000 replicates are the recommended for carry out the test, although for exploratory analysis (not inferential), an acceptable less time-consuming option is B=500.

**est.method** Estimation method for the unknown parameter $\beta$, only used in the composite case. Mainly, there are two options: specify the number of basis elements for the estimated $\beta$ by $p$ or optimally select $p$ by a data-driven criteria (see Details section for discussion). Then, it must be one of the following methods:

- "pc" If $p$, the number of basis elements, is given, then $\beta$ is estimated by `fregre.pc`. Otherwise, an optimum $p$ is chosen using `fregre.pc.cv` and the "SIcc" criteria.
- "pls" If $p$ is given, $\beta$ is estimated by `fregre.pls`. Otherwise, an optimum $p$ is chosen using `fregre.pls.cv` and the "SIcc" criteria. This is the default argument as it has been checked empirically that provides a good balance between the performance of the test and the estimation of $\beta$.
- "basis" If $p$ is given, $\beta$ is estimated by `fregre.basis`. Otherwise, an optimum $p$ is chosen using `fregre.basis.cv` and the "GCV.S" criteria. In these functions, the same basis for the arguments `basis` and `basis.b` is considered. The type of basis used will be the given by the argument `type.basis` and must be one of the class of `create.basis`. Further arguments passed to `create.basis` (not rangeval that is taken as the rangeval of `X.fdata`), can be passed throughout . . .

**p** Number of elements of the basis considered. If it is not given, an optimal $p$ will be chosen using a specific criteria (see est.method and type.basis arguments).

**type.basis** Type of basis used to represent the functional process. Depending on the hypothesis it will have a different interpretation:

- Simple hypothesis. One of these options:
  - "bspline" If $p$ is given, the functional process is expressed in a basis of $p$ B-splines. If not, an optimal $p$ will be chosen by `min.basis`, using the "GCV.S" criteria.
  - "fourier" If $p$ is given, the functional process is expressed in a basis of $p$ fourier functions. If not, an optimal $p$ will be chosen by `min.basis`, using the "GCV.S" criteria.
  - "pc" $p$ must be given. Expresses the functional process in a basis of $p$ PC.
  - "pls" $p$ must be given. Expresses the functional process in a basis of $p$ PLS.

Although other of the basis supported by `create.basis` are possible too, "bspline" and "fourier" are recommended. Other basis may cause incompatibilities.

- Composite hypothesis. This argument is only used when est.method="basis" and, in this case, claims for the type of basis used in the basis estimation method of the functional parameter. Again, basis "bspline" and "fourier" are recommended, as other basis may cause incompatibilities.
verbose Either to show or not information about computing progress.
plot.it Either to show or not a graph of the observed trajectory, and the bootstrap trajectories under the null composite hypothesis, of the process $R_n(\cdot)$ (see Details). Note that if plot.it=TRUE, the function takes more time to run.
B.plot Number of bootstrap trajectories to show in the resulting plot of the test. As the trajectories shown are the first B.plot of B, B.plot must be lower or equal to B.
G Number of projections used to compute the trajectories of the process $R_n(\cdot)$ by Monte Carlo.

Details

The Functional Linear Model with scalar response (FLM), is defined as $Y = \langle X, \beta \rangle + \epsilon$, for a functional process $X$ such that $E[X(t)] = 0$, $E[X(t)\epsilon] = 0$ for all $t$ and for a scalar variable $Y$ such that $E[Y] = 0$. Then, the test assumes that $Y$ and $X$ fdata are centred and will automatically center them. So, bear in mind that when you apply the test for $Y$ and $X$ fdata, actually, you are applying it to $Y\text{mean}(Y)$ and $fdata\text{cen}(X.fdata)$.

The test statistic corresponds to the Cramer-von Mises norm of the Residual Marked empirical Process based on Projections $R_n(u, \gamma)$ defined in Garcia-Portugues et al. (2014). The expression of this process in a $p$-truncated basis of the space $L^2(0, T)$ leads to the $p$-multivariate process $R_{n,p}(u, \gamma(p))$, whose Cramer-von Mises norm is computed.

The choice of an appropriate $p$ to represent the functional process $X$, in case that is not provided, is done via the estimation of $\beta$ for the composite hypothesis. For the simple hypothesis, as no estimation of $\beta$ is done, the choice of $p$ depends only on the functional process $X$. As the result of the test may change for different $p$’s, we recommend to use an automatic criterion to select $p$ instead of provide a fixed one. The distribution of the test statistic is approximated by a wild bootstrap resampling on the residuals, using the golden section bootstrap.

Finally, the graph shown if plot.it=TRUE represents the observed trajectory, and the bootstrap trajectories under the null, of the process RMPP integrated on the projections:

$$R_n(u) \approx \frac{1}{G} \sum_{g=1}^{G} R_n(u, \gamma_g),$$

where $\gamma_g$ are simulated as Gaussians processes. This gives a graphical idea of how distant is the observed trajectory from the null hypothesis.

Value

An object with class “bhtest” whose underlying structure is a list containing the following components:

- statistic The value of the test statistic.
- boot.statistics A vector of length B with the values of the bootstrap test statistics.
- p.value The p-value of the test.
- method The method used.
B  The number of bootstrap replicates used.

type.basis  The type of basis used.

beta.est  The estimated functional parameter $\beta$ in the composite hypothesis. For the simple hypothesis, the given $\text{beta0.fdata}$.

p  The number of basis elements passed or automatically chosen.

ord  The optimal order for PC and PLS given by $\text{fregre.pc.cv}$ and $\text{fregre.pls.cv}$. For other methods is setted to 1:p.

data.name  The character string "Y=<X,b>+e"

Note

No NA's are allowed neither in the functional covariate nor in the scalar response.

Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to <egarcia@math.ku.dk>

References


See Also

$\text{Adot}$, $\text{PCvM.statistic}$, $\text{rwild}$, $\text{flm.Ftest}$, $\text{dfv.test}$, $\text{fregre.pc}$, $\text{fregre.pls}$, $\text{fregre.basis}$, $\text{fregre.pc.cv}$, $\text{fregre.pls.cv}$, $\text{fregre.basis.cv}$, $\text{min.basis}$, $\text{create.basis}$

Examples

# Simulated example #

X=rproc2fdata(n=100, t=seq(0,1,l=10), sigma="OU")
beta0=fdata(mdata=cos(2*pi*seq(0,1,l=10))-(seq(0,1,l=10)-0.5)^2+
    rnorm(101,sd=0.05), argvals=seq(0,1,l=10), rangeval=c(0,1))
Y=inprod.fdata(X,beta0)+rnorm(100,sd=0.1)

dev.new(width=21,height=7)
par(mfrow=c(1,3))
plot(X,main="X")
plot(beta0,main="beta0")
plot(density(Y),main="Density of Y",xlab="Y",ylab="Density")
rug(Y)
## AEMET dataset

```r
data(aemet)

data without outliers
wind.speed=apply(aemet$wind.speed$data,1,mean)[-1]
temp=aemet$temp[-1]

Exploratory analysis: accept the FLM
pcvm.aemet=flm.test(temp,wind.speed,est.method="pls",B=100,B.plot=50,G=100)

Estimated beta
plot(pcvm.aemet$beta.est,lwd=2,col=2)

B=5000 for more precision on calibration of the test: also accept the FLM
flm.test(temp,wind.speed,est.method="pls",B=5000)
```

## Simple hypothesis: rejection of beta0=0? Limiting p-value...
```r
dat=rep(0,length(temp$argvals))
flm.test(temp,wind.speed, beta0.fdata=fdata(mdata=dat,argvals=temp$argvals, rangeval=temp$rangeval),B=100)
flm.test(temp,wind.speed, beta0.fdata=fdata(mdata=dat,argvals=temp$argvals, rangeval=temp$rangeval),B=5000)
```

## Tecator dataset

```r
data(tecator)
```
Functional Regression with scalar response using basis representation.

Description

Computes functional regression between functional explanatory variable $X(t)$ and scalar response $Y$ using basis representation.

$$ Y = \langle X, \beta \rangle + \epsilon = \int_T X(t)\beta(t)dt + \epsilon $$

where $\langle \cdot, \cdot \rangle$ denotes the inner product on $L_2$ and $\epsilon$ are random errors with mean zero, finite variance $\sigma^2$ and $E[X(t)\epsilon] = 0$. 
**Usage**

```r
fregre.basis(fdataobj, y, basis.x=NULL, basis.b=NULL, lambda=0, Lfdobj=vec2Lfd(c(0,0),rtt), weights = rep(1,n),...)
```

**Arguments**

- `fdataobj`: `fdata` class object.
- `y`: Scalar response with length `n`.
- `basis.x`: Basis for functional explanatory data `fdataobj`.
- `basis.b`: Basis for functional beta parameter.
- `lambda`: A roughness penalty. By default, no penalty `lambda=0`.
- `Lfdobj`: See `eval.penalty`.
- `weights`: Further arguments passed to or from other methods.

**Details**

The function uses the basis representation proposed by Ramsay and Silverman (2005) to model the relationship between the scalar response and the functional covariate by basis representation of the observed functional data \(X(t) \approx \sum_{k=1}^{kn_1} c_k \xi_k(t)\) and the unknown functional parameter \(\beta(t) \approx \sum_{k=1}^{kn_2} b_k \phi_k(t)\).

The functional linear models estimated by the expression:

\[
\hat{y} = \langle X, \hat{\beta} \rangle = C^T \psi(t) \phi^T(t) \hat{b} = \tilde{X} \hat{b}
\]

where \(\tilde{X}(t) = C^T \psi(t) \phi^T(t)\), and \(\hat{b} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T y\) and so, \(\hat{y} = \tilde{X} \hat{b} = \tilde{X}(\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T y = H_y\) where \(H\) is the hat matrix with degrees of freedom: \(df = tr(H)\).

If \(\lambda > 0\) then `fregre.basis` incorporates a roughness penalty:

\[
\hat{y} = \tilde{X} \hat{b} = \tilde{X}(\tilde{X}^T \tilde{X} + \lambda R_0)^{-1} \tilde{X}^T y = H_{\lambda y}\text{ where } R_0 \text{ is the penalty matrix.}
\]

This function allows covariates of class `fdata`, `matrix`, `data.frame` or directly covariates of class `fd`. The function also gives default values to arguments `basis.x` and `basis.b` for representation on the basis of functional data `X(t)` and the functional parameter \(\beta(t)\), respectively.

If `basis=NULL` creates the bspline basis by `create.bspline.basis`.
If the functional covariate `fdataobj` is a matrix or data.frame, it creates an object of class "fdata" with default attributes, see `fdata`.
If `basis.x@type='fourier'` and `basis.b@type='fourier'`, the basis are orthonormal and the function decreases the number of fourier basis elements on the \(\min(k_{n1}, k_{n2})\), where \(k_{n1}\) and \(k_{n2}\) are the number of basis element of `basis.x` and `basis.b` respectively.
Value

Return:

call The matched call.
coefficients A named vector of coefficients
residuals \( y \) minus fitted values.
fitted.values Estimated scalar response.
beta.est beta parameter estimated of class \( \text{fd} \)
weights (only for weighted fits) the specified weights.
df The residual degrees of freedom.
r2 Coefficient of determination.
sr2 Residual variance.
\( \Sigma \) Estimated covariance matrix for the parameters.
\( H \) Hat matrix.
y Response.
\( \text{fdataobj} \) Functional explanatory data of class \( \text{fdata} \).
a.est Intercept parameter estimated
x.fd Centered functional explanatory data of class \( \text{fd} \).
basis.b Basis used for beta parameter estimation.
\( \lambda_{\text{opt}} \) A roughness penalty.
\( \text{Lfdojb} \) Order of a derivative or a linear differential operator.
P Penalty matrix.
\( \text{lm} \) Return \( \text{lm} \) object

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: \texttt{fregre.basis.cv}, \texttt{summary.fregre.fd} and \texttt{predict.fregre.fd}.
Alternative method: \texttt{fregre.pc} and \texttt{fregre.np}.
fregre.basis.cv

Examples

```r
fregre.basis
data(tecator)
names(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecatoryFat[ind]
tt=absorp[['argvals']]
res1=fregre.basis(x,y)
summary(res1)
basis1=create.nbspline.basis(rangeval=range(tt),nbasis=19)
basis2=create.nbspline.basis(rangeval=range(tt),nbasis=9)
res5=fregre.basis(x,y,basis1,basis2)
summary(res5)
x.d2=fdata.deriv(x,nbasis=19,nderiv=1,method="bspline",class.out="fdata")
res7=fregre.basis(x.d2,y,basis1,basis2)
summary(res7)
```

fregre.basis.cv

Cross-validation Functional Regression with scalar response using basis representation.

Description

Computes functional regression between functional explanatory variables and scalar response using basis representation. The function `fregre.basis.cv()` uses validation criterion defined by argument `type.cv` to estimate the number of basis elements and/or the penalized parameter (lambda) that best predicts the response.

Usage

```r
fregre.basis.cv(fdataobj,y,basis.x=NULL,basis.b=NULL,
type.basis=NULL,lambda=0,lfdobj=vec2Lfd(c(0,0),rtt),
type.CV=GCV.S,par.CV=list(trim=0),weights=rep(1,n),
verbose=FALSE,...)
```

Arguments

- `fdataobj` *fdata* class object.
- `y` Scalar response with length n.
- `basis.x` Basis for functional explanatory data `fdataobj`.
- `basis.b` Basis for functional beta parameter.
- `type.basis` A vector of character string which determines type of basis. By default "bspline". It is only used when `basis.x` or `basis.b` are a vector of number of basis considered.
lambda A roughness penalty. By default, no penalty lambda=0.
Lfdobj See eval.penalty.
type.CV Type of cross-validation. By default generalized cross-validation GCV.S method.
par.CV List of parameters for type.CV: trim, the alpha of the trimming and draw.
weights weights
verbose If TRUE information about the procedure is printed. Default is FALSE.
... Further arguments passed to or from other methods.

Details
If basis = NULL creates bspline basis.

If the functional covariate fdataobj is in a format raw data, such as matrix or data.frame, creates an object of class fdata with default attributes, see fdata.

If basis.x is a vector of number of basis elements and basis.b=NULL, the function force the same number of elements in the basis of x and beta.

If basis.x$type='fourier' and basis.b$type='fourier', the function decreases the number of fourier basis elements on the \( \min(n_1, n_2) \), where \( k_{n_1} \) and \( k_{n_2} \) are the number of basis element of basis.x and basis.b respectively.

Value
Return:

call The matched call.
coefficients A named vector of coefficients
residuals y minus fitted values.
fitted.values Estimated scalar response.
beta.est beta parameter estimated of class fd
weights (only for weighted fits) the specified weights.
df The residual degrees of freedom.
r2 Coefficient of determination.
sr2 Residual variance.
H Hat matrix.
y Scalar response.
fdataobj Functional explanatory data of class fdata.
x.fd Centered functional explanatory data of class fd.
lambda.opt lambda value that minimizes CV or GCV method.
gcv.opt Minimum value of CV or GCV method.
basis.x.opt  Basis used for functional explanatory data estimation fdata.
basis.b.opt  Basis used for for functional beta parameter estimation.
a.est      Intercept parameter estimated
lm          Return lm object.

Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as: *fregre.basis*, *summary.fregre.fd* and *predict.fregre.fd*. Alternative method: *fregre.pc.cv* and *fregre.np.cv*.

Examples

data(tecator)
x<-tecator$absorp.fdata[1:129]
y=tecator$y$Fat[1:129]
b1<-c(15,21,31)
b2<-c(7,9)
res1=fregre.basis.cv(x,y,basis.x=b1)
res2=fregre.basis.cv(x,y,basis.x=b1,basis.b=b2)
res1$gcv
res2$gcv
## Not run:
1=2^(-4:10)
res3=fregre.basis.cv(x,y,basis.b=b1,type=“fourier”,
lambda=1,type.CV=GCV,S.par.CV=list(trim=0.15))
res3$gcv

## End(Not run)
**Description**

Computes functional regression between functional explanatory variable \( X(s) \) and functional response \( Y(t) \) using basis representation.

\[
Y(t) = \alpha(t) + \int_{T} X(s)\beta(s,t)\,ds + \epsilon(t)
\]

where \( \alpha(t) \) is the intercept function, \( \beta(s,t) \) is the bivariate regression function and \( \epsilon(t) \) are the error term with mean zero.

**Usage**

\[
fregre.basis.fr(x,y,basis.s=\text{NULL},basis.t=\text{NULL},lambda.s=0,
lambda.t=0,Lfdobj.s=\text{vec2Lfd}(c(0,0),range.s),
Lfdobj.t=\text{vec2Lfd}(c(0,0),range.t),weights=\text{NULL},...)
\]

**Arguments**

- \( x \) Functional explanatory variable.
- \( y \) Functional response variable.
- \( \text{basis.s} \) Basis related with \( s \) and it is used in the estimation of \( \beta(s,t) \).
- \( \text{basis.t} \) Basis related with \( t \) and it is used in the estimation of \( \beta(s,t) \).
- \( \text{lambda.s} \) A roughness penalty with respect to \( s \) to be applied in the estimation of \( \beta(s,t) \). By default, no penalty \( \lambda_{s}=0 \).
- \( \text{lambda.t} \) A roughness penalty with respect to \( t \) to be applied in the estimation of \( \beta(s,t) \). By default, no penalty \( \lambda_{t}=0 \).
- \( \text{Lfdobj.s} \) A linear differential operator object with respect to \( s \). See \text{eval.penalty}.
- \( \text{Lfdobj.t} \) A linear differential operator object with respect to \( t \). See \text{eval.penalty}.
- \( \text{weights} \) Weights.
- \( ... \) Further arguments passed to or from other methods.

**Details**

The function is a wrapped of \text{linmod} function proposed by Ramsay and Silverman (2005) to model the relationship between the functional response \( Y(t) \) and the functional covariate \( X(t) \) by basis representation of both.

The unknown bivariate functional parameter \( \beta(s,t) \) can be expressed as a double expansion in terms of \( K \) basis function \( \nu_{k} \) and \( L \) basis functions \( \theta_{l} \),

\[
\beta(s,t) = \sum_{k=1}^{K} \sum_{l=1}^{L} b_{kl} \nu_{k}(s)\theta_{l}(t) = \nu(s)^{T} \Theta(t)
\]
Then, the model can be re-written in a matrix version as,

\[ Y(t) = \alpha(t) + \int_T X(s)\nu(s)^T B\theta(t)ds + \epsilon(t) = \alpha(t) + XB\theta(t) + \epsilon(t) \]

where \( X = \int X(s)\nu^T(t)ds \)

This function allows objects of class fdata or directly covariates of class fd. If \( x \) is a fdata class, basis.s is also the basis used to represent \( x \) as fd class object. If \( y \) is a fdata class, basis.t is also the basis used to represent \( y \) as fd class object. The function also gives default values to arguments basis.s and basis.t for construct the bifd class object used in the estimation of \( \beta(s,t) \). If basis.s=NULL or basis.t=NULL the function creates a bspline basis by create.bspline.basis.

fregre.basis.fr incorporates a roughness penalty using an appropriate linear differential operator; \{lambda.s,Lfdobj.s\} for penalization of \( \beta \)'s variations with respect to \( s \) and \{lambda.t,Lfdobj.t\} for penalization of \( \beta \)'s variations with respect to \( t \).

Value

Return:

\begin{itemize}
  \item call \quad The matched call.
  \item a.est \quad Intercept parameter estimated.
  \item coefficients \quad the matrix of the coefficients.
  \item beta.est \quad A bivariate functional data object of class bifd with the estimated parameters of \( \beta(s,t) \).
  \item fitted.values \quad Estimated response.
  \item residuals \quad y minus fitted values.
  \item y \quad Functional response.
  \item x \quad Functional explanatory data.
  \item lambda.s \quad A roughness penalty with respect to \( s \). 
  \item lambda.t \quad A roughness penalty with respect to \( t \). 
  \item Lfdobj.s \quad A linear differential operator with respect to \( s \). 
  \item Lfdobj.t \quad A linear differential operator with respect to \( t \). 
  \item weights \quad Weights.
\end{itemize}

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as: `predict.fregre.basis.fr`.
Alternative method: `linmod`.

Examples

```r
Not run:
rtt <- c(0, 365)
basis.alpha <- create.constant.basis(rtt)
basisx <- create.bspline.basis(rtt, 11)
basisy <- create.bspline.basis(rtt, 11)
basis <- create.bspline.basis(rtt, 7)
basis <- create.bspline.basis(rtt, 9)

fd class
dayfd <- Data2fd(day.5, CanadianWeather$dailyAv, basisx)
tempfd <- dayfd[, 1]
log10precfd <- dayfd[, 3]
res1 <- fregre.basis.fr(tempfd, log10precfd, basis=s=basisx, basis.t=basis)

fdata class
tt <- 1:365
tempfdata <- fdata(t(CanadianWeather$dailyAv[, , 1]), tt, rtt)
log10precfdata <- fdata(t(CanadianWeather$dailyAv[, , 3]), tt, rtt)
res2 <- fregre.basis.fr(tempfdata, log10precfdata, basis=s=basisx, basis.t=basis)

penalization
Lfdobjt <- Lfdobjs <- vec2Lfd(c(0, 0), rtt)
Lfdobjt <- vec2Lfd(c(0, 0), rtt)
lambdat <- lambdas <- 100
res1.pen <- fregre.basis.fr(tempfdata, log10precfdata, basis=s=basisx, basis.t=basis, lambda.s=lambdas, lambda.t=lambdat, Lfdobj.s=Lfdobjs, Lfdobj.t=Lfdobjt)

res2.pen <- fregre.basis.fr(tempf, log10precf, basis=s=basisx, basis.t=basis, lambda.s=lambdas, lambda.t=lambdat, Lfdobj.s=Lfdobjs, Lfdobj.t=Lfdobjt)

plot(log10precfd, col=1)
lines(res1$fitted.values, col=2)
plot(res1$residuals)
plot.bifd(res1$beta.est, tt, tt)
plot.bifd(res1$beta.est, tt, tt, type="persp", theta=45, phi=30)

End(Not run)
```
**fregre.bootstrap**  
*Bootstrap regression*

**Description**
Estimate the beta parameter by wild or smoothed bootstrap procedure

**Usage**

```r
defaultR
fregre.bootstrap(model, nb = 500, wild = TRUE, type.wild = "golden",
 newX = NULL, smo = 0.1, smoX = 0.05, alpha = 0.95,
 kmax.fix = FALSE, draw = TRUE,...)
```

**Arguments**

- `model`: `fregre.pc`, `fregre.pls` or `fregre.basis` object.
- `nb`: Number of bootstrap samples.
- `wild`: Naive or smoothed bootstrap depending of the `smo` and `smoX` parameters.
- `type.wild`: Type of distribution of V in wild bootstrap procedure, see `rwild`.
- `smo`: If \( \geq 0 \), smoothed bootstrap on the residuals (proportion of response variance).
- `smoX`: If \( \geq 0 \), smoothed bootstrap on the explanatory functional variable \( \mathbf{fdata} \) (proportion of variance-covariance matrix of \( \mathbf{fdata} \) object).
- `newX`: A `fdata` class containing the values of the model covariates at which predictions are required (only for smoothed bootstrap).
- `kmax.fix`: The number of maximum components to consider in each bootstrap iteration. =TRUE, the bootstrap procedure considers the same number of components used in the previous fitted model. =FALSE, the bootstrap procedure estimates the best components in each iteration.
- `alpha`: Significance level used for graphical option, `draw`=TRUE.
- `draw`: =TRUE, plot the bootstrap estimated beta, and (optional) the CI for the predicted response values.
- `...`: Further arguments passed to or from other methods.

**Details**
Estimate the beta parameter by wild or smoothed bootstrap procedure using principal components representation `fregre.pc`, Partial least squares components (PLS) representation `fregre.pls` or basis representation `fregre.basis`.

If a new curves are in `newX` argument the bootstrap method estimates the response using the bootstrap resamples.

If the model exhibits heteroskedasticity, the use of wild bootstrap procedure is recommended (by default).
Value

Return:

model     fregre.pc, fregre.pls or fregre.basis object.
beta.boot functional beta estimated by the nb bootstrap regressions.
norm.boot norm of differences between the nboot betas estimated by bootstrap and beta estimated by regression model.
coefs.boot matrix with the bootstrap estimated basis coefficients.
kn.boot    vector or list of length nb with index of the basis, PC or PLS factors selected in each bootstrap regression.
y.pred     predicted response values using newX covariates.
y.boot     matrix of bootstrap predicted response values using newX covariates.
newX       a fdata class containing the values of the model covariates at which predictions are required (only for smoothed bootstrap).

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: fregre.pc, fregre.pls, fregre.basis.

Examples

```r
Not run:
data(tecator)
iest<1:129
x=tecator$absorp.fdata[iest]
y=tecatoryFat[iest]
nb<5
Time-consuming
res.pc=fregre.pc(x,y,1:6)
Fix the components used in the each regression
res.boot1=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=TRUE)
Select the "best" components used in the each regression
res.boot2=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=FALSE)
```
res.boot3=fregre.bootstrap(res.pc, nb=nb, wild=FALSE, kmax.fix=10)
## predicted responses and bootstrap confidence interval
newx=tecator$absorp.fdata[-iest]
res.boot4=fregre.bootstrap(res.pc, nb=nb, wild=FALSE, newX=newx, draw=TRUE)

## End(Not run)

---

**fregre.gkam**  
*Fitting Functional Generalized Kernel Additive Models.*

**Description**

Computes functional regression between functional explanatory variables \((X_1(t_1),\ldots,X_q(t_q))\) and scalar response \(Y\) using backfitting algorithm.

**Usage**

```r
fregre.gkam(formula, family = gaussian(), data, weights = rep(1,nobs),
par.metric = NULL, par.np=NULL, offset=NULL,
control = list(maxit = 100, epsilon = 0.001,
trace = FALSE, inverse="solve"),...)
kgam.H(object, inverse="svd")
```

**Arguments**

- `formula`  
an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. The procedure only considers functional covariates (not implemented for non-functional covariates). The details of model specification are given under Details.

- `data`  
List that containing the variables in the model.

- `family`  
a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See `family` for details of family functions).

- `weights`  
weights

- `par.metric`  
List of arguments by covariate to pass to the `metric` function by covariate.

- `par.np`  
List of arguments to pass to the `fregre.np.cv` function

- `offset`  
this can be used to specify an a priori known component to be included in the linear predictor during fitting.

- `control`  
a list of parameters for controlling the fitting process, by default: maxit, epsilon, trace and inverse

- `object`  
List that containing the Hat matrix for each variable in the model.

- `inverse`  
"svd" (by default) or ="solve" method.

...  
Further arguments passed to or from other methods.
Details

The smooth functions \( f(\cdot) \) are estimated nonparametrically using an iterative local scoring algorithm by applying Nadaraya-Watson weighted kernel smoothers using \texttt{fregre.np.cv} in each step, see Febrero-Bande and Gonzalez-Manteiga (2011) for more details.

Consider the fitted response \( \hat{Y} = g^{-1}(H_Qy) \), where \( H_Q \) is the weighted hat matrix. Opsomer and Ruppert (1997) solves a system of equations for fit the unknowns \( f(\cdot) \) computing the additive smoother matrix \( H_k \) such that \( \hat{f}_k(X^k) = H_kY \) and \( H_Q = H_1 + \cdots + H_q \). The additive model is fitted as follows:

\[
\hat{Y} = g^{-1}\left(\sum_{i=1}^{q} \hat{f}_i(X_i)\right)
\]

Value

- \texttt{result} List of non-parametric estimation by covariate.
- \texttt{fitted.values} Estimated scalar response.
- \texttt{residuals} \( y \) minus fitted values.
- \texttt{effects} The residual degrees of freedom.
- \texttt{alpha} Hat matrix.
- \texttt{family} Coefficient of determination.
- \texttt{linear.predictors} Residual variance.
- \texttt{deviance} Scalar response.
- \texttt{aic} Functional explanatory data.
- \texttt{null.deviance} Non functional explanatory data.
- \texttt{iter} Distance matrix between curves.
- \texttt{w} beta coefficient estimated
- \texttt{eqranks} List that containing the variables in the model.
- \texttt{prior.weights} Asymmetric kernel used.
- \texttt{y} Scalar response.
- \texttt{H} Hat matrix, see Opsomer and Ruppert (1997) for more details.
- \texttt{converged} conv.

Author(s)
Febrero-Bande, M. and Oviedo de la Fuente, M.

References

See Also

See Also as: fregre.gsam, fregre.glm and fregre.np.cv

Examples

```r
Not run:
data(tecator)
ab = tecator$absorp.fdata[1:100]
ab2 = fdata.deriv(ab, Z)
yfat = tecator$y[1:100,"Fat"]

Example 1: # Changing the argument par.np and family
yfat.cat = ifelse(yfat<15,0,1)
xlist = list("df" = data.frame(yfat.cat), "ab" = ab, "ab2" = ab2)
f2 <- yfat.cat + ab + ab2
par.NP <- list("ab" = list(Ker = AKer.norm, type.S = "S.NW"),
 "ab2" = list(Ker = AKer.norm, type.S = "S.NW"))
res2 = fregre.gkam(f2, family = binomial(), data = xlist,
 par.np = par.NP)
res2

Example 2: Changing the argument par.metric and family link
par.metric = list("ab" = list(metric = semimetric.deriv, nderiv = 2, nbasis = 15),
 "ab2" = list(metric = semimetric.basis))
res3 = fregre.gkam(f2, family = binomial("probit"), data = xlist,
 par.metric = par.metric, control = list(maxit = 2, trace = FALSE))
summary(res3)

Example 3: Gaussian family (by default)
Only 1 iteration (by default maxit = 100)
xlist = list("df" = data.frame(yfat), "ab" = ab, "ab2" = ab2)
f <- yfat ~ ab + ab2
res = fregre.gkam(f, data = xlist, control = list(maxit = 1, trace = FALSE))
res

End(Not run)
```

Description

Computes functional generalized linear model between functional covariate $X_j(t)$ (and non-functional covariate $Z_j$) and scalar response $Y$ using basis representation.

This function is an extension of the linear regression models: fregre.lm where the $E[Y|X,Z]$ is related to the linear prediction $\eta$ via a link function $g(\cdot)$.
\[ E[Y|X,Z] = \eta = g^{-1}(\alpha + \sum_{j=1}^{p} \beta_j Z_j^j + \sum_{k=1}^{q} \frac{1}{\sqrt{T_k}} \int_{T_k} X^k(t) \beta_k(t) dt) \]

where \( Z = [Z^1, \ldots, Z^p] \) are the non functional covariates and \( X(t) = [X^1(t_1), \ldots, X^q(t_q)] \) are the functional ones.

Usage

\[ \text{fregre.glm(formula, family = \text{gaussian}(), data, basis.x=NULL, basis.b=NULL, CV=FALSE,...)} \]

Arguments

- **formula**: an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.
- **family**: a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.)
- **data**: List that containing the variables in the model.
- **basis.x**: List of basis for functional explanatory data estimation.
- **basis.b**: List of basis for \( \beta(t) \) parameter estimation.
- **CV**: =TRUE, Cross-validation (CV) is done.
- **...**: Further arguments passed to or from other methods.

Details

The first item in the data list is called "df" and is a data frame with the response and non functional explanatory variables, as glm.

Functional covariates of class fdata or fd are introduced in the following items in the data list. basis.x is a list of basis for represent each functional covariate. The basis object can be created by the function: create.pc.basis, pca.fd create.pc.basis, create.fdata.basis or create.basis. basis.b is a list of basis for represent each \( \beta(t) \) parameter. If basis.x is a list of functional principal components basis (see create.pc.basis or pca.fd) the argument basis.b is ignored.

Value

Return glm object plus:

- **basis.x**: Basis used for fdata or fd covariates.
- **basis.b**: Basis used for beta parameter estimation.
- **beta.l**: List of estimated beta parameter of functional covariates.
data List that containing the variables in the model.
formula formula.
CV predicted response by cross-validation.

Note
If the formula only contains a non functional explanatory variables (multivariate covariates), the function compute a standard glm procedure.

Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as: predict.fregre.glm and summary.glm. Alternative method if family=gaussian: fregre.lm.

Examples
```r
data(tecator)
x=tecator$absorp.fdata
y=tecatoryFat
tt=x[["argvals"]]
dataf=as.data.frame(tecator$y)

nbasis.x=11
nbasis.b=7
basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b)

f=Fat~Protein+x
basis.x=list("x"=basis1)
basis.b=list("x"=basis2)
data=list("df"=dataf,"x"=x)
res=fregre.glm(f,family=gaussian(),data=data,basis.x=basis.x,
basis.b=basis.b)
summary(res)
```
**fregre.gls**

*Fit Functional Linear Model Using Generalized Least Squares*

**Description**

This function fits a functional linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.

**Usage**

```r
define_gls(formula, data, correlation = NULL, basis.x = NULL,
 basis.b = NULL, rn, lambda, weights = NULL, subset, method = c("REML",
 "ML"), control = list(), verbose = FALSE, criteria="GCCV1",...)
```

**Arguments**

- `formula`: a two-sided linear formula object describing the model, with the response on the left of a `~` operator and the terms, separated by `+` operators, on the right.
- `data`: an optional data frame containing the variables named in `formula`, `correlation`, `weights`, and `subset`. By default the variables are taken from the environment from which `gls` is called.
- `correlation`: an optional `corStruct` object describing the within-group correlation structure. See the documentation of `corClasses` for a description of the available `corStruct` classes. If a grouping variable is to be used, it must be specified in the form argument to the `corStruct` constructor. Defaults to `NULL`, corresponding to uncorrelated errors.
- `basis.x`: List of basis for functional explanatory data estimation.
- `basis.b`: List of basis for $\beta(t)$ parameter estimation.
- `rn`: List of Ridge parameter.
- `lambda`: List of Roughness penalty parameter.
- `weights`: an optional `varFunc` object or one-sided formula describing the within-group heteroscedasticity structure. If given as a formula, it is used as the argument to `varFixed`, corresponding to fixed variance weights. See the documentation on `varClasses` for a description of the available `varFunc` classes. Defaults to `NULL`, corresponding to homoscedastic errors.
- `subset`: an optional expression indicating which subset of the rows of `data` should be used in the fit. This can be a logical vector, or a numeric vector indicating which observation numbers are to be included, or a character vector of the row names to be included. All observations are included by default.
- `method`: a character string. If "REML" the model is fit by maximizing the restricted log-likelihood. If "ML" the log-likelihood is maximized. Defaults to "REML".
- `control`: a list of control values for the estimation algorithm to replace the default values returned by the function `glsControl`. Defaults to an empty list.
verbose is an optional logical value. If TRUE information on the evolution of the iterative algorithm is printed. Default is FALSE.

criteria is GCCV criteria, see GCV.S.

... some methods for this generic require additional arguments. None are used in this method.

Value

an object of class "gls" representing the functional linear model fit. Generic functions such as print, plot, and summary have methods to show the results of the fit.

See glsObject for the components of the fit. The functions resid, coef and fitted, can be used to extract some of its components.

Beside, the class(z) is "gls", "lm" and "fregre.lm" with the following objects:

- **sr2**: Residual variance.
- **Vp**: Estimated covariance matrix for the parameters.
- **lambda**: A roughness penalty.
- **basis.x**: Basis used for fdata or fd covariates.
- **basis.b**: Basis used for beta parameter estimation.
- **beta.l**: List of estimated beta parameter of functional covariates.
- **data**: List that containing the variables in the model.
- **formula**: formula used in adjusted model.
- **formula.ini**: formula in call.
- **XX**: desing matrix
- **W**: inverse of covariance matrix
- **correlation**: See glsObject for the components of the fit.

References


Examples

```r
Not run:
data(tecator)
x=tecator$absorp.fdata
x.dz<-fdata.deriv(x,nderiv=)
tt<-x[["argvals"]]
dataf=as.data.frame(tecator$y)

plot the response
plot(ts(tecatoryFat))
```
fregre.gsam

Fitting Functional Generalized Spectral Additive Models

Description

Computes functional GAM model between functional covariate \((X_1(t_1), \ldots, X_q(t_q))\) (and non functional covariate \((Z_1, \ldots, Z_p)\)) and scalar response \(Y\).

This function is an extension of the functional generalized linear regression models: \texttt{fregre glm} where the \(E[Y|X, Z]\) is related to the linear prediction \(\eta\) via a link function \(g(\cdot)\) with integrated smoothness estimation by the smooth functions \(f(\cdot)\).

\[
E[Y|X, Z]) = \eta = g^{-1}(\alpha + \sum_{i=1}^{p} f_i(Z^i) + \sum_{k=1}^{q} \sum_{j=1}^{q_k} f_k^j(\xi_k^j))
\]

where \(\xi_k^j\) is the coefficient of the basis function expansion of \(X^k\), (in PCA analysis \(\xi_k^j\) is the score of the \(j\)-functional PC of \(X^k\).

The smooth functions \(f(\cdot)\) can be added to the right hand side of the formula to specify that the linear predictor depends on smooth functions of predictors using smooth terms \texttt{s} and \texttt{te} as in \texttt{gam} (or linear functionals of these as \(Z\beta\) and \(\langle X(t), \beta \rangle\) in \texttt{fregre glm}).

Usage

\texttt{fregre.gsam(formula, family = gaussian(), data=list(), weights=NULL,basis.x=NULL,basis.b=NULL,CV=FALSE,\ldots)}

Arguments

\texttt{formula} an object of class \texttt{formula} (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.

\texttt{family} a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See \texttt{family} for details of family functions.)
data List that containing the variables in the model.
weights weights
basis.x List of basis for functional explanatory data estimation.
basis.b List of basis for functional beta parameter estimation.
CV =TRUE, Cross-validation (CV) is done.
... Further arguments passed to or from other methods.

Details

The first item in the data list is called "df" and is a data frame with the response and non functional explanatory variables, as \texttt{gam}.

Functional covariates of class fdata or fd are introduced in the following items in the data list. basis.x is a list of basis for represent each functional covariate. The basis object can be created by the function: \texttt{create.pc.basis}, \texttt{pca.fd create.pc.basis}, \texttt{create.fdata.basis} or \texttt{create.basis}. basis.b is a list of basis for represent each functional beta parameter. If basis.x is a list of functional principal components basis (see \texttt{create.pc.basis} or \texttt{pca.fd}) the argument basis.b is ignored.

Value

Return \texttt{gam} object plus:

- basis.x Basis used for fdata or fd covariates.
- basis.b Basis used for beta parameter estimation.
- data List that containing the variables in the model.
- formula formula.
- CV \$y.pred predicted response by cross-validation.

Note

If the formula only contains a non functional explanatory variables (multivariate covariates), the function compute a standard \texttt{glm} procedure.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as: `predict.fregre.gsam` and `summary.gam`. Alternative methods: `fregre.glm` and `fregre.gkam`.

Examples

```r
data(tecator)
x=tecator$absorp.fdata
x.d1<-fdata.deriv(x)
tt=x[['argvals']]
mdat=as.data.frame(tecator$y)
mbasis.x=11; mbasis.b=5
basis1=create.bspline.basis(rangeval=range(tt), nbasis=mbasis.x)
basis2=create.bspline.basis(rangeval=range(tt), nbasis=mbasis.b)
f=Fat+s(Protein)+s(x)
basis.x=list("x"=basis1,"x.d1"=basis1)
basis.b=list("x"=basis2,"x.d1"=basis2)
ldata=list("df"=mdat,"x"=x,"x.d1"=x.d1)
res=fregre.gsam(Fat~Water+s(Protein)+x+s(x.d1),ldata,family=gaussian(), basis.x=basis.x,basis.b=basis.b)
res

Not run:
res2=fregre.gsam(Fat~te(Protein,k=3)+x, data=ldata,family=gaussian())
summary(res2)

dropind basis pc
basis.pc0=create.pc.basis(x,c(2,4,7))
basis.pc1=create.pc.basis(x.d1,c(1:3))
basis.x=list("x"=basis.pc0,"x.d1"=basis.pc1)
ldata=list("df"=mdat,"x"=x,"x.d1"=x.d1)
res.pc=fregre.gsam(f, data=ldata,family=gaussian(), basis.x=basis.x,basis.b=basis.b)
summary(res.pc)

Binomial family
xt=tecator$absorp.fdata
tecator$Fat<-ifelse(tecator$Fat>20,1,0)
x.d1<-fdata.deriv(x)
mdat=as.data.frame(tecator$y)
ldata=list("df"=mdat,"x"=x,"x.d1"=x.d1)
res.bin=fregre.gsam(Fat-Protein+s(x),ldata,family=binomial())

End(Not run)
```

fregre.igls

*Fit of Functional Generalized Least Squares Model Iteratively*
Description

This function fits iteratively a functional linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.

1. Begin with a preliminary estimation of \( \hat{\theta} = \theta_0 \) (for instance, \( \theta_0 = 0 \)). Compute \( \hat{W} \).
2. Estimate \( b_{\Sigma} = (Z'\hat{W}Z)^{-1}Z'\hat{W}y \)
3. Based on the residuals, \( \hat{e} = (y - Zb_{\Sigma}) \), update \( \hat{\theta} = \rho(\hat{e}) \) where \( \rho \) depends on the dependence structure chosen.
4. Repeats steps 2 and 3 until convergence (small changes in \( b_{\Sigma} \) and/or \( \hat{\theta} \)).

Usage

fregre.igls(formula, data, basis.x=NULL, basis.b=NULL, correlation, maxit=100, rn, lambda, weights=rep(1, n), control,...)

Arguments

formula a two-sided linear formula object describing the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right.
data an optional data frame containing the variables named in model, correlation, weights, and subset. By default the variables are taken from the environment from which gls is called.
basis.x List of basis for functional explanatory data estimation.
basis.b List of basis for \( \beta(t) \) parameter estimation.
rn List of Ridge parameter.
lambda List of Roughness penalty parameter.
correlation an optional corStruct object describing the within-group correlation structure. See the documentation of corClasses for a description of the available corStruct classes. If a grouping variable is to be used, it must be specified in the form argument to the corStruct constructor. Defaults to NULL, corresponding to uncorrelated errors.
maxit Number of maximum of interactions.
weights an optional varFunc object or one-sided formula describing the within-group heteroscedasticity structure. If given as a formula, it is used as the argument to varFixed, corresponding to fixed variance weights. See the documentation on varClasses for a description of the available varFunc classes. Defaults to NULL, corresponding to homoscedastic errors.
control a list of control values for the estimation algorithm to replace the default values returned by the function glsControl. Defaults to an empty list.
... some methods for this generic require additional arguments. None are used in this method.
Value

an object of class "gls" representing the functional linear model fit. Generic functions such as print, plot, and summary have methods to show the results of the fit.

See glsObject for the components of the fit. The functions resid, coef and fitted, can be used to extract some of its components.

Besides, the class(z) is "gls", "lm" and "fregre.lm" with the following objects:

- **sr2**: Residual variance.
- **Vp**: Estimated covariance matrix for the parameters.
- **lambda**: A roughness penalty.
- **basis.x**: Basis used for fdata or fd covariates.
- **basis.b**: Basis used for beta parameter estimation.
- **beta.l**: List of estimated beta parameter of functional covariates.
- **data**: List that containing the variables in the model.
- **formula**: formula used in adjusted model.
- **formula.ini**: formula used in call.
- **XX**: desing matrix
- **W**: inverse of covariance matrix
- **fdataob**: 
- **rn**: rn
- **vs.list**: 
- **correlation**: See glsObject for the components of the fit.

References


Examples

```R
Not run:
data(tector)
x=tector$absorp.fdata
x.d2<-fdata.deriv(x,nderiv=)
tt<-x["argvals"]
dataf=as.data.frame(tector$y)
plot the response
plot(ts(tectoryFat))
ldata=list("df"=dataf,"x.d2"=x.d2)
res.gls=fregre.gls(Fat~x.d2,data=ldata,
correlation=list("cor.ARMA"=list()),control=list("p"=1))
res.gls
```
Fitting Functional Linear Models

Description

Computes functional regression between functional (and non functional) explanatory variables and scalar response using basis representation.

This section is presented as an extension of the linear regression models: \texttt{fregre.pc}, \texttt{fregre.pls} and \texttt{fregre.basis}. Now, the scalar response $Y$ is estimated by more than one functional covariate $X^j(t)$ and also more than one non functional covariate $Z^j$. The regression model is given by:

$$E[Y|X,Z] = \alpha + \sum_{j=1}^p \beta_j Z^j + \sum_{k=1}^q \frac{1}{\sqrt{T_k}} \int_{T_k} X^k(t) \beta_k(t) dt$$

where $Z = [Z^1, \ldots, Z^p]$ are the non functional covariates, $X(t) = [X^1(t_1), \ldots, X^q(t_q)]$ are the functional ones and $\epsilon$ are random errors with mean zero, finite variance $\sigma^2$ and $E[X(t)\epsilon] = 0$.

Usage

\texttt{fregre.lm(formula=data, basis.x=NULL, basis.b=NULL, rn, lambda, weights=rep(1,n), ...)}

Arguments

- \texttt{formula} an object of class \texttt{formula} (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.
- \texttt{data} List that containing the variables in the model.
- \texttt{basis.x} List of basis for functional explanatory data estimation.
- \texttt{basis.b} List of basis for functional beta parameter estimation.
- \texttt{rn} List of Ridge parameter.
- \texttt{lambda} List of Roughness penalty parameter.
- \texttt{weights} weights
- \texttt{...} Further arguments passed to or from other methods.
Details

The first item in the data list is called "df" and is a data frame with the response and non functional explanatory variables, as \texttt{lm}. Functional covariates of class \texttt{fdata} or \texttt{fd} are introduced in the following items in the \texttt{data} list.

\texttt{basis.x} is a list of basis for represent each functional covariate. The basis object can be created by the function: \texttt{create.pc.basis, pca.fd create.pc.basis, create.fdata.basis} or \texttt{create.basis}.

\texttt{basis.b} is a list of basis for represent each functional $\beta_k$ parameter. If \texttt{basis.x} is a list of functional principal components basis (see \texttt{create.pc.basis} or \texttt{pca.fd}) the argument \texttt{basis.b} \textit{(is unnecessary and) is ignored.}

The user can penalty the basis elements by: (i) $\lambda$ is a list of rough penalty values for the second derivative of each functional covariate, see \texttt{fregre.basis} for more details.
(ii) $\eta$ is a list of Ridge penalty value for each functional covariate, see \texttt{fregre.pc, fregre.pls} and \texttt{P.penalty} for more details.

Note: For the case of the Functional Principal Components basis two penalties are allowed (but not the two together).

Value

Return \texttt{lm} object plus:

\begin{itemize}
  \item \texttt{sr2}  Residual variance.
  \item \texttt{vp} Estimated covariance matrix for the parameters.
  \item \texttt{lambda} A roughness penalty.
  \item \texttt{basis.x} Basis used for \texttt{fdata} or \texttt{fd} covariates.
  \item \texttt{basis.b} Basis used for beta parameter estimation.
  \item \texttt{beta.l} List of estimated beta parameter of functional covariates.
  \item \texttt{data} List that containing the variables in the model.
  \item \texttt{formula} formula.
\end{itemize}

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


**fregre.np**

Functional regression with scalar response using non-parametric kernel estimation

**Description**

Computes functional regression between functional explanatory variables and scalar response using kernel estimation. The non-parametric functional regression model can be written as follows

\[ y_i = r(X_i) + \epsilon_i \]
where the unknown smooth real function \( r \) is estimated using kernel estimation by means of

\[
\hat{r}(X) = \sum_{i=1}^{n} \frac{K(h^{-1}d(X,X_i))y_i}{\sum_{i=1}^{n} K(h^{-1}d(X,X_i))}
\]

where \( K \) is an kernel function (see Ker argument), \( h \) is the smoothing parameter and \( d \) is a metric or a semi-metric (see metric argument).

Usage

```r
fregre.np(fdataobj, y=NULL, Ker=AKer.norm, metric=metric.lp, type.S=S.NW, par.S=list(w=1), ...)
```

Arguments

- `fdataobj` : `fdata` class object.
- `y` : Scalar response with length \( n \).
- `h` : Bandwidth, \( h>0 \). Default argument values are provided as the 5%–quantile of the distance between `fdataobj` curves, see `h.default`.
- `Ker` : Type of asymmetric kernel used, by default asymmetric normal kernel.
- `metric` : Metric function, by default `metric.lp`.
- `type.S` : Type of smoothing matrix \( S \). By default \( S \) is calculated by Nadaraya-Watson kernel estimator (S.NW).
- `par.S` : List of parameters for `type.S`: \( w \), the weights.
- `...` : Arguments to be passed for `metric.lp` or other metric function.

Details

The distance between curves is calculated using the `metric.lp` although any other semimetric could be used (see `semimetric.basis` or `semimetric.NPFDA` functions). The kernel is applied to a metric or semi-metrics that provides non-negative values, so it is common to use asymmetric kernels. Different asymmetric kernels can be used, see `Kernel.asymmetric`.

Value

- `call` : The matched call.
- `fitted.values` : Estimated scalar response.
- `H` : Hat matrix.
- `residuals` : \( y \) minus fitted values.
- `df` : The residual degrees of freedom.
- `r2` : Coefficient of determination.
- `sr2` : Residual variance.
y  Response.
fdatabj  Functional explanatory data.
mdist  Distance matrix between x and newx.
Ker  Asymmetric kernel used.
h.opt  smoothing parameter or bandwidth.

Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also
See Also as: fregre.np.cv, summary.fregre.fd and predict.fregre.fd. Alternative method: fregre.basis, cand fregre.pc.

Examples

```r
Not run:
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecatoryFat[ind]
res.np=fregre.np(x,y,Ker=AKer.epa)
summary.fregre.fd(res.np)
res.np2=fregre.np(x,y,Ker=AKer.tri)
summary.fregre.fd(res.np2)

with other semimetrics.
res.pca1=fregre.np(x,y,Ker=AKer.tri,metri=semimetric.pca,q=1)
summary.fregre.fd(res.pca1)
res.deriv=fregre.np(x,y,metri=semimetric.deriv)
summary.fregre.fd(res.deriv)
x.d2=fdata.deriv(x,nderiv=1,method="fmm",class.out='fdata')
res.deriv2=fregre.np(x.d2,y)
summary.fregre.fd(res.deriv2)
x.d3=fdata.deriv(x,nderiv=1,method="bspline",class.out='fdata')
```
Cross-validation functional regression with scalar response using kernel estimation.

Description

Computes functional regression between functional explanatory variables and scalar response using asymmetric kernel estimation by cross-validation method.

The non-parametric functional regression model can be written as follows

\[ y_i = r(X_i) + \epsilon_i \]

where the unknown smooth real function \( r \) is estimated using kernel estimation by means of

\[ \hat{r}(X) = \frac{\sum_{i=1}^{n} K(h^{-1}d(X,X_i)) y_i}{\sum_{i=1}^{n} K(h^{-1}d(X,X_i))} \]

where \( K \) is a kernel function (see Ker argument), \( h \) is the smoothing parameter and \( d \) is a metric or a semi-metric (see metric argument).

The function estimates the value of smoothing parameter (also called bandwidth) \( h \) through Generalized Cross-validation GCV criteria, see GCV.S or CV.S.

Usage

\[
\text{fregre.np.cv}(fdataobj, y=\text{NULL}, \text{Ker}=\text{AKer.norm}, \text{metric}=\text{metric.lp}, \\
\text{type.CV} = \text{GCV.S}, \text{type.S}=\text{S.NW}, \text{par.CV}=\text{list}(\text{trim}=0), \text{par.S}=\text{list}(w=1), \ldots)
\]

Arguments

- **fdataobj**: \text{fdata} class object.
- **y**: Scalar response with length \( n \).
- **h**: Bandwidth, \( h>0 \). Default argument values are provided as the sequence of length 25 from 2.5%-quantile to 25%-quantile of the distance between \text{fdataobj} curves, see \text{h.default}.
- **Ker**: Type of asymmetric kernel used, by default asymmetric normal kernel.
- **metric**: Metric function, by default \text{metric.lp}.
- **type.CV**: Type of cross-validation. By default generalized cross-validation GCV.S method.
- **type.S**: Type of smoothing matrix \( S \). By default \( S \) is calculated by Nadaraya-Watson kernel estimator (S.NW).
- **par.CV**: List of parameters for \text{type.CV}: trim, the alpha of the trimming and draw=TRUE.
- **par.S**: List of parameters for \text{type.S}: w, the weights.
- **\ldots**: Arguments to be passed for \text{metric.lp} o other metric function.
Details

The function estimates the value of smoothing parameter or the bandwidth through the cross-validation methods: GCV or CV. It computes the distance between curves using the metric.lp, although any other semimetric could be used (see semimetric.basis or semimetric.NPFDA functions). Different asymmetric kernels can be used, see Kernel.asymmetric.

Value

Return:

call        The matched call.
residuals   y minus fitted values.
fitted.values Estimated scalar response.
df          The residual degrees of freedom.
r2          Coefficient of determination.
sr2         Residual variance.
H           Hat matrix.
y           Response.
fdataobj    Functional explanatory data.
mdist       Distance matrix between x and newx.
Ker         Asymmetric kernel used.
gcv         CV or GCV values.
h.opt       smoothing parameter or bandwidth that minimizes CV or GCV method.
h           Vector of smoothing parameter or bandwidth.
cv          List with the fitted values and residuals estimated by CV, without the same curve.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as: fregre.np, summary.fregre.fd and predict.fregre.fd. Alternative method: fregre.basis.cv and fregre.np.cv.
Examples

```
Not run:
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecator$yFat[ind]
Ker=Ker.tri
res.np=fregre.np.cv(x,y,Ker=Ker)
summary.fregre.fd(res.np)
res.np2=fregre.np.cv(x,y,type.CV=GCV.S,criteria="Shibata")
summary.fregre.fd(res.np2)

Example with other semimetrics (not run)
res.pca1=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.pca,q=1)
summary.fregre.fd(res.pca1)
res.deriv=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.deriv)
summary.fregre.fd(res.deriv)

x.d2=fdata.deriv(x,nderiv=1,method="fmm",class.out=’fdata’)
res.deriv2=fregre.np.cv(x.d2,y,Ker=Ker)
summary.fregre.fd(res.deriv2)
x.d3=fdata.deriv(x,nderiv=1,method="bspline",class.out=’fdata’)
res.deriv3=fregre.np.cv(x.d3,y,Ker=Ker)
summary.fregre.fd(res.deriv3)

End(Not run)
```

---

**Description**

Computes functional (ridge or penalized) regression between functional explanatory variable \( X(t) \) and scalar response \( Y \) using Principal Components Analysis.

\[
Y = \langle X, \beta \rangle + \epsilon = \int_T X(t)\beta(t)dt + \epsilon
\]

where \( \langle \cdot, \cdot \rangle \) denotes the inner product on \( L_2 \) and \( \epsilon \) are random errors with mean zero, finite variance \( \sigma^2 \) and \( E[X(t)\epsilon] = 0 \).

**Usage**

```
fregre.pc(fdataobj, y, l=NULL, lambda=0, P=c(1,0,0),
weights = rep(1, len = n),...)
```
Arguments

- `fdataobj` (fdata class object or fdata.comp class object created by `create.pc.basis` function).
- `y` (Scalar response with length `n`).
- `l` (Index of components to include in the model. If null (by default), 1=1:3).
- `lambda` (Amount of penalization. Default value is 0, i.e. no penalization is used.)
- `P` (If `P` is a vector: `P` are coefficients to define the penalty matrix object, see `P.penalty`. If `P` is a matrix: `P` is the penalty matrix object.)
- `weights` (Weights)
- `...` (Further arguments passed to or from other methods.)

Details

The function computes the \( \{\nu_k\}_{k=1}^{\infty} \) orthonormal basis of functional principal components to represent the functional data as \( X_i(t) = \sum_{k=1}^{\infty} \gamma_{ik} \nu_k \) and the functional parameter as \( \beta(t) = \sum_{k=1}^{\infty} \beta_k \nu_k \), where \( \gamma_{ik} = \langle X_i(t), \nu_k \rangle \) and \( \beta_k = \langle \beta, \nu_k \rangle \).

The response can be fitted by:

- \( \lambda = 0 \), no penalization,
  \[ \hat{y} = \nu_k^T (\nu_k^T \nu_k)^{-1} \nu_k^T y \]
- Ridge regression, \( \lambda > 0 \) and \( P = 1 \),
  \[ \hat{y} = \nu_k^T (\nu_k^T \nu_k + \lambda I)^{-1} \nu_k^T y \]
- Penalized regression, \( \lambda > 0 \) and \( P \neq 0 \). For example, \( P = \sigma(0,0,1) \) penalizes the second derivative (curvature) by \( P=P.penalty(fdataobj["argvals"],\sigma) \),
  \[ \hat{y} = \nu_k^T (\nu_k^T \nu_k + \lambda \nu_k^T P \nu_k)^{-1} \nu_k^T y \]

Value

- `call` (The matched call of `fregre.pc` function.)
- `coefficients` (A named vector of coefficients.)
- `residuals` (y-fitted values.)
- `fitted.values` (Estimated scalar response.)
- `beta.est` (beta coefficient estimated of class fdata)
- `df` (The residual degrees of freedom. In ridge regression, `df(\text{rn})` is the effective degrees of freedom.)
- `r2` (Coefficient of determination.)
sr2  Residual variance.
Vp   Estimated covariance matrix for the parameters.
H    Hat matrix.
l   Index of principal components selected.
lambda Amount of shrinkage.
P   Penalty matrix.
fdata.comp Fitted object in fdata2pc function.
lm   lm object.
fdataobj Functional explanatory data.
y   Scalar response.

Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as: fregre.pc.cv, summary.fregre.fd and predict.fregre.fd.
Alternative method: fregre.basis and fregre.np.

Examples

```r
Not run:
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecatoryFat[ind]
res=fregre.pc(x,y)
summary(res)
res2=fregre.pc(x,y,l=c(1,3,4))
summary(res2)
```
# Functional Ridge Regression
res3=fregre.pc(x,y,l=c(1,3,4),lambda=1,P=1)
summary(res3)

# Functional Regression with 2nd derivative penalization
res4=fregre.pc(x,y,l=c(1,3,4),lambda=1,P=c(0,0,1))
summary(res4)
betas<-c(res$beta.est,res2$beta.est,res3$beta.est,res4$beta.est)
plot(betas)

## End(Not run)

---

### fregre.pc.cv

**Functional penalized PC regression with scalar response using selection of number of PC components**

**Description**

Functional Regression with scalar response using selection of number of (penalized) principal components PC through cross-validation. The algorithm selects the PC with best estimates the response. The selection is performed by cross-validation (CV) or Model Selection Criteria (MSC). After is computing functional regression using the best selection of principal components.

**Usage**

`fregre.pc.cv(fdataobj, y, kmax=8, lambda = 0, P = c(1, 0, 0),
criteria = "SIC", weights=rep(1,len=n),...)`

**Arguments**

- **fdataobj**
  - *fdata* class object.

- **y**
  - Scalar response with length n.

- **kmax**
  - The number of components to include in the model.

- **lambda**
  - Vector with the amounts of penalization. Default value is 0, i.e. no penalization is used. If `lambda=TRUE` the algorithm computes a sequence of lambda values.

- **P**
  - The vector of coefficients to define the penalty matrix object. For example, if `P=c(1,0,0)`, ridge regression is computed and if `P=c(0,0,1)`, penalized regression is computed penalizing the second derivative (curvature).

- **criteria**
  - Type of cross-validation (CV) or Model Selection Criteria (MSC) applied. Possible values are "CV", "AIC", "AICc", "SIC", "SICc".

- **weights**
  - weights

- **...**
  - Further arguments passed to `fregre.pc` or `fregre.pls`
Details

The algorithm selects the best principal components \( \text{pc.opt} \) from the first \( k_{\text{max}} \) PC and (optionally) the best penalized parameter \( \lambda_{\text{opt}} \) from a sequence of non-negative numbers \( \lambda \).

If \( k_{\text{max}} \) is an integer (by default and recommended) the procedure is as follows (see example 1):

- Calculate the best principal component (\( \text{pc.order}[1] \)) between \( k_{\text{max}} \) by \texttt{fregre.pc}.
- Calculate the second-best principal component (\( \text{pc.order}[2] \)) between the \( (k_{\text{max}}-1) \) by \texttt{fregre.pc} and calculate the criteria value of the two principal components.
- The process (point 1 and 2) is repeated until \( k_{\text{max}} \) principal component (\( \text{pc.order}[k_{\text{max}}] \)).
- The process (point 1, 2 and 3) is repeated for each \( \lambda \) value.
- The method selects the principal components (\( \text{pc.opt} = \text{pc.order}[1:k_{\text{min}}] \)) and (optionally) the \( \lambda \) parameter with minimum MSC criteria.

If \( k_{\text{max}} \) is a sequence of integer the procedure is as follows (see example 2):

- The method selects the best principal components with minimum MSC criteria by stepwise regression using \texttt{fregre.pc} in each step.
- The process (point 1) is repeated for each \( \lambda \) value.
- The method selects the principal components (\( \text{pc.opt} = \text{pc.order}[1:k_{\text{min}}] \)) and (optionally) the \( \lambda \) parameter with minimum MSC criteria.

Finally, is computing functional PC regression between functional explanatory variable \( X(t) \) and scalar response \( Y \) using the best selection of PC \( \text{pc.opt} \) and ridge parameter \( r_{\text{rn}.\text{opt}} \).

The criteria selection is done by cross-validation (CV) or Model Selection Criteria (MSC).

- Predictive Cross-Validation: \( PCV(k_{\text{n}}) = \frac{1}{n} \sum_{i=1}^{n} \left( y_{i} - \hat{y}_{(-i,k_{\text{n}})} \right)^2 \), criteria="CV"

- Model Selection Criteria: \( MSC(k_{\text{n}}) = log \left[ \frac{1}{n} \sum_{i=1}^{n} \left( y_{i} - \hat{y}_{i} \right)^2 \right] + p_{n} \frac{k_{\text{n}}}{n} \)
  
  \[ p_{n} = \frac{log(n)}{n}, \text{criteria="SIC"} \text{ (by default)} \]
  \[ p_{n} = \frac{log(n)}{n-k_{\text{n}}-2}, \text{criteria="SICc"} \]
  \[ p_{n} = 2, \text{criteria="AIC"} \]
  \[ p_{n} = \frac{2n}{n-k_{\text{n}}-2}, \text{criteria="AICc"} \]
  \[ p_{n} = \frac{2log(log(n))}{n}, \text{criteria="HQIC"} \]

where \text{criteria} is an argument that controls the type of validation used in the selection of the smoothing parameter \( k_{\text{max}} = k_{\text{n}} \) and penalized parameter \( \lambda_{\text{opt}} = \lambda \).
Value

Return:

fregre.pc Fitted regression object by the best (pc.opt) components.

pc.opt Index of PC components selected.

MSC.min Minimum Model Selection Criteria (MSC) value for the (pc.opt) components.

MSC Minimum Model Selection Criteria (MSC) value for kmax components.

Note

criteria="CV" is not recommended: time-consuming.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See also as: fregre.pc.

Examples

```r
Not run:
data(tecator)
x<-tecator$absorp.fdata[1:129]
y<-tecatoryFat[1:129]
no penalization
res.pcl=fregre.pc.cv(x,y,8)
2nd derivative penalization
res.pc2=fregre.pc.cv(x,y,8,lambda=TRUE,P=c(0,0,1))
#Ridge regression
res.pc3=fregre.pc.cv(x,y,1:8,lambda=TRUE,P=1)

End(Not run)
```
Semi-functional partially linear model with scalar response.

Description

Computes functional regression between functional (and non functional) explanatory variables and scalar response using asymmetric kernel estimation.

An extension of the non-parametric functional regression models is the semi-functional partial linear model proposed in Aneiros-Perez and Vieu (2005). This model uses a non-parametric kernel procedure as that described in fregre.Nplm. The output $y$ is scalar. A functional covariate $X$ and a multivariate non functional covariate $Z$ are considered.

$$
y = r(X) + \sum_{j=1}^{p} Z_j \beta_j + \epsilon$$

The unknown smooth real function $r$ is estimated by means of

$$\hat{r}_h(X) = \frac{1}{n} \sum_{i=1}^{n} w_{n,h}(X, X_i)(Y_i - Z_i^T \hat{\beta}_h)$$

where $W_h$ is the weight function:

$$w_{n,h}(X, X_i) = \frac{K(d(X, X_i)/h)}{\sum_{j=1}^{n} K(d(X, X_j)/h)}$$

with smoothing parameter $h$, an asymmetric kernel $K$ and a metric or semi-metric $d$. In fregre.plm() by default $W_h$ is a functional version of the Nadaraya-Watson-type weights (type=S=SNw) with asymmetric normal kernel (ker=AKer.norm) in $L_2$ (metric=metric.lp with p=2). The unknown parameters $\beta_j$ for the multivariate non functional covariates are estimated by means of $\hat{\beta}_j = (\tilde{Z}_h^T \tilde{Z}_h)^{-1} \tilde{Z}_h^T \tilde{Z}_h$ where $\tilde{Z}_h = (I - W_h)Z$ with the smoothing parameter $h$. The errors $\epsilon$ are independent, with zero mean, finite variance $\sigma^2$ and $E[\epsilon|Z_1, \ldots, Z_p, X(t)] = 0$.

Usage

fregre.plm(formula, data, h=NULL, Ker=AKer.norm, metric=metric.lp, type.CV = GCV.S, type=S=SNw, par.CV=list(trim=0, draw=FALSE), par.S=list(w=1), ...)

Arguments

- formula: an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.
- data: List that containing the variables in the model.
- Ker: Type of asymmetric kernel used, by default asymmetric normal kernel.
**Details**

The first item in the `data` list is called "df" and is a data frame with the response and non functional explanatory variables, as `link{lm}`. If non functional data into the formula then `lm` regression is performed. Functional variable (fdata or fd class) is introduced in the second item in the `data` list. If only functional variable into the formula then `fregre.np.cv` is performed.

The function estimates the value of smoothing parameter or the bandwidth $h$ through Generalized Cross-validation GCV criteria. It computes the distance between curves using the `metric.lp`, although you can also use other metric function. Different asymmetric kernels can be used, see `Kernel.asymmetric`.

**Value**

- `call` The matched call.
- `fitted.values` Estimated scalar response.
- `residuals` $y$ minus fitted values.
- `df` The residual degrees of freedom.
- `H` Hat matrix.
- `r2` Coefficient of determination.
- `sr2` Residual variance.
- `y` Scalar response.
- `fdataobj` Functional explanatory data.
- `XX` Non functional explanatory data.
- `mdist` Distance matrix between curves.
- `betah` Beta coefficient estimated
- `data` List that containing the variables in the model.
- `ker` Asymmetric kernel used.
Value that minimizes CV or GCV method.

Smoothing parameter or bandwidth.

List that containing the variables in the model.

GCV values.

formula

Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as: `predict.fregre.plm` and `summary.fregre.fd`
Alternative methods: `fregre.lm`, `fregre.np` and `fregre.np.cv`

Examples

```r
Not run:
data(tecator)
x=tecator$absorp.fdata[1:129]
dataf=tecator$f[1:129,]
f=Fat~Water+x
ldata=list("df"=dataf,"x"=x)
res.plm=fregre.plm(f,ldata)
summary(res.plm)

with 2nd derivative of functional data
x.fd=fd.fdata.deriv(x,n.derv=2)
f2=Fat~Water+x.fd
ldata2=list("df"=dataf,"x.fd"=x.fd)
res.plm2=fregre.plm(f2,ldata2)
summary(res.plm2)

End(Not run)
```
Description

Computes functional linear regression between functional explanatory variable $X(t)$ and scalar response $Y$ using penalized Partial Least Squares (PLS)

$$Y = \langle \hat{X}, \beta \rangle + \epsilon = \int_T \hat{X}(t)\beta(t)dt + \epsilon$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product on $L^2$ and $\epsilon$ are random errors with mean zero, finite variance $\sigma^2$ and $E[\hat{X}(t)\epsilon] = 0$.

Usage

fregre.pls(fdataobj, y=NULL, l=NULL, lambda=0, P=c(0,0,1),...)

Arguments

- fdataobj: fdata class object.
- y: Scalar response with length $n$.
- l: Index of components to include in the model.
- lambda: Amount of penalization. Default value is 0, i.e. no penalization is used.
- P: If P is a vector: P are coefficients to define the penalty matrix object. By default P=c(0,0,1) penalize the second derivative (curvature) or acceleration. If P is a matrix: P is the penalty matrix object.
- ... Further arguments passed to or from other methods.

Details

Functional (FPLS) algorithm maximizes the covariance between $X(t)$ and the scalar response $Y$ via the partial least squares (PLS) components. The functional penalized PLS are calculated in fdata2pls by alternative formulation of the NIPALS algorithm proposed by Kraemer and Sugiyama (2011).

Let $\{\nu_k\}_{k=1}^{\infty}$ the functional PLS components and $\hat{X}_i(t) = \sum_{k=1}^{\infty} \gamma_{ik}\nu_k$ and $\beta(t) = \sum_{k=1}^{\infty} \tilde{\beta}_k \nu_k$.

The functional linear model is estimated by:

$$\hat{y} = \langle X, \hat{\beta} \rangle \approx \sum_{k=1}^{k_n} \gamma_k \tilde{\beta}_k$$

The response can be fitted by:

- $\lambda = 0$, no penalization,

$$\hat{y} = \nu_k^T (\nu_k^T \nu_k)^{-1} \nu_k^T y$$
• Penalized regression, $\lambda > 0$ and $P \neq 0$. For example, $P = c(0, 0, 1)$ penalizes the second derivative (curvature) by $P = P \cdot \text{penalty}(\text{fdataobj}[^{\text{argvals}}], P)$.

$$\hat{y} = \nu_k^T (\nu_k^T \nu_k + \lambda \nu_k^T P \nu_k)^{-1} \nu_k^T y$$

**Value**

Return:

- **call**: The matched call of `fregre.pls` function.
- **beta.est**: Beta coefficient estimated of class fdata.
- **coefficients**: A named vector of coefficients.
- **fitted.values**: Estimated scalar response.
- **residuals**: y-fitted values.
- **H**: Hat matrix.
- **df**: The residual degrees of freedom.
- **r2**: Coefficient of determination.
- **GCV**: GCV criterion.
- **sr2**: Residual variance.
- **l**: Index of components to include in the model.
- **lambda**: Amount of shrinkage.
- **fdata.comp**: Fitted object in `fdata2pls` function.
- **lm**: Fitted object in `lm` function
- **fdataobj**: Functional explanatory data.
- **y**: Scalar response.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**


fregre.pls.cv

See Also

See Also as: \texttt{p.penalty} and \texttt{fregre.pls.cv}.
Alternative method: \texttt{fregre.plc}.

Examples

```r
Not run:
data(tector)$absorp.fdata
x<-tectoryFat
y<-tectoryFat
res=fregre.plc(x,y,c(1:8))
summary(res)
res2=fregre.pls(x,y,c(1:8),lambda=10)
summary(res2)
End(Not run)
```

\begin{verbatim}
fregre.pls.cv  Functional penalized PLS regression with scalar response using selection of number of PLS components
\end{verbatim}

Description

Functional Regression with scalar response using selection of number of penalized principal components PPLS through cross-validation. The algorithm selects the PPLS components with best estimates the response. The selection is performed by cross-validation (CV) or Model Selection Criteria (MSC). After is computing functional regression using the best selection of PPLS components.

Usage

\begin{verbatim}
fregre.pls.cv(fdataobj, y, kmax=8, lambda = 0, P = c(0, 0, 1), criteria = "SIC", ...)
\end{verbatim}

Arguments

\begin{itemize}
  \item \texttt{fdataobj} \texttt{fdata} class object.
  \item \texttt{y} Scalar response with length \texttt{n}.
  \item \texttt{kmax} The number of components to include in the model.
  \item \texttt{lambda} Vector with the amounts of penalization. Default value is 0, i.e. no penalization is used. If \texttt{lambda=TRUE} the algorithm computes a sequence of lambda values.
  \item \texttt{P} The vector of coefficients to define the penalty matrix object. For example, if \texttt{P=c(0,0,1)}, penalized regression is computed penalizing the second derivative (curvature).
  \item \texttt{criteria} Type of cross-validation (CV) or Model Selection Criteria (MSC) applied. Possible values are "CV", "AIC", "AICc", "SIC", "SICc".
  \item \texttt{...} Further arguments passed to \texttt{fregre.pls}.
\end{itemize}
Details

The algorithm selects the best principal components \texttt{pls.opt} from the first \texttt{kmax} PLS and (optionally) the best penalized parameter \texttt{lambda.opt} from a sequence of non-negative numbers \texttt{lambda}.

- The method selects the best principal components with minimum MSC criteria by stepwise regression using \texttt{fregre.pls} in each step.
- The process (point 1) is repeated for each \texttt{lambda} value.
- The method selects the principal components (\texttt{pls.opt=pls.order[1:k.min]}) and (optionally) the lambda parameter with minimum MSC criteria.

Finally, is computing functional PLS regression between functional explanatory variable \(X(t)\) and scalar response \(Y\) using the best selection of PLS \texttt{pls.opt} and ridge parameter \texttt{rn.opt}.

The criteria selection is done by cross-validation (CV) or Model Selection Criteria (MSC).

- Predictive Cross-Validation: \(PCV(k_n) = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \hat{y}_{(-i,k_n)} \right)^2\), criteria=\texttt{"CV"}
- Model Selection Criteria: \(MSC(k_n) = \log \left[ \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \hat{y}_i \right)^2 \right] + p_n \frac{k_n}{n}\)
  \[p_n = \frac{\log(n)}{n}, \text{criteria=\texttt{"SIC"}} \text{ (by default)}\]
  \[p_n = \frac{\log(n)}{n-k_n-2}, \text{criteria=\texttt{"SICc"}}\]
  \[p_n = 2, \text{criteria=\texttt{"AIC"}}\]
  \[p_n = \frac{2n}{n-k_n-2}, \text{criteria=\texttt{"AICc"}}\]

where \texttt{criteria} is an argument that controls the type of validation used in the selection of the smoothing parameter \texttt{kmax= k_n} and penalized parameter \texttt{lambda= \lambda}.

Value

Return:

\texttt{fregre.pls} \quad \text{Fitted regression object by the best (\texttt{pls.opt}) components.}
\texttt{pls.opt} \quad \text{Index of PLS components selected.}
\texttt{MSC.min} \quad \text{Minimum Model Selection Criteria (MSC) value for the (\texttt{pls.opt}) components.}
\texttt{MSC} \quad \text{Minimum Model Selection Criteria (MSC) value for \texttt{kmax} components.}

Note

\texttt{criteria=\texttt{"CV"}} is not recommended: time-consuming.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
References


See Also

See also as: `fregre.ppc`.

Examples

```r
Not run:
data(tector)
x <- tector$absorp.fdata[1:129]
y <- tectoryfat[1:129]
no penalization
pls1 <- fregre.pls.cv(x, y, 8)
2nd derivative penalization
pls2 <- fregre.pls.cv(x, y, 8, lambda = 0.5, P = c(0, 0, 1))
End(Not run)
```

---

### fregre.ppc, fregre.ppls

**Functional Penalized PC (or PLS) regression with scalar response**

**Description**

Computes functional linear regression between functional explanatory variable $\tilde{X}(t)$ and scalar response $Y$ using penalized Principal Components Analysis (PPC) or Partial Least Squares (PPLS), where $X(t) = MX(t)$ with $M = (I + \lambda P)^{-1}$.

$$Y = \langle \tilde{X}, \beta \rangle + \epsilon = \int_T \tilde{X}(t) \beta(t) dt + \epsilon$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product on $L_2$ and $\epsilon$ are random errors with mean zero, finite variance $\sigma^2$ and $E[X(t)\epsilon] = 0$.

**Usage**

```r
fregre.ppc(fdataobj, y, l = NULL, lambda = 0, P = c(0, 0, 1), ...)
fregre.ppls(fdataobj, y = NULL, l = NULL, lambda = 0, P = c(0, 0, 1), ...)
```
Arguments

- **fdataobj**: `fdata` class object.
- **y**: Scalar response with length `n`.
- **l**: Index of components to include in the model.
- **lambda**: Amount of penalization. Default value is 0, i.e., no penalization is used.
- **P**: If `P` is a vector: `P` are coefficients to define the penalty matrix object. By default, `P = c(0, 0, 1)` penalize the second derivative (curvature) or acceleration. If `P` is a matrix: `P` is the penalty matrix object.
- ... Further arguments passed to or from other methods.

Details

The function computes the \{ν\}_{k=1}^\infty orthonormal basis of functional PC (or PLS) to represent the functional data as \( \tilde{X}_i(t) = \sum_{k=1}^{\infty} \gamma_{ik} \nu_k \), where \( \tilde{X} = MX \) with \( M = (I + \lambda P)^{-1} \). 

The functional penalized PC are calculated in `fdata2ppc`.

Functional (FPLS) algorithm maximizes the covariance between \( \tilde{X}(t) \) and the scalar response \( Y \) via the partial least squares (PLS) components. The functional penalized PLS are calculated in `fdata2ppls` by alternative formulation of the NIPALS algorithm proposed by Kraemer and Sugiyama (2011).

Let \{\tilde{\nu}_k\}_{k=1}^\infty the functional PLS components and \( \tilde{X}_i(t) = \sum_{k=1}^{\infty} \tilde{\gamma}_{ik} \tilde{\nu}_k \) and \( \beta(t) = \sum_{k=1}^{\infty} \tilde{\beta}_k \tilde{\nu}_k \).

The functional linear model is estimated by:

\[
\hat{y} = \langle \tilde{X}, \tilde{\beta} \rangle \approx \sum_{k=1}^{k_n} \tilde{\gamma}_k \tilde{\beta}_k
\]

Value

Return:

- **call**: The matched call of `fregre.pls` function.
- **beta.est**: Beta coefficient estimated of class `fdata`.
- **coefficients**: A named vector of coefficients.
- **fitted.values**: Estimated scalar response.
- **residuals**: \( y \)-fitted values.
- **H**: Hat matrix.
- **df**: The residual degrees of freedom.
- **r2**: Coefficient of determination.
- **GCV**: GCV criterion.
- **sr2**: Residual variance.
- **l**: Index of components to include in the model.
Amount of shrinkage.

Fitted object in \texttt{fdata2pls} function.

Fitted object in \texttt{lm} function

Functional explanatory data.

Scalar response.

\textbf{References}


\textbf{See Also}

See Also as: \texttt{P.penalty}, \texttt{fregre.ppc.cv} and \texttt{fregre.ppls.cv}.
Alternative method: \texttt{fregre.pc} and \texttt{fregre.pls}.

\begin{verbatim}
 fregre.ppc.cv  Functional penalized PC (or PLS) regression with scalar response using selection of number of PC (or PLS) components

 Description

Functional Regression with scalar response using selection of number of penalized principal components PPC(or partial least squares components PPLS) through cross-validation. The algorithm selects the PPLS components with best estimates the response. The selection is performed by cross-validation (CV) or Model Selection Criteria (MSC). After is computing functional regression using the best selection of PPC (or PPLS) components.

 Usage

  fregre.ppc.cv(fdataobj, y, kmax=8, lambda = 0, P = c(0, 0, 1), criteria = "SIC", ...)

  fregre.ppls.cv(fdataobj, y, kmax=8, lambda = 0, P = c(0, 0, 1), criteria = "SIC", ...)
\end{verbatim}
Arguments

- **fdataobj**  
  *fdata* class object.
- **y**  
  Scalar response with length n.
- **kmax**  
  The number of components to include in the model.
- **lambda**  
  Vector with the amounts of penalization. Default value is 0, i.e. no penalization is used. If \( \text{lambda} = \text{TRUE} \) the algorithm computes a sequence of lambda values.
- **p**  
  If \( p \) is a vector: \( p \) are coefficients to define the penalty matrix object. By default \( p = c(0,0,1) \) penalize the second derivative (curvature) or acceleration. If \( p \) is a matrix: \( P \) is the penalty matrix object.
- **criteria**  
  Type of cross-validation (CV) or Model Selection Criteria (MSC) applied. Possible values are "CV", "AIC", "AICc", "SIC".
- ...  
  Further arguments passed to `fregre.ppc` or `fregre.ppls`.

Details

The algorithm is as follows:

- Select the best components (pc.opt or pls.opt) with minimum MSC criteria by stepwise regression using `fregre.ppc` or `fregre.ppls` in each step.
- Fit the functional PPLS regression between \( \tilde{X}(t) \) and \( Y \) using the best selection of FPLS components \( \text{pls.opt} \).

For more details in estimation process see `fregre.ppc` or `fregre.ppls`.

The criteria selection is done by cross-validation (CV) or Model Selection Criteria (MSC).

- Predictive Cross-Validation: \( PCV(k_n) = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \hat{y}_{i(-i,k_n)} \right)^2 \), criteria="CV"
- Model Selection Criteria: \( MSC(k_n) = log \left[ \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \hat{y}_i \right)^2 \right] + p_n \frac{k_n}{n} \text{ for } p_n = \frac{\log(n)}{n}, \text{ criteria="SIC"}, \text{ Schwarz information criterion (by default).} \)
  \( p_n = \frac{\log(n)}{n-k_n-2}, \text{ criteria="SICc"}, \text{ corrected Schwarz information criterion.} \)
  \( p_n = 2, \text{ criteria="AIC"}, \text{ Akaike information criterion.} \)
  \( p_n = \frac{2n}{n-k_n-2}, \text{ criteria="AICc"}, \text{ corrected Akaike information criterion} \)
  \( p_n = \frac{2\log(n)}{n}, \text{ criteria="HQIC"}, \text{ Hannan-Quinn information criterion.} \)
- The generalized minimum description length (gmdl) criteria:
  \[ gmdl(k_n) = log \left[ \frac{1}{n-k_n} \sum_{i=1}^{n} \left( y_i - \hat{y}_i \right)^2 \right] + K_n log \left( \frac{n-k_n}{\sum_{i=1}^{n} \hat{y}_i^2} \right) + log(n) \]
where criteria is an argument that controls the type of validation used in the selection of the smoothing parameter $k_{max} = k_n$ and penalized parameter $\lambda = \lambda$.

criteria="CV" is not recommended: time-consuming.

Value

Return:

- \texttt{pls.opt} Index of PC or PLS components selected.
- \texttt{MSC.min} Minimum Model Selection Criteria (MSC) value for the (pc.opt or pls.opt) components.
- \texttt{MSC} Minimum Model Selection Criteria (MSC) value for $k_{max}$ components.
- \texttt{fregre.ppls} Fitted regression object by the best (pc.opt or pls.opt) components.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See also as: \texttt{fregre.ppls} and \texttt{fregre.ppc}.

\textbf{GCCV.S} \hspace{1cm} The generalized correlated cross-validation (GCCV) score.

Description

The generalized correlated cross-validation (GCCV) score.
Usage

GCCV.S(y,S,criteria="GCCV1",W=NULL,trim=0,draw=FALSE,
metric=metric.lp,...)

Arguments

- **y**: Response vector ith length \( n \) or Matrix of set cases with dimension \((n \times m)\), where \( n \) is the number of curves and \( m \) are the points observed in each curve.
- **S**: Smoothing matrix, see S.NW, S.LLR or S.KNN.
- **criteria**: The penalizing function. By default "Rice" criteria, "GCCV1","GCCV2","GCCV3","GCV") Possible values are "GCCV1", "GCCV2", "GCCV3", "GCV".
- **W**: Matrix of weights.
- **trim**: The alpha of the trimming.
- **draw**: =TRUE, draw the curves, the sample median and trimmed mean.
- **metric**: Metric function, by default metric.lp.
- ... Further arguments passed to or from other methods.

Details

\[
GCCV = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_{i,b})^2}{1 - \frac{tr(C)}{n}}
\]

where \( S \) is the smoothing matrix \( S \) and:
- A.-If \( C = 2S\Sigma - S\Sigma S \)
- B.-If \( C = S\Sigma \)
- C.-If \( C = S\Sigma S' \)

with \( \Sigma \) is the n x n covariance matrix with \( \text{cor}(\epsilon_i, \epsilon_j) = \sigma \)

Note: Provided that \( C = I \) and the smoother matrix \( S \) is symmetric and idempotent, as is the case for many linear fitting techniques, the trace term reduces to \( n - tr[S] \), which is proportional to the familiar denominator in GCV.

Value

- **res**: Returns GCCV score calculated for input parameters.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


GCV.S

See Also

See Also as `min.np`.
Alternative method (independent case): `GCV.S`

Examples

```r
Not run:
data(tecator)
x=tecator$absorp.fdata
x.d2<-fdata.deriv(x,nderiv=)
tt<-x["argvals"]
dataf=as.data.frame(tecator$y)
y=tecatoryFat
plot the response
plot(ts(tecatoryFat))

nbasis.x=11;nbasis.b=7
basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b)
basis.x=list("x.d2"=basis1)
basis.b=list("x.d2"=basis2)
dataf=list("df"=dataf,"x.d2"=x.d2)
No correlation
res.gls=fregre.gls(Fat~x.d2,data=dataf,
basis.x=basis.x,basis.b=basis.b)
AR1 correlation
res.gls=fregre.gls(Fat~x.d2,data=dataf,correlation=corAR1(),
basis.x=basis.x,basis.b=basis.b)
GCCV.S(y,res.gls$H,"GCV1",W=res.gls$W)
res.gls$gcv

End(Not run)
```

```
GCV.S

The generalized cross-validation (GCV) score.

Description

The generalized cross-validation (GCV) score.

Usage

GCV.S(y,S,criteria="GCV",W=NULL,trim=0,
 draw=FALSE,metric=metric.lp,...)
```
Arguments

- **y**: Matrix of set cases with dimension \((n \times m)\), where \(n\) is the number of curves and \(m\) are the points observed in each curve.
- **S**: Smoothing matrix, see \texttt{S.NW}, \texttt{S.LLR} or \texttt{S.KNN}.
- **criteria**: The penalizing function. By default "Rice" criteria. Possible values are "GCV", "AIC", "FPE", "Shibata", "Rice".
- **W**: Matrix of weights.
- **trim**: The alpha of the trimming.
- **draw**: =TRUE, draw the curves, the sample median and trimmed mean.
- **metric**: Metric function, by default \texttt{metric.lp}.
- ... Further arguments passed to or from other methods.

Details

\[
GCV(h) = p(h) \Xi(n^{-1}h^{-1})
\]

Where

A.- If \(trim=0\):

\[
p(h) = \left\| \sqrt{W} (y_i - \hat{y}_i) \right\|
\]

B.- If \(trim>0\):

\[
p(h) = \frac{1}{l} \sum_{i=1}^{l} \left( y_i - r_i(x_i) \right)^2 w(x_i)
\]

where \(h\) is the bandwidth parameter, \(w\) the weights and the penalty function \(\Xi\) can be selected from the following criteria:

- Generalized Cross-validation (GCV):
  \[
  \Xi_{GCV}(n^{-1}h^{-1}) = (1 - n^{-1}S_{ii})^{-2}
  \]
- Akaike’s Information Criterion (AIC):
  \[
  \Xi_{AIC}(n^{-1}h^{-1}) = \exp(2n^{-1}S_{ii})
  \]
- Finite Prediction Error (FPE):
  \[
  \Xi_{FPE}(n^{-1}h^{-1}) = \frac{(1 + n^{-1}S_{ii})}{(1 - n^{-1}S_{ii})}
  \]
• Shibata’s model selector (Shibata):

\[ \Xi_{\text{Shibata}}(n^{-1}h^{-1}) = (1 + 2n^{-1}S_{ii}) \]

• Rice’s bandwidth selector (Rice):

\[ \Xi_{\text{Rice}}(n^{-1}h^{-1}) = (1 - 2n^{-1}S_{ii})^{-1} \]

where \( S_{ii} \) the \( i \)th diagonal element of the smoothing matrix \( S \), in see \( S_{\text{NW}}, S_{\text{LLR}} \) or \( S_{\text{KNN}} \).

Value

res 

Returns GCV score calculated for input parameters.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as min.np.

Alternative method: CV.S

Examples

data(phoneme)
mlearn<-phoneme$learn
tt<-1:ncol(mlearn)
S1 <- S.NW(tt,2.5)
S2 <- S.LLR(tt,2.5)
gcv1 <- GCV.S(mlearn, S1)
gcv2 <- GCV.S(mlearn, S2)
gcv3 <- GCV.S(mlearn, S1,criteria="AIC")
gcv4 <- GCV.S(mlearn, S2,criteria="AIC")
gcv1; gcv2; gcv3; gcv4
gridfdata, rcombfdata  

**Description**

gridfdata generates \( n \) curves as linear combination of the original curves \( fdataobj \) plus a functional trend \( \mu \).

rcombfdata generates \( n \) random linear combinations of the \( fdataobj \) curves plus a functional trend \( \mu \). The coefficients of the combinations follow a normal distribution with zero mean and standard deviation \( sdarg \).

**Usage**

gridfdata(coef,fdataobj,mu)

rcombfdata(n = 10, fdataobj, mu,
          sdarg = rep(1,nrow(fdataobj)), norm = 1)

**Arguments**

- **coef**  
  Coefficients of the combination. A matrix with number of columns equal to number of curves in \( fdataobj \).

- **fdataobj**  
  \( fdata \) class object.

- **mu**  
  Functional trend, by default \( \mu(t) = 0 \). An object of class \( fdata \).

- **n**  
  Number of curves to be generated.

- **sdarg**  
  Standard deviation of the coefficients.

- **norm**  
  Norm of the coefficients. The norm is adjusted before the transformation for \( sdarg \) is performed.

**Value**

Return the functional trajectories as a \( fdata \) class object.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**See Also**

See Also as \( rproc2fdata \)
**Examples**

```r
tt = seq(0, 1, len=51)
fou3 = create.fourier.basis(c(0, 1), nbasis=3)
fdatab = fdata(t(eval.basis(tt, fou3)), argsvals=tt)

c = expand.grid(0, seq(-1, 1, len=11), seq(-1, 1, len=11))
g = gridfdata(coef, fdatab)
plot(g, lty=1)

rcomb = rcombfd(n=51, fdatab, mu=fdata(30*tt*(1-tt), tt))
plot(rcomb, lty=1)
```

<table>
<thead>
<tr>
<th>h.default</th>
<th>Calculation of the smoothing parameter (h) for a functional data</th>
</tr>
</thead>
</table>

**Description**

Calculation of the smoothing parameter (h) for a functional data using nonparametric kernel estimation.

**Usage**

```r
h.default(fdatab, prob=c(0.025, 0.25), len=51, metric = metric.lp,
Ker = "AKer.norm", type.S ="S.NW",...)
```

**Arguments**

- **fdatab**
  - `fdata` class object.
- **prob**
  - Range of probabilities for the quantiles of the distance matrix.
- **len**
  - Vector length of smoothing parameter h to return.
- **metric**
  - If is a function: name of the function to calculate the distance matrix between the curves, by default `metric.lp`. If is a matrix: distance matrix between the curves.
- **Ker**
  - Type of asymmetric kernel used, by default asymmetric normal kernel.
- **type.S**
  - Type of smoothing matrix S. Possible values are: Nadaraya-Watson estimator “S.NW” and K nearest neighbors estimator “S.KNN”
- **...**
  - Arguments to be passed for metric argument.

**Value**

Returns the vector of smoothing parameter or bandwidth h.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
See Also

See Also as `metric.lp`, `Kernel` and `SNW`. Function used in `fregre.np` and `fregre.np.cv` function.

Examples

```r
Not run
data(aemet)
h1<-h.default(aemet$temp,prob=c(0.025, 0.25),len=2)
mdist<-metric.lp(aemet$temp)
h2<-h.default(aemet$temp,len=2,metric=mdist)
h3<-h.default(aemet$temp,len=2,metric=semimetric.pca,q=2)
h4<-h.default(aemet$temp,len=2,metric=semimetric.pca,q=4)
h1;h2;h3;h4
```

---

## influence.quan

Quantile for influence measures

Description

Estimate the quantile of measures of influence for each observation.

Usage

```r
S3 method for class 'quan'
influence(model, out.influ, mue.boot=500,
smo=0.1, smoX=0.05, alpha=0.95, kmax.fix=FALSE,...)
```

Arguments

- `model`: `fregre.pc`, `fregre.basis` or `fregre.basis.cv` object.
- `out.influ`: influence.object
- `mue.boot`: Number of bootstrap samples
- `smo`: Smoothing parameter as a proportion of response variance.
- `smoX`: Smoothing parameter for `fdata` object as a proportion of variance-covariance matrix of the explanatory functional variable.
- `alpha`: Significance level.
- `kmax.fix`: The maximum number of principal components or number of basis is fixed by model object.
- `...`: Further arguments passed to or from other methods.
Compute the quantile of measures of influence estimated in `influence.fdata` for functional regression using principal components representation (`fregre.pc`) or basis representation (`fregre.basis` or `fregre.basis.cv`).

A smoothed bootstrap method is used to estimate the quantiles of the influence measures, which allows to point out which observations have the larger influence on estimation and prediction.

**Value**

Return:

- `quan.cook.for` Distance Cook Prediction Quantile.
- `quan.cook.est` Distance Cook Estimation Quantile.
- `quan.cook.pen` Peña Distance Quantile.
- `mues.est` Sample Cook generated.
- `mues.pen` Sample Peña generated.
- `beta.boot` Functional beta estimated by bootstrap method.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**


**See Also**

See Also as: `influence.fdata`, `fregre.basis`, `fregre.pc`.

**Examples**

```r
Not run:
data(tecator)
x=tecator$absorp.fdata
y=tecatoryFat
res=fregre.pc(x,y,1:6)

#time consuming
res.infl=influence.fdata(res)
resquan=influence.quan(res,res.infl,4,0.01,0.05,0.95)
plot(res.infl$betas,type="l",col=2)
lines(res$beta.est,type="1",col=3)
lines(resquan$betas.boot,type="1",col="gray")
res=fregre.basis(x,y)
res.infl=influence.fdata(res)
```
Functional influence measures

Description

Once estimated the functional regression model with scalar response, influence.fdata function is used to obtain the functional influence measures.

Usage

```r
S3 method for class 'fdata'
influence(model,...)
```

Arguments

- `model` fregre.pc, fregre.basis or fregre.basis.cv object.
- `...` Further arguments passed to or from other methods.

Details

Identify influential observations in the functional linear model in which the predictor is functional and the response is scalar.

Three statistics are introduced for measuring the influence: Distance Cook Prediction DCP, Distance Cook Estimation DCE and Distance peña DP respectively.

Value

Return:

- **DCP** Cook's Distance for Prediction.
- **DCE** Cook's Distance for Estimation.
- **DP** Peña's Distance.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
References


See Also

See Also as: fregre.pc, fregre.basis, influence.quan

Examples

```r
Not run:
data(tecator)
x=tecator$absorp.fdata[1:129]
y=tecatoryFat[1:129]

res1=fregre.pc(x,y,1:5)
time consuming
res.infl1=influence.fdata(res1)
res2=fregre.basis(x,y)
res.infl2=influence.fdata(res2)

res<res1
res.infl<-res.infl1
mat=cbind(y,resfitvalues,res.infl$DCP,res.infl$DCE,res.infl$DP)
colnames(mat)=c("Resp.","Pred.","DCP","DCE","DP")
pairs(mat)
End(Not run)
```

inprod.fdata

Inner products of Functional Data Objects of class (fdata)

Description

Computes a inner products of functional data objects of class fdata.

Usage

```r
inprod.fdata(fdata1,fdata2=NULL, w = 1, ...)
```
Arguments

fdata1  Functional data 1 or curve 1. fdata1$data with dimension (n1 x m), where n1 is the number of curves and m are the points observed in each curve.
fdata2  Functional data 2 or curve 2. fdata2$data with dimension (n2 x m), where n2 is the number of curves and m are the points observed in each curve.
w      Vector of weights with length m, If w = 1 approximates the metric Lp by Simpson’s rule. By default it uses w = 1

Details

By default it uses weights w=1.

$$\langle fdata1, fdata2 \rangle = \frac{1}{\int_{a}^{b} w(x)dx} \int_{a}^{b} fdata1(x) * fdata2(x) w(x) dx$$

The observed points on each curve are equally spaced (by default) or not.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oiedo@usc.es>

See Also

See also inprod and norm.fdata

Examples

```r
x<-seq(0,2*pi,length=1001)
fx1<-sin(x)/sqrt(pi)
fx2<-cos(x)/sqrt(pi)
argv<-seq(0,2*pi,len=1001)
fdat0<-fdata(rep(0,len=1001),argv,range(argv))
fdat1<-fdata(fx1,x,range(x))
inprod.fdata(fdat1,fdat1)
inprod.fdata(fdat0,fdat1)
metric.lp(fdat1)
metric.lp(fdat1,fdat0)
norm.fdata(fdat1)
The same
integrate(function(x)((abs(sin(x)/sqrt(pi))^2)),0,2*pi)
integrate(function(x)((abs(cos(x)/sqrt(pi))^2)),0,2*pi)
```
**int.simpson**

**Simpson integration**

**Description**
Computes the integral of fdataobj$data with respect to fdataobj$argvals using simpson or trapezoid rule integration.

**Usage**

```r
int.simpson(fdataobj, equi=TRUE, method="TRAPZ")
```

**Arguments**

- `fdataobj`: fdata object.
- `equi`: =TRUE, the observed points on each curve are equally spaced (by default).
- `method`: Method for numerical integration, see details.

**Details**

- If method="CSR", composite Simpson’s rule integration is used.
- If method="ESR", extended Simpson’s rule integration is used.
- If method="TRAPZ", Trapezoid rule integration is used.

**Author(s)**
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**See Also**
See also `integrate`.

**Examples**

```r
x<-seq(0, 2*pi, length=100)
f<-fdata(sin(x)/sqrt(pi), x)
f0<-fdata(rep(0, length(x)), x)
int.simpson(f0)
int.simpson(f)
```

**Kernel**

**Symmetric Smoothing Kernels.**

**Description**
Represent symmetric smoothing kernels:: normal, cosine, triweight, quartic and uniform.
Ker.norm=dnorm(u)
Ker.cos=ifelse(abs(u)<=pi/4*(cos(pi*u/2)),0)
Ker.epa=ifelse(abs(u)<=1,3/4*(1-u^2),0)
Ker.tri=ifelse(abs(u)<=1,35/32*(1-u^2)^3,0)
Ker.quar=ifelse(abs(u)<=1,15/16*(1-u^2)^2,0)
Ker.unif=ifelse(abs(u)<=1,1/2,0)

Usage

Kernel(u,type.Ker="Ker.norm")
Ker.norm(u)
Ker.cos(u)
Ker.epa(u)
Ker.tri(u)
Ker.quar(u)
Ker.unif(u)

Arguments

type.Ker Type of Kernel. By default normal kernel.
u Data.

Details

Type of kernel:

Normal Kernel: Ker.norm
Cosine Kernel: Ker.cos
Epanechnikov Kernel: Ker.epa
Triweight Kernel: Ker.tri
Quartic Kernel: Ker.quar
Uniform Kernel: Ker.unif

Value
res Returns symmetric kernel.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


**Examples**

```r
y = qnorm(seq(.1,.9,len=100))
a = Kernel(u = y)
b = Kernel(type.Ker = "Ker.tri", u = y)
c = Ker.cos(y)
```

---

**Kernel.asymmetric**

**Asymmetric Smoothing Kernel**

---

**Description**

Represent Asymmetric Smoothing Kernels: normal, cosine, triweight, quartic and uniform.

\[
\begin{align*}
\text{AKer.norm} &= \text{ifelse}(u >= 0, 2*dnorm(u), 0) \\
\text{AKer.cos} &= \text{ifelse}(u >= 0, \pi/2*(cos(\pi*u/2)), 0) \\
\text{AKer.epa} &= \text{ifelse}(u >= 0 \& u <= 1, 3/2*(1-u^2), 0) \\
\text{AKer.tri} &= \text{ifelse}(u >= 0 \& u <= 1, 35/16*(1-u^2)^3, 0) \\
\text{AKer.quar} &= \text{ifelse}(u >= 0 \& u <= 1, 15/8*(1-u^2)^2, 0) \\
\text{AKer.unif} &= \text{ifelse}(u >= 0 \& u <= 1, 1, 0)
\end{align*}
\]

**Usage**

```r
Kernel.asymmetric(u, type.Ker = "AKer.norm")
AKer.norm(u)
AKer.cos(u)
AKer.epa(u)
AKer.tri(u)
AKer.quar(u)
AKer.unif(u)
```

**Arguments**

- `type.Ker`: Type of asymmetric metric kernel, by default asymmetric normal kernel.
- `u`: Data.

**Details**

Type of Asymmetric kernel:

- Asymmetric Normal Kernel: `AKer.norm`
- Asymmetric Cosine Kernel: `AKer.cos`
- Asymmetric Epanechnikov Kernel: `AKer.epa`
- Asymmetric Triweight Kernel: `AKer.tri`
- Asymmetric Quartic Kernel: `AKer.quar`
- Asymmetric Uniform Kernel: `AKer.unif`
Value

res Returns asymmetric kernel.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


Examples

```r
y=qnorm(seq(.1,.9,len=100))
a<-Kernel.asymmetric(u=y)
b<-Kernel.asymmetric(type.Ker="AKer.tri",u=y)
c=AKer.cos(y)
```

Description

Represent integrate kernels: normal, cosine, triweight, quartic and uniform.

Usage

```r
Kernel.integrate(u,Ker=Ker.norm,a=-1)
IKer.norm(u)
IKer.cos(u)
IKer.epa(u)
IKer.tri(u)
IKer.quar(u)
IKer.unif(u)
```

Arguments

- `u` data
- `Ker` Type of Kernel. By default normal kernel.
- `a` Lower limit of integration.

Details

Type of integrate kernel:
Integrate Normal Kernel: \texttt{IKer.norm}
Integrate Cosine Kernel: \texttt{IKer.cos}
Integrate Epanechnikov Kernel: \texttt{IKer.epa}
Integrate Triweight Kernel: \texttt{IKer.tri}
Integrate Quartic Kernel: \texttt{IKer.quar}
Integrate Uniform Kernel: \texttt{IKer.unif}

**Value**

\texttt{res} \quad \text{Returns integrate kernel.}

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**


**See Also**

See Also as: \texttt{Kernel} and \texttt{integrate}.

**Examples**

```r
y=qnorm(seq(.1,.9,len=100))
d=IKer.tri(y)
e=IKer.cos(y)
e2=Kernel.integrate(u=y,Ker=Ker.cos)
e-e2
f=IKer.epa(y)
f2=Kernel.integrate(u=y,Ker=Ker.epa)
f-f2

plot(d,type="l",ylab="Integrate Kernel")
lines(e,col=2,type="l")
lines(f,col=4,type="l")
```


kmeans.fd  

K-Means Clustering for functional data

Description

Perform k-means clustering on functional data.

Usage

kmeans.fd(fdataobj,ncl=2,metric=metric.lp,dfunc=func.trim.FM, 
max.iter=100,par.metric=NULL,par.dfunc=list(trim=0.05), 
par.ini=list(method="sample"),draw=TRUE,...) 
kmeans.center.ini(fdataobj,ncl=2,metric=metric.lp, 
draw=TRUE,method="sample",iter=100,par.metric=NULL,...)

Arguments

- **fdataobj**: `fdata` class object.
- **ncl**: See details section.
- **metric**: Metric function, by default `metric.lp`.
- **dfunc**: Type of depth measure, by default FM depth.
- **max.iter**: Maximum number of iterations for the detection of centers.
- **draw**: =TRUE, draw the curves in the color of the centers.
- **par.dfunc**: List of arguments to pass to the `dfunc` function.
- **par.ini**: List of arguments to pass to the `kmeans.center.ini` function.
- **method**: Method for selecting initial centers. If `method`="Sample" (by default) takes n times a random selection by the ncl centers. The ncl curves with greater distance are the initial centers. If `method`="Exact" calculated all combinations of ncl centers. The ncl curves with greater distance are the initial centers (this method may be too slow).
- **iter**: Maximum number of random samples for the initial selection of centers.
- **par.metric**: List of arguments to pass to the `metric` function.
- **...**: Further arguments passed to or from other methods.

Details

The method searches the locations around which are grouped data (for a predetermined number of groups).

If ncl=NULL, randomizes the initial centers, ncl=2 using `kmeans.center.ini` function.
If ncl is an integer, indicating the number of groups to classify, are selected ncl initial centers using `kmeans.center.ini` function.
If \texttt{ncl} is a vector of integers, indicating the position of the initial centers with \texttt{length(ncl)} equal to number of groups.
If \texttt{ncl} is a \texttt{fdata} class object, \texttt{ncl} are the initial centers curves with \texttt{nrow(ncl)} number of groups.

**Value**

Return:

- **cluster**: Indexes of groups assigned.
- **centers**: Curves centers.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**


**See Also**

See Also generic \texttt{kmeans} function.

**Examples**

```r
Not run:
data(phoneme)
mlearn<-phoneme$learn[c(1:50,101:150,201:250),]

#Unsupervised classification
classf1=kmeans.fd(mlearn,ncl=3,draw=TRUE)
classf2=kmeans.fd(mlearn,ncl=3,draw=TRUE,par.ini=list(method="exact"))

Different Depth function
ind=c(17,77,126)
classf3=kmeans.fd(mlearn,ncl=mlearn[ind,],draw=FALSE,
dfunc=func.trim.FM,par.dfunc=list(trim=0.1))
classf4=kmeans.fd(mlearn,ncl=mlearn[ind,],draw=FALSE,
dfunc=func.med.FM)
classf5=kmeans.fd(mlearn,ncl=3,dfunc=func.trim.RPD,
max.iter=10,par.dfunc=list(dfunc="depth.FM",deriv=c(0,1,1)))
group=c(rep(1,50),rep(2,50),rep(3,50))
table(out.fd5$cluster,group)

End(Not run)
```
Impact points selection of functional predictor and regression using local maxima distance correlation (LMDC)

Description

LMDC.select function selects impact points of functional predictor using local maxima distance correlation (LMDC) for a scalar response given.
LMDC.regre function fits a multivariate regression method using the selected impact points like covariates for a scalar response.

Usage

LMDC.select(y, covar, data, tol = 0.06, pvalue = 0.05, plot = FALSE, local.dc = TRUE, smo = FALSE, verbose = FALSE)
LMDC.regre (y, covar, data, newdata, pvalue = 0.05, method = "lm", par.method = NULL, plot = FALSE, verbose = FALSE)

Arguments

<table>
<thead>
<tr>
<th>y</th>
<th>name of the response variable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>covar</td>
<td>vector with the names of the covariates (or points of impact) with length p.</td>
</tr>
<tr>
<td>data</td>
<td>data frame with length n rows and at least p + 1 columns, containing the scalar response and the potential p covariates (or points of impact) in the model.</td>
</tr>
<tr>
<td>tol</td>
<td>Tolerance value for distance correlation and impact point.</td>
</tr>
<tr>
<td>pvalue</td>
<td>pvalue of bias corrected distance correlation t-test.</td>
</tr>
<tr>
<td>plot</td>
<td>logical value, if TRUE plots the distance correlation curve for each covariate in multivariate case and in each discretization points (argvals) in the functional case.</td>
</tr>
<tr>
<td>local.dc</td>
<td>Compute local distance correlation.</td>
</tr>
<tr>
<td>smo</td>
<td>logical. If TRUE, the curve of distance correlation computed in the impact points is smoothed using B-spline representation with a suitable number of basis elements.</td>
</tr>
<tr>
<td>verbose</td>
<td>print iterative and relevant steps of the procedure.</td>
</tr>
<tr>
<td>newdata</td>
<td>An optional data frame in which to look for variables with which to predict.</td>
</tr>
<tr>
<td>method</td>
<td>Name of regression method used, see details. This argument is used in do.call function like &quot;what&quot; argument.</td>
</tr>
<tr>
<td>par.method</td>
<td>List of parameters used to call the method. This argument is used in do.call function like &quot;args&quot; argument.</td>
</tr>
</tbody>
</table>
Details

String of characters corresponding to the name of the regression method called.
Model available options:

- "lm": Step-wise lm regression model (uses lm function, stats package). Recommended for linear models, test linearity using flm.test function.
- "gam": Step-wise gam regression model (uses gam function, mgcv package). Recommended for non-linear models.

Models that use the indicated function of the required package:

- "svm": Support vector machine (svm function, e1071 package).
- "knn": k-nearest neighbor regression (knnn.reg function, FNN package).
- "lars": Least Angle Regression using Lasso (lars function, lars package).
- "glmnet": Lasso and Elastic-Net Regularized Generalized Linear Models (glmnet and cv.glmnet function, glmnet package).
- "rpart": Recursive partitioning for regression a (rpart function, rpart package).
- "flam": Fit the Fused Lasso Additive Model for a Sequence of Tuning Parameters (flam function, flam package).
- "cosso": Fit Regularized Nonparametric Regression Models Using COSSO Penalty (cosso function, cosso package).
- "npreg": kernel regression estimate of a one (1) dimensional dependent variable on p-variate explanatory data (npreg function, np package).
- "mars": Multivariate adaptive regression splines (mars function, mda package).
- "nnnet": Fit Neural Networks (nnet function, nnet package).
- "lars": Fits Least Angle Regression, Lasso and Infinitesimal Forward Stagewise regression models (lars function, lars package).

Value

LMDC.select function return a list of two elements:

cor the value of distance correlation for each covariate.
maxLocal index or locations of local maxima distance correlations.

LMDC.regre function return a list of following elements:

model object corresponding to the estimated method using the selected variables
xvar names of selected variables (impact points).
edf Effective Degrees of Freedom.
nvar Number of selected variables (impact points).
Author(s)
Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as: lm, gam, dcor.xy.

Examples
```r
Not run:
data(tecator)
absorp=fdata.deriv(tecator$absorp.fdata,2)
ind=1:129
x=absorp[ind]
y=tecator$yFat[ind]
newx=absorp[-ind]
newy=tecator$yFat[-ind]

Functional PC regression
res.pc=fregre.pc(x,y,1:6)
pred.pc=predict.fregre.fd(res.pc,newx)

Functional regression with basis representation
res.basis=fregre.basis.cv(x,y)
pred.basis=predict.fregre.fd(res.basis,newx)

Functional nonparametric regression
res.np=fregre.np.cv(x,y)
pred.np=predict.fregre.fd(res.np,newx)

dat <- data.frame("y"=y,x$dat)
newdat <- data.frame("y"=newy,newx$data)
res.gam=fregre.gsam(y~s(x),data=list("df"=dat,"x"=x))
pred.gam=predict.fregre.gsam(res.gam,list("x"=newx))

dc.raw <- LMDC.select("y",data=dat, tol = 0.05, pvalue= 0.05, plot=F, smo=T,verbose=F)
covar <- paste("X",dc.raw$maxLocal,sep="")
Preselected design/impact points
covar
ftest<-flm.test(dat[,1],dat[,"y"], B=500, verbose=F,
 plot.it=F,type.basis="pc",est.method="pc",p=4,G=50)
```
if (ftest$p.value>0.05) {
  # Linear relationship, step-wise lm is recommended
  out <- LMDC.regre("y", covar, dat, newdat, pvalue=.05,
    method = "lm", plot=F, verbose=F)
} else {
  # Non-linear relationship, step-wise gam is recommended
  out <- LMDC.regre("y", covar, dat, newdat, pvalue=.05,
    method = "gam", plot=F, verbose=F) }

# Final design/impact points
out$xvar

# Predictions
mean((newy-pred.pc)^2)
mean((newy-pred.basis)^2)
mean((newy-pred.np)^2)
mean((newy-pred.gam)^2)
mean((newy-out$xpred)^2)

## End(Not run)

---

**MCO**

*Mitochondrial calcium overload (MCO) data set*

**Description**

The mitochondrial calcium overload (MCO) was measured in two groups (control and treatment) every 10 seconds during an hour in isolated mouse cardiac cells. In fact, due to technical reasons, the original experiment [see Ruiz-Meana et al. (2000)] was performed twice, using both the "intact", original cells and "permeabilized" cells (a condition related to the mitochondrial membrane).

**Usage**

data(MCO)

**Format**

Elements of MCO:

..$intact: fdata class object with "intact cells" curves,

- "data": Matrix of class fdata with 89 intact cells curves (rows) measured every 10 seconds during an hour in isolated mouse cardiac cell.
- "argvals", 360 discretization points from second 0 to 3590.
- "rangeval": range("argvals").
- "names" list with: main an overall title "Control Intact Treatment", xlab title for x axis "seconds" and ylab title for y axis "Ca".
.. $\text{classintact}$: Factor levels of “intact cells” curves: "1" control group and "2" treatment group.

.. $\text{permea}$: fdata class object with “permeabilized cells” curves (whose membrane has been removed),
- "data": Matrix of class fdata with 90 permeabilized cells curves (rows) measured every 10 seconds during an hour in isolated mouse cardiac cell.
- "argvals", 360 discretization points from second 0 to 3590.
- "rangeval": range("argvals").
- "names" list with: main an overall title "Control Intact Treatment", xlab title for x axis "seconds" and ylab title for y axis "Ca".

.. $\text{classpermea}$: Factor levels of “permeabilized cells” curves: "1" control group and "2" treatment group.

Note

The structure of the curves during the initial period (first 180 seconds) of the experiment shows a erratic behavior (not very relevant in the experiment context) during this period.

References


Examples

data(MCO)
names(MCO)
par(mfrow=c(1,2))
plot(MCO$intact,col=MCO$classintact)
plot(MCO$permea,col=MCO$classpermea)

---

metric.dist  

Distance Matrix Computation

Description

This function computes the distances between the rows of a data matrix by using the specified distance measure.

Usage

metric.dist(x, y = NULL, method = "euclidean", p = 2, dscale=1, ...)
**Arguments**

- **x**: Data frame 1. The dimension is \((n1 \times m)\).
- **y**: Data frame 2. The dimension is \((n2 \times m)\).
- **method**: The distance measure to be used. This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski".
- **p**: The power of the Minkowski distance.
- **dscale**: If scale is a numeric, the distance matrix is divided by the scale value. If scale is a function (as the mean for example) the distance matrix is divided by the corresponding value from the output of the function.
- **...**: Further arguments passed to `dist` function.

**Details**

This function returns a distance matrix by using `dist` function.

The matrix dimension is \((n1 \times n1)\) if \(y=NULL\), \((n1 \times n2)\) otherwise.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**See Also**

See also `dist` for multivariate date case and `metric.lp` for functional data case

**Examples**

```r
data(iris)
d<-metric.dist(iris[,1:4])
matplot(d,type="l",col=as.numeric(iris[,5]))
```

---

`metric.hausdorff`  
*Compute the Hausdorff distances between two curves.*

**Description**

Hausdorff distance is the greatest of all the distances from a point in one curve to the closest point in the other curve (been closest the euclidean distance).

**Usage**

`metric.hausdorff(fdata1, fdata2 = fdata1)`
Arguments

\texttt{fdata1} \hspace{1cm} \text{Curves 1 of \texttt{fdata} class. The dimension of \texttt{fdata1} object is (n1 x m), where n1 is the number of points observed in t coordinates with length m.}

\texttt{fdata2} \hspace{1cm} \text{Curves 2 of \texttt{fdata} class. The dimension of \texttt{fdata2} object is (n2 x m), where n2 is the number of points observed in t coordinates with length m.}

Details

Let \( G(X) = \{(t, X(t)) \in R^2 \} \) and \( G(Y) = \{(t, Y(t)) \in R^2 \} \) be two graphs of the considered curves \( X \) and \( Y \) respectively, the Hausdorff distance \( d_H(X, Y) \) is defined as,

\[
    d_H(X, Y) = \max \left\{ \sup_{x \in G(X)} \inf_{y \in G(Y)} d^2(x, y), \sup_{y \in G(Y)} \inf_{x \in G(X)} d^2(x, y) \right\},
\]

where \( d^2(x, y) \) is the euclidean distance, see \texttt{metric.lp}.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Examples

```r
Not run:
data(poblenou)
nox<-poblenou$nox[1:6]
Hausdorff vs maximum distance
out1<-metric.hausdorff(nox)
out2<-metric.lp(nox, lp=0)
out1
t
par(mfrow=c(1,3))
plot(nox)
plot(hclust(as.dist(out1)))
plot(hclust(as.dist(out2)))
End(Not run)
```

\begin{center}
\textbf{metric.kl} \hspace{1.5cm} \textit{Kullback–Leibler distance}
\end{center}

Description

Measures the proximity between two groups of densities (of class \texttt{fdata}) by computing the Kullback–Leibler distance.

Usage

\begin{verbatim}
metric.kl(fdata1, fdata2 = NULL, symm=TRUE,
          base=exp(1), eps=1e-10,...)
\end{verbatim}
Arguments

fdata1 Functional data 1 (fdata class) with the densities. The dimension of fdata1 object is (n1 x m), where n1 is the number of densities and m is the number of coordinates of the points where the density is observed.

fdata2 Functional data 2 (fdata class) with the densities. The dimension of fdata2 object is (n2 x m).

symm If TRUE the symmetric K–L distance is computed, see details section.

base The logarithm base used to compute the distance.

eps Tolerance value.

... Further arguments passed to or from other methods.

Details

Kullback–Leibler distance between \( f(t) \) and \( g(t) \) is

\[
\text{metric.kl}(f(t), g(t)) = \int_a^b f(t) \log \left( \frac{f(t)}{g(t)} \right) dt
\]

where \( t \) are the \( m \) coordinates of the points where the density is observed (the argvals of the fdata object).

The Kullback–Leibler distance is asymmetric,

\[
\text{metric.kl}(f(t), g(t)) \neq \text{metric.kl}(g(t), f(t))
\]

A symmetry version of K–L distance (by default) can be obtained by

\[
0.5 (\text{metric.kl}(f(t), g(t)) + \text{metric.kl}(g(t), f(t)))
\]

If \( (f_i(t) = 0 & g_j(t) = 0) \Rightarrow \text{metric.kl}(f(t), g(t)) = 0. \)

If \( |f_i(t)g_j(t)| \leq \varepsilon \Rightarrow f_i(t) = f_i(t) + \varepsilon \), where \( \varepsilon \) is the tolerance value (by default \( \text{eps}=1e-10 \)).

The coordinates of the points where the density is observed (discretization points \( t \)) can be equally spaced (by default) or not.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See also metric.lp and fdata
Examples

```r
Not run:
int.simpson2 <- fda.usc::int.simpson2
n <- 201
tt01 <- seq(0,1,len=n)
rtt01 <- c(0,1)
x1 <- dbeta(tt01,20,5)
x2 <- dbeta(tt01,21,5)
y1 <- dbeta(tt01,5,20)
y2 <- dbeta(tt01,5,21)
xy <- fdata(rbind(x1,x2,y1,y2),tt01,rtt01)
plot(xy)
round(metric.kl(xy,xy,eps=1e-5),6)
round(metric.kl(xy,eps=1e-5),6)
round(metric.kl(xy,eps=1e-6),6)
round(metric.kl(xy,xy,symm=FALSE,eps=1e-5),6)
round(metric.kl(xy,xy,symm=FALSE,eps=1e-5),6)
plot(c(fdata(y1[1:101]),fdata(y2[1:101])))
metric.kl(fdata(x1))
metric.kl(fdata(x1),fdata(x2),eps=1e-5,symm=F)
metric.kl(fdata(x1),fdata(x2),eps=1e-6,symm=F)
metric.kl(fdata(y1[1:101]),fdata(y2[1:101]),eps=1e-13,symm=F)
metric.kl(fdata(y1[1:101]),fdata(y2[1:101]),eps=1e-14,symm=F)
End(Not run)
```

### metric.lp

**Approximates Lp-metric distances for functional data.**

**Description**

Measures the proximity between the functional data and curves approximating Lp-metric. If $w = 1$ approximates the Lp-metric by Simpson’s rule. By default it uses $L^2 = 2$ and weights $w = 1$.

**Usage**

```r
metric.lp(fdata1,fdata2=NULL,lp=2,w=1, dscale=1,...)
```

**Arguments**

- **fdata1**: Functional data 1 or curve 1. If fdata class, the dimension of fdata1$y$ data object is ($n1 \times m$), where $n1$ is the number of curves and $m$ are the points observed in each curve.
Functional data 2 or curve 2. If \texttt{fdata} class, the dimension of \texttt{fdata2$data} object is (n x m), where n is the number of curves and m are the points observed in each curve.

\texttt{lp} \quad L_p norm, by default it uses \texttt{lp = 2}

\texttt{w} \quad Vector of weights with length m, if \texttt{w = 1} approximates the metric L_p by Simpson’s rule. By default it uses \texttt{w = 1}

\texttt{dscale} \quad If scale is a numeric, the distance matrix is divided by the scale value. If scale is a function (as the mean for example) the distance matrix is divided by the corresponding value from the output of the function.

... \quad Further arguments passed to or from other methods.

**Details**

By default it uses the L2-norm with \( \texttt{lp = 2} \).

\[
\|f\|_p = \left( \frac{1}{\int_a^b w(x)dx} \int_a^b |f(x)|^p w(x)dx \right)^{1/p}
\]

The observed points on each curve are equally spaced (by default) or not.

The \( L_\infty \)-norm is computed with \( \texttt{lp = 0} \).

\[
d(fdata_1(x), fdata_2(x))_\infty = \sup |fdata_1(x) - fdata_2(x)|
\]

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**


**See Also**

See also \texttt{semimetric.basis} and \texttt{semimetric.NPFDA}

**Examples**

```r
INERENCE PHONDAT
data(phoneme)
mlearn<-phoneme$learn[1:100]
mtest<-phoneme$test[1:100]
glearn<-phoneme$classlearn[1:100]
gtest<-phoneme$classtest[1:100]
Matrix of distances of curves of DATA1
```
min.basis

Select the number of basis using GCV method.

Description

Functional data estimation via basis representation using cross-validation (CV) or generalized cross-validation (GCV) method with a roughness penalty.

Usage

```r
S3 method for class 'basis'
min(fdataobj,type.CV=CV,S,W=NULL,lambda=0,
 numbasis=floor(seq(ncol(fdataobj)/16,ncol(fdataobj)/2,1,len=10)),
 type.basis="bspline",par.CV=list(trim=0,draw=FALSE),
 verbose=FALSE,...)
```

Arguments

- `fdataobj` fdata class object.
**min.basis**

- **type.CV**  
  Type of cross-validation. By default generalized cross-validation (GCV) method.
- **w**  
  Matrix of weights.
- **lambda**  
  A roughness penalty. By default, no penalty $\lambda=0$.
- **numbasis**  
  Number of basis to use.
- **type.basis**  
  Character string which determines type of basis. By default "bspline".
- **par.CV**  
  List of parameters for type.CV: trim, the alpha of the trimming and draw=TRUE.
- **verbose**  
  If TRUE information about GCV values and input parameters is printed. Default is FALSE.
- **...**  
  Further arguments passed to or from other methods. Arguments to be passed by default to create.basis.

**Details**

Provides the least GCV for functional data for a list of number of basis num.basis and lambda values lambda. You can define the type of CV to use with the type.CV, the default is used GCV. S. Smoothing matrix is performed by S.basis. w is the matrix of weights of the discretization points.

**Value**

- **gcv**  
  Returns GCV values calculated for input parameters.
- **fdatoobj**  
  Matrix of set cases with dimension ($n \times m$), where $n$ is the number of curves and $m$ are the points observed in each curve.
- **fdato.est**  
  Estimated fdato class object.
- **numbasis.opt**  
  numbasis value that minimizes CV or GCV method.
- **lambda.opt**  
  lambda value that minimizes CV or GCV method.
- **basis.opt**  
  basis for the minimum CV or GCV method.
- **S.opt**  
  Smoothing matrix for the minimum CV or GCV method.
- **gcv.opt**  
  Minimum of CV or GCV method.
- **lambda**  
  A roughness penalty. By default, no penalty $\lambda=0$.
- **numbasis**  
  Number of basis to use.
- **verbose**  
  If TRUE information about GCV values and input parameters is printed. Default is FALSE.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**References**


See Also

See Also as `S.basis`.
Alternative method: `min.np`

Examples

```r
a1<-seq(0,1,by=.01)
a2=rnorm(length(a1),sd=0.2)
f1<-(sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
n<-50
np<-length(f1)
tt=1:101
S=S.WW(tt,2)
mdata<matrix(NA,ncol=np,nrow=50)
for (i in 1:50) mdata[i,]<- (sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
mdata<-fdata(mdata)
nb<-floor(seq(5,29,len=5))
l<-2*(5:15)
out<-min.basis(mdata,lambda=1,numbasis=nb,type.basis="fourier")
matplot(t(out$gcv),type="l",main="GCV with fourier basis")

out<-min.basis(mdata,type.CV = CV.S,lambda=1,numbasis=nb)
out2<min.basis(mdata,lambda=1,numbasis=nb)

variance calculations
y<-mdata
i<-3
z=qnorm(0.025/np)
fdata.est<-out$fdata.est
var.e<-Var.e(mdata,out$S.opt)
var.y<-Var.y(mdata,out$S.opt)
var.y2<-Var.y(mdata,out$S.opt,var.e)

estimated fdata and point confidence interval
upper.var.e<-out$fdata.est[["data"]][i,]-z*sqrt(diag(var.e))
lower.var.e<-out$fdata.est[["data"]][i,]+z*sqrt(diag(var.e))
dev.new()
plot(y[i,],lwd=1,ylim=c(min(lower.var.e),max(upper.var.e)))
lines(out$fdata.est[["data"]][i,],col=gray(.1),lwd=1)
lines(out$fdata.est[["data"]][i,]-z*sqrt(diag(var.y)),col=gray(.7),lwd=2)
lines(out$fdata.est[["data"]][i,]+z*sqrt(diag(var.y)),col=gray(.7),lwd=2)
lines(upper.var.e,col=gray(.3),lwd=2,lty=2)
lines(lower.var.e,col=gray(.3),lwd=2,lty=2)
legend("top",legend=c("Var.y","Var.error"), col = c(gray(0.7),
gray(0.3)),lty=c(1,2))
```
Smoothing of functional data using nonparametric kernel estimation

Description

Smoothing of functional data using nonparametric kernel estimation with cross-validation (CV) or
generalized cross-validation (GCV) methods.

Usage

```r
S3 method for class 'np'
min(fdataobj, h=NULL, W=NULL, Ker=Ker.norm,
type.CV=GCV.S, type.S=S.NW, par.CV=NULL, verbose=FALSE)
```

Arguments

- `fdataobj` : `fdata` class object.
- `h` : Smoothing parameter or bandwidth.
- `W` : Matrix of weights.
- `Ker` : Type of kernel used, by default normal kernel.
- `type.CV` : Type of cross-validation. By default generalized cross-validation (GCV) method.
  Possible values are `GCV.S` and `CV.S`.
- `type.S` : Type of smoothing matrix S. By default S is calculated by Nadaraya-Watson kernel estimator (`S.NW`). Possible values are `S.NW` and `S.KNN`.
- `par.CV` : List of parameters for type.CV: trim, the alpha of the trimming and `draw=TRUE`.
- `verbose` : If `TRUE` information about GCV values and input parameters is printed. Default is `FALSE`.
- `...` : Further arguments passed to or from other methods. Arguments to be passed for kernel method.

Details

Calculate the minimum GCV for a vector of values of the smoothing parameter h.
Nonparametric smoothing is performed by the kernel function. The type of kernel to use with the parameter Ker and the type of smoothing matrix S to use with the parameter type.S can be selected by the user, see function `Kernel`.
W is the matrix of weights of the discretization points.
**Value**

Returns GCV or CV values calculated for input parameters.

- `gcv` : GCV or CV for a vector of values of the smoothing parameter `h`
- `fdataobj` : `fdata` class object.
- `fdata.est` : Estimated `fdata` class object.
- `h.opt` : `h` value that minimizes CV or GCV method.
- `S.opt` : Smoothing matrix for the minimum CV or GCV method.
- `gcv.opt` : Minimum of CV or GCV method.
- `h` : Smoothing parameter or bandwidth.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente

**References**


**See Also**

See Also as `S.NW`.

Alternative method: `min.basis`

**Examples**

```r
Example, phoneme DATA
data(phoneme)
mlearn<-phoneme$mlearn[1:100]

out1<-min_np(mlearn,type.CV.CV,S.type.S=S.NW)
npc<-ncol(mlearn)
variance calculations
y<-mlearn
out<-out1
i<-1
z=qnorm(0.025/npc)
fdada.est<-out$fdata.est
tt<-y["argvals"]
var.e<-Var.e(y,out$S.opt)
```
na.omit.fdata

A wrapper for the na.omit and na.fail function for fdata object

Description

na.fail returns the object if it does not contain any missing values, and signals an error otherwise.
na.omit returns the object with incomplete cases removed.
If na.omit.fdata removes cases, the row numbers of the cases form the "na.action" attribute of
the result, of class "omit", see generic function na.omit.

Usage

## S3 method for class 'fdata'
na.omit(object,...)
## S3 method for class 'fdata'
na.fail(object,...)

Arguments

object an fdata object.
... further potential arguments passed to methods.

Value

The value returned from omit is a fdata object with incomplete cases removed.

Author(s)

Manuel Febrero Bande
Examples

```r
fdataobj <- fdata(MontrealTemp)
fdataobj$data[3,3] <- NA
fdataobj$data[10,] <- NA
fdastaobj2 <- na.omit.fdata(fdataobj)
```

---

**norm.fdata**

Approximates Lp-norm for functional data.

**Description**

Approximates Lp-norm for functional data (fdata) object using metric or semimetric functions. Norm for functional data using by default Lp-metric.

**Usage**

```r
norm.fdata(fdataobj, metric = metric.lp, ...)
norm.fd(fdobj)
```

**Arguments**

- `fdataobj` *fdata* class object.
- `fdobj` Functional data or curves of *fd* class.
- `metric` Metric function, by default `metric.lp`.
- `...` Further arguments passed to or from other methods.

**Details**

By default it computes the L2-norm with \( p = 2 \) and weights \( w \) with length=\((m-1)\).

\[
\| f \|_p = \left( \frac{1}{\int_a^b w(x) dx} \int_a^b |f(x)|^p w(x) dx \right)^{1/p}
\]

The observed points on each curve are equally spaced (by default) or not.

**Author(s)**

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

**See Also**

See also `metric.lp` and `norm`  
Alternative method: `inprod` of fda-package
Examples

```r
x <- seq(0, 2*pi, length=1001)
f1 <- sin(x)/sqrt(pi)
f2 <- cos(x)/sqrt(pi)
argv <- seq(0, 2*pi, len=1001)
fdata0 <- fdata(rep(0, len=1001), argv, range(argv))
fdata1 <- fdata(f1, x, range(x))
metric.lp(fdata1)
metric.lp(fdata1, fdata0)
norm.fdata(fdata1)

The same
integrate(function(x)((abs(sin(x)/sqrt(pi))^2)), 0, 2*pi)
integrate(function(x)((abs(cos(x)/sqrt(pi))^2)), 0, 2*pi)

bspl1 <- create.bspline.basis(c(0, 2*pi), 21)
fd.bspl1 <- fd(basisObj=bspl1)
fd.bspl2 <- fd(fdata1, nbasis=21)
norm.fd(fd.bspl1)
norm.fd(fd.bspl2)
```

Description

The functional data is ordered w.r.t the sample order of the values of vector.

Usage

```r
S3 method for class 'fdata'
order(y, fdataobj, na.last = TRUE, decreasing = FALSE)
```

Arguments

- `y`: a sequence of numeric, complex, character or logical vectors, all of the same length, or a classed R object.
- `fdataobj`: fdata class object.
- `na.last`: for controlling the treatment of NAs. If TRUE, missing values in the data are put last; if FALSE, they are put first; if NA, they are removed; if "keep" they are kept with rank NA.
- `decreasing`: logical. Should the sort order be increasing or decreasing?

Value

`order.fdata` returns the functional data `fdataobj` w.r.t. a permutation which rearranges its first argument into ascending or descending order.
Outliers.fdata

Detecting outliers for functional dataset

Description

Procedure for detecting functional outliers.

Usage

```r
outliers.thres.lrt(fdataobj, nb=200, smo=0.05, trim=0.10, ...)
outliers.lrt(fdataobj, nb=200, smo=0.05, trim=0.10, ...)
outliers.depth.trim(fdataobj, nb=200, smo=0.05, trim=0.01, quan=0.5,
 dfunc=depth.mode,...)
outliers.depth.pond(fdataobj, nb=200, smo=0.05, quan=0.5,
 dfunc=depth.mode,...)
S3 method for class 'outliers.pond'
quantile(x, dfunc=depth.mode,
 nb=200, smo=0.05, ns=0.01,...)
S3 method for class 'outliers.trim'
quantile(x, dfunc=depth.mode, trim=0.25,
 nb=200, smo=0.05, ns=0.01,...)
```

Arguments

- `fdataobj`: `fdata` class object.
- `nb`: The number of bootstrap samples.
- `smo`: The smoothing parameter for the bootstrap samples.
- `trim`: The alpha of the trimming.
- `quan`: Quantile to determine the cutoff from the Bootstrap procedure (by default=0.5)
- `dfunc`: Type of depth measure, by default `depth.mode`.
- `ns`: Significance level, by default 1%.
- `...`: Further arguments passed to or from other methods.

Details

Outlier detection in functional data by likelihood ratio test (`outliers.lrt`). The threshold for outlier detection is given by the `outliers.thres.lrt`.

Outlier detection in functional data by depth measures:
1. `outliers.depth.pond` function weights the data according to depth.
2. `outliers.depth.trim` function uses trimmed data.

Quantile outlier detection functions provide the quantiles of the bootstrap samples for functional outlier detection by, respectively, weighted and trimmed procedures. Bootstrap smoothing function (`fdata.bootstrap` with `nb` resamples) is applied to these weighted or
trimmed data. If smo=0 smoothed bootstrap is not performed. The function returns a vector of size nxnb with bootstrap replicas of the quantile.

Value

- outliers: Indexes of functional outlier.
- dep.out: Depth value of functional outlier.
- dep.out: Iteration in which the functional outlier is detected.
- quantile: Threshold for outlier detection.
- dep: Depth value of functional data.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also: fdata.bootstrap, Depth.

Examples

```r
Not run:
data(aemet)
nb=20 # Time consuming
cut.trim<-outliers.depth.trim(aemet$temp,dfunc=depth.FM, nb=nb)
plot(aemet$temp,col=1,1ty=1)
lines(aemet$temp[cut.trim[[1]]],col=2)

End(Not run)```
Description

This function computes the matrix that penalizes the higher order differences.

Usage

\[P\cdot \text{penalty}(tt, p = c(0, 0, 1)) \]

Arguments

- \(tt \): vector of the \(n \) discretization points or argvals.
- \(p \): vector of coefficients with the order of the differences. Default value \(p = c(0, 0, 1) \) penalizes the second order difference.

Details

For example, if \(p = c(0, 1, 2) \), the function return the penalty matrix the second order difference of a vector \(tt \). That is

\[v^T P_j tt = \sum_{i=3}^{n} (\Delta tt_i)^2 \]

where

\[\Delta tt_i = tt_i - 2tt_{i-1} + tt_{i-2} \]

is the second order difference. More details can be found in Kraemer, Boulesteix, and Tutz (2008).

Value

penalty matrix of size \(\text{sum}(n) \times \text{sum}(n) \)

Note

The discretization points can be equidistant or not.

Author(s)

This version is created by Manuel Oviedo de la Fuente modified the original version created by Nicole Kramer in ppls package.

References

Project Cramer-von Mises statistic (PCvM) for the Functional Linear Model with scalar response (FLM): $Y = \langle X, \beta \rangle + \varepsilon$.

Usage

```r
PCvM.statistic(x, residuals, p, Adot.vec)
Adot(x, inpr)
```

Arguments

- **x**: Functional covariate for the FLM. The object must be either in the class `fdata` or in the class `fd`. It is used to compute the matrix of inner products.
- **residuals**: Residuals of the estimated FLM.
- **p**: Number of elements of the functional basis where the functional covariate is represented.
- **Adot.vec**: Output from the `Adot` function (see Details). Computed if not given.
- **inpr**: Matrix of inner products of `x`. Computed if not given.

Details

In order to optimize the computation of the statistic, the critical parts of these two functions are coded in FORTRAN. The hardest part corresponds to the function `Adot`, which involves the computation of a symmetric matrix of dimension $n \times n$ where each entry is a sum of n elements. As this matrix is symmetric, the order of the method can be reduced from $O(n^3)$ to $O\left(\frac{n^3-n^2}{2}\right)$. The memory requirement can also be reduced to $O\left(\frac{n^2-n+2}{2}\right)$. The value of `Adot` is a vector of length $\frac{n^2-n+2}{2}$ where the first element is the common diagonal element and the rest are the lower triangle entries of the matrix, sorted by rows (see Examples).

Value

For `PCvM.statistic`, the value of the statistic. For `Adot`, a suitable output to be used in the argument `Adot.vec`.
Note

No NA's are allowed in the functional covariate.

Author(s)

Eduardo Garcia-Portugues. Please, report bugs and suggestions to <egarcia@math.ku.dk>

References

See Also

flm.test

Examples

```r
# Functional process
X=rproc2fdata(n=10, t=seq(0,1,1=101))

# Adot
Adot.vec=Adot(X)

# Obtain the entire matrix Adot
Ad=diag(rep(Adot.vec[1],dim(X$data)[1]))
Ad[upper.tri(Ad,diag=FALSE)]=Adot.vec[-1]
Ad=t(Ad)
Ad=Ad+t(Ad)-diag(diag(Ad))
Ad

# Statistic
PCvM.statistic(X,residuals=rnorm(10),p=5)
```

<table>
<thead>
<tr>
<th>phoneme</th>
<th>phoneme data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Phoneme curves
Usage

data(phoneme)

Format

Elements of phoneme:

..$learn: learning sample of curves. fdata class object with:
 i. "data": Matrix of class fdata with 250 curves (rows) discretized in
 150 points or argvals (columns).
 ii. "argvals", iii. "rangeval": range("argvals"), iv. "names" list with:
 main an overall title "Phoneme learn", xlab title for x axis "frequencies"
 and ylab title for y axis "log-periodograms".

..$test: testing sample of curves. fdata class object with:
 i. "data": Matrix of class fdata with 250 curves (rows) discretized in
 150 points or argvals (columns).
 ii. "argvals", iii. "rangeval": range("argvals"), iv. "names" list with:
 main an overall title "Phoneme learn", xlab title for x axis "frequencies"
 and ylab title for y axis "log-periodograms".

..$classlearn: learning class numbers (as factor). Factor levels:
 "sh" 1, "iy" 2, "dcl" 3, "aa" 4 and "ao" 5.

..$classtest: testing class numbers (as factor). Factor levels:
 "sh" 1, "iy" 2, "dcl" 3, "aa" 4 and "ao" 5.

Details

The following instructions have been used file:

of Phoneme dataset file.

Author(s)

Manuel Febrero-Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Source

References

http://www.1sp.ups-tlse.fr/staph/npfda/

Examples

data(phoneme)
names(phoneme)
names(phoneme$learn)
class(phoneme$learn)
dim(phoneme$learn)
table(phoneme$classlearn)
plot.fdata

Plot functional data: fdata.

Description

Plot object of class fdata.

Usage

```r
## S3 method for class 'fdata'
plot(x, type, main, xlab, ylab,
     mfrow = c(1, 1), time = 1,...)
## S3 method for class 'fdata'
lines(x,...)
## S3 method for class 'fdata'
title(x,main=NULL,xlab=NULL,ylab=NULL,rownames=NULL)
## S3 method for class 'bifd'
plot(x,argvals.s,argvals.t,...)
```

Arguments

- `x`: fdata class object with:
 - "data": For fdata class object as curve (1d), "data" is a matrix (by default), `data.frame` or array of set cases with dimension (n x m), where n is the number of curves and m are the points observed in each curve over the x-axis.
 - For fdata2d class object as surface (2d). "data" is a array of set cases with dimension (n x m1 x m2), where n is the number of functional data and m1 and m2 are the points observed over the x-y plane.
 - "argvals": vector or list of vectors with the discretizations points values.
 - "rangeval": vector or list of vectors with the range of the discretizations points values, by default `range(argvals)`.
 - "names": (optional) list with main an overall title, xlab title for x axis and ylab title for y axis.

- `type`: 1-character string giving the type of plot desired.
The following values are possible for fdata class object: "l" for lines (by default), "p" for points, "o" for overplotted points and lines, "b", "c" for (empty if "c") points joined by lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does not produce any points or lines.
The following values are possible for fdata2d class object: "image.contour" (by default) to display three-dimensional data and add the contour lines, "image" to display three-dimensional data, "contour" to display a contour plot, "persp" to display a perspective plots of a surface over the x-y plane and "filled.contour" to display a contour plot with the areas between the contours filled in solid color.
plot.fdata

main
xlab
ylab
mfrow
time
rownames
argvals.s
argvals.t
NNN

Author(s)

Manuel Febrero Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See Also as fdata

Examples

Not run:

```r
# example for fdata class of 1 dimension (curve)
a1 <- seq(0, 1, by=.01)
a2 <- rnorm(length(a1), sd=0.2)
f1 <- (sin(2*pi*a1))+rnorm(length(a1), sd=0.2)
nc <- 10
np <- length(f1)
tt <- seq(0, 1, len=101)
mdata <- matrix(NA, ncol=np, nrow=nc)
for (i in 1:nc) mdata[i,] <- (sin(2*pi*a1))+rnorm(length(a1), sd=0.2)
fdataobj <- fdata(mdata, tt)
res <- plot.fdata(fdataobj, type="l", col=gray(1:nrow(mdata)/nrow(mdata))))
lines(func.mean(fdataobj), col=3, lwd=2) #original curve

# example for fdata2d class of 2 dimension (surface)
t1 <- seq(0, 1, length= 51)
t2 <- seq(0, 1, length= 31)
z <- array(NA, dim=c(4,51,31))
for (i in 1:4) z[,i] <- outer(t1, t2, function(a, b) (i*a)+(b)*i)
z.fdata <- fdata(z, list(t1, t2))
plot(z.fdata, time=2)
plot(z.fdata, mfrow=c(2,2), type="persp", theta=30)
```
Description

NOx levels measured every hour by a control station in Poblenou in Barcelona (Spain).

Usage

data(poblenou)

Format

The format is:
.. nox: fdata class object with:
i.- "data": Matrix with 115 curves (rows) discretized in 24 points or argvals (columns).
ii.- "argvals": 0:23
iii.- "rangeval"=(0,23): range("argvals"),
iv.- "names" list with: main an overall title "NOx data set", xlab title for x axis "Hours" and ylab title for y axis "NOx (mg/lm^3)".

.. df: Data Frame with (115x3) dimension.
"date" in the first column.
Second column ("day.week"). Factor levels: "Monday" 1, "Tuesday" 2, "Wednesday" 3, "Thursday" 4, "Friday" 5, "Saturday" 6 and "Sunday" 7.
Third column "day.festive". Factor levels: "non festive day" 0 and "festive day" 1.

Details

The dataset starts on 23 February and ends on 26 June, in 2005. We split the whole sample of hourly measures in a dataset of functional trajectories of 24 h observations (each curve represents the evolution of the levels in 1 day).
Twelve curves that contained missing data were eliminated.

Author(s)

Febrero-Bande, M and Oviedo de la Fuente, Manuel

Source

http://mediambient.gencat.cat

References

predict.classif

Examples

data(poblenou)
names(poblenou)
names(poblenou$nox)
nox<-poblenou$nox
class(nox)
ind.weekend<-as.integer(poblenou$df[, "day.week"] > 5
plot(nox, col = ind.weekend + 1)

predict.classif Predicts from a fitted classif object.

Description

Classifier of functional data by kernel method using functional data object of class classif.

Usage

S3 method for class 'classif'
predict(object, new.fdataobj, type="class",...)

Arguments

object Object object estimated by: k nearest neighbors method classif.knn, kernel method classif.kernel.
new.fdataobj New functional explanatory data of fdata class.
type Type of prediction ("class or probability of each group membership").
... Further arguments passed to or from other methods.

Details

Returns the predicted classes using a previously trained model.

Value

If type="class", produces a vector of predictions.
If type="probs", a list with the following components is returned:
 • group.pred the vector of predictions.
 • prob.group the matrix of predicted probability by factor level.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
References

See Also

See also `classif.np` `classif.glm`, `classif.gsam` and `classif.gkam`.

Examples

```r
## Not run:
data(phoneme)
mlearn<-'phoneme[['learn']][1:100]
glearn<-'phoneme[['classlearn']][1:100]

# ESTIMATION knn
out1='classif.knn(glearn,mlearn,knn=3)
summary.classif(out1)

# PREDICTION knn
mtest<-'phoneme[['test']][1:100]
gtest<-'phoneme[['classlearn']][1:100]
pred1='predict.classif(out1,mtest)
table(pred1,gtest)

# ESTIMATION kernel
h=2^'0.5
# using metric distances computed in classif.knn
out2='classif.kernel(glearn,mlearn,h=h,metric=out1$mdist)
summary.classif(out2)

# PREDICTION kernel
pred2='predict.classif(out2,mtest)
table(pred2,gtest)

## End(Not run)
```

predict.classif.DD

Predicts from a fitted classif.DD object.

Description

Classifier of functional (and multivariate) data by DD–classifier.
predict.classif.DD

Usage

```r
## S3 method for class 'classif.DD'
predict(object, new.fdataobj, type = "predictive", ...)
```

Arguments

- `object`: Object object estimated by `classif.DD`.
- `new.fdataobj`: By default, new p functional explanatory dataset or new multivariate data of `data.frame` class.
- `type`: `!="predictive"`, for each row of data shows the probability of each group membership.
- `...`: Further arguments passed to or from other methods.

Details

Returns the groups or classes predicted using a previously trained model.

Value

- `group.prd`: Vector of groups or classes predicted

Author(s)

Febrero-Bande, M., and Oviedo de la Fuente, M.

References

See Also

- See also `classif.DD`.

Examples

```r
## Not run:
# DD-classif for multivariate data
data(iris)
iris<-iris[1:100,]
n<-sample(1:100,80)
group.train<-factor(iris[n,5])
x.train<-iris[n,1:4]
out1<classif.DD(group.train, x.train, depth="MhD", classif="lda")
out2<classif.DD(group.train, x.train, depth="MhD", classif="glm")
summary.classif(out1)
summary.classif(out2)
x.test<-iris[-n,1:4]
```
predict.fregre.fd
Predict method for functional linear model (fregre.fd class)

Description
Computes predictions for regression between functional explanatory variables and scalar response using: basis representation, Principal Components Analysis, Partial least squares or nonparametric kernel estimation.

Usage

```r
# S3 method for class 'fregre.fd'
predict(object, new.fdataobj=NULL, se.fit=FALSE,
    scale = NULL, df=DF, interval = "none", level = 0.95,
    weights = 1, pred.var = res.var/weights,...)
```

Arguments

- `object`: fregre.fd object.
- `se.fit`: =TRUE (not default) standard error estimates are returned for each prediction.
- `scale`: Scale parameter for std.err. calculation.
- `df`: Degrees of freedom for scale.
- `interval`: Type of interval calculation.
level

Tolerance/confidence level.

pred.var

the variance(s) for future observations to be assumed for prediction intervals. See \link{predict.lm} for more details.

weights

variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in newdata.

... Further arguments passed to or from other methods.

Details

Predicts from a fitted \code{fregre.basis} object, see \code{fregre.basis} or \code{fregre.basis.cv}
Predicts from a fitted \code{fregre.pc} object, see \code{fregre.pc} or \code{fregre.pc.cv}
Predicts from a fitted \code{fregre.pls} object, see \code{fregre.pls} or \code{fregre.pls.cv}
Predicts from a fitted \code{fregre.np} object, see \code{fregre.np} or \code{fregre.np.cv}.

Value

If \code{se.fit = FALSE}, a vector of predictions of scalar response is returned or a matrix of predictions and bounds with column names \code{fit}, \code{lwr}, and \code{upr} if interval is set.
If \code{se.fit = TRUE} a list with the following components is returned:

\begin{itemize}
 \item \code{fit} A vector of predictions or a matrix of predictions and bounds as above
 \item \code{se.fit} Associated standard error estimates of predictions
 \item \code{residual.scale} Residual standard deviations
 \item \code{df} Degrees of freedom for residual
\end{itemize}

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

predict.fregre.GAM

Predict method for functional regression model

Description

Computes predictions for regression between functional (and non functional) explanatory variables and scalar response.

See Also

See Also as: fregre.basis, fregre.basis.cv, fregre.np, fregre.np.cv, fregre.pc, fregre.pc.cv, fregre.pls, fregre.pls.cv and summary.fregre.fd.

Examples

```r
## Not run:
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecator$y$Fat[ind]
newx=absorp[-ind,]
newy=matrix(tecator$y$Fat[-ind],ncol=1)
## Functional PC regression
res.pc=fregre.pc(x,y,1:6)
pred.pc=predict.fregre.fd(res.pc,newx)
# Functional PLS regression
res.pls=fregre.pls(x,y,1:6)
pred.pls=predict.fregre.fd(res.pls,newx)
# Functional nonparametric regression
res.np=fregre.np(x,y,Ker=AKer.tri,metric=semimetric.deriv)
pred.np=predict.fregre.fd(res.np,newx)
# Functional regression with basis representation
res.basis=fregre.basis.cv(x,y)
pred.basis=predict.fregre.fd(res.basis,newx)

dev.new()
plot(pred.pc-newy)
points(pred.pls-newy,col=2,pch=2)
points(pred.np-newy,col=3,pch=3)
points(pred.basis-newy,col=4,pch=4)
sum((pred.pc-newy)^2,na.rm=TRUE)/sum(((newy-mean(newy))^2,na.rm=TRUE)
sum((pred.pls-newy)^2,na.rm=TRUE)/sum(((newy-mean(newy))^2,na.rm=TRUE)
sum((pred.np-newy)^2,na.rm=TRUE)/sum(((newy-mean(newy))^2,na.rm=TRUE)
sum((pred.basis-newy)^2,na.rm=TRUE)/sum(((newy-mean(newy))^2,na.rm=TRUE)

## End(Not run)
```
- predict.fregre.lm, Predict method for functional linear model of fregre.lm fits object using basis or principal component representation.
- predict.fregre(glm), Predict method for functional generalized linear model of fregre.glm fits object using basis or principal component representation.
- predict.fregre.gsam, Predict method for functional generalized spectral additive model of fregre.gsam fits object using basis or principal component representation.
- predict.fregre.gkam, Predict method for functional generalized kernel additive model of fregre.gkam fits object using backfitting algorithm.

Usage

```r
## S3 method for class 'fregre.lm'
predict(object, newx = NULL, type = "response", se.fit = FALSE,
    scale = NULL, df = df, interval = "none", level = 0.95,
    weights = 1, pred.var = res.var/weights, ...)
## S3 method for class 'fregre.plm'
predict(object, newx = NULL, ...
## S3 method for class 'fregre.glm'
predict(object, newx = NULL, type = "response", ...)
## S3 method for class 'fregre.gsam'
predict(object, newx = NULL, type = "response", ...)
## S3 method for class 'fregre.gkam'
predict(object, newx = NULL, type = "response", ...)
```

Arguments

- object: fregre.lm, fregre.plm, fregre.glm, fregre.gsam or fregre.gkam object.
- newx: An optional data list in which to look for variables with which to predict. If omitted, the fitted values are used. List of new explanatory data.
- type: Type of prediction (response or model term).
- se.fit: =TRUE (not default) standard error estimates are returned for each prediction.
- scale: Scale parameter for std.err. calculation.
- df: Degrees of freedom for scale.
- interval: Type of interval calculation.
- level: Tolerance/confidence level.
- pred.var: the variance(s) for future observations to be assumed for prediction intervals. See link{predict.lm} for more details.
- weights: Variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in newdata
- ...: Further arguments passed to or from other methods.
Details

These functions use the model fitting function `lm`, `glm` or `gam` properties. If using functional data derived, is recommended to use a number of bases to represent beta lower than the number of bases used to represent the functional data. The first item in the data list of `newx` argument is called "df" and is a data frame with the response and non functional explanatory variables, as `lm`, `glm` or `gam`. Functional variables (fdata and fd class) are introduced in the following items in the data list of `newx` argument.

Value

Return the predicted values and optionally:

- `predict.lm`, `predict.glm`, `predict.gam`
 produces a vector of predictions or a matrix of predictions and bounds with column names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the following components is returned: fit vector or matrix as above.
- `se.fit` standard error of predicted means.
- `residual.scale` residual standard deviations.
- `df` degrees of freedom for residual.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

See Also as: `fregre.lm`, `fregre.plm`, `fregre(glm)`, `fregre.gsam` and `fregre.gkam`.

Examples

```r
## Not run:
data(tecator)
ind<-1:129
x=tecator$absorp.fdata
x.d2<-fdata.deriv(x,nderiv=2)
tt<-x["argvals"]
dataf=as.data.frame(tecator$y)
nbasis.x=x11;nbasis.b=7
basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b)
basis.x=list("x.d2"=basis1)
```
predict.fregre.gls

Predictions from a functional gls object

Description

The predictions for the functional generalized least squares fitted linear model represented by object are obtained at the covariate values defined in newx.

Usage

```r
# S3 method for class 'fregre.gls'
predict(object, newx = NULL, type = "response",
          se.fit = FALSE, scale = NULL, df , interval = "none",
          level = 0.95, weights = 1, pred.var, n.ahead = 1, ...)  
# S3 method for class 'fregre.igls'
predict(object, new.dataobj = NULL, data,
          se.fit = FALSE, scale = NULL, df = df, interval = "none",
          level = 0.95, weights = 1, pred.var, n.ahead = 1L,...)
```
Arguments

- **object**: `fregre.gls` object.
- **newx,new.fdataobj**: An optional data list in which to look for variables with which to predict. If omitted, the fitted values are used. List of new explanatory data.
- **type**: Type of prediction (response or model term).
- **se.fit**: =TRUE (not default) standard error estimates are returned for each prediction.
- **scale**: Scale parameter for std.err. calculation.
- **df**: Degrees of freedom for scale.
- **interval**: Type of interval calculation.
- **level**: Tolerance/confidence level.
- **weights**: variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in `newdata`.
- **pred.var**: the variance(s) for future observations to be assumed for prediction intervals. See `link{predict.lm}` for more details.
- **data**: Data frame with the time or spatial index
- **n.ahead**: number of steps ahead at which to predict.
- **...**: Further arguments passed to or from other methods.

Value

- a vector with the predicted values.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also

- `fregre.gls`

Examples

```r
## Not run:
data(tecator)
indx<1:129
x <- fdata.deriv(tecator$absorp.fdata,nderiv=1)
dataf<-as.data.frame(tecator$y)
dataf$time <- 1:nrow(x)
```
predict.functional.response

Predict method for functional response model

Description

Computes predictions for regression between functional explanatory variables and functional response.

Usage

S3 method for class 'fregre.fr'
predict(object, new.fdataobj=NULL, ...)

Arguments

- `object`: fregre.fr object.
- `...`: Further arguments passed to or from other methods.

Value

Return the predicted functional data.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

See Also

See Also as: fregre.basis.fr
Examples

```r
## Not run:

# CV prediction for CanadianWeather data
rttw <- c(0, 365)
basis <- create.bspline.basis(rttw, 7)
basis <- create.bspline.basis(rttw, 9)
nam <- dimnames(CanadianWeather$dailyAv)[[2]]

# fdata class (raw data)
tt <- 1:365
tempfdata <- fdata(t(CanadianWeather$dailyAv[, 1]), tt, rttw)
log10precfdata <- fdata(t(CanadianWeather$dailyAv[, 3]), tt, rttw)
rng <- range(log10precfdata)
for (ind in 1:35){
  res1 <- fregre.basis.fr(tempfdata[-ind], log10precfdata[-ind],
                           basis.s=basis, basis.t=basis)
pred1 <- predict.fregre.fr(res1, tempfdata[ind])
plot(log10precfdata[ind], col=1, ylim=rng, main=nam[ind])
lines(pred1, lty=2, col=2)
Sys.sleep(1)
}

# fd class (smooth data)
basis.alpha <- create.constant.basis(rttw)
basisx <- create.bspline.basis(rttw, 65)

dayfd <- Data2fd(day.5, CanadianWeather$dailyAv, basisx)
tempfd <- dayfd[, 1]
log10precfd <- dayfd[, 3]
for (ind in 1:35){
  res2 <- fregre.basis.fr(tempfd[-ind], log10precfd[-ind],
                           basis.s=basis, basis.t=basis)
pred2 <- predict.fregre.fr(res2, tempfd[ind])
plot(log10precfd[ind], col=1, ylim=range(log10precfd$coef), main=nam[ind])
lines(pred2, lty=2, col=2)
Sys.sleep(1)
}
```

End(Not run)

Ornstein-Uhlenbeck process

Description

Sampling of paths of the Ornstein-Uhlenbeck process.
Usage

```r
r.ou(n, t = seq(0, 1, len = 201), mu = 0, alpha = 1, sigma = 1, x0 = rnorm(n, mean = mu, sd = sigma/sqrt(2 * alpha)))
```

Arguments

- `n`: number of functions to sample.
- `t`: time locations for the functional data.
- `mu`: mean of the process.
- `alpha`: strength of the drift.
- `sigma`: diffusion coefficient.
- `x0`: a number or a vector of length `n` giving the initial value(s) of the Ornstein-Uhlenbeck process. By default, `n` points are sampled from the stationary distribution.

Value

Functional sample, an `fdata` object of length `n`.

Author(s)

Eduardo Garcia-Portugues (<edgarcia@est-econ.uc3m.es>).

Examples

```r
plot(r.ou(n = 100))
plot(r.ou(n = 100, alpha = 2, sigma = 4, x0 = 1:100))
```

Description

Generation of random directions based on the principal components \(\hat{e}_1, \ldots, \hat{e}_k \) of a sample of functional data \(X_1, \ldots, X_n \). The random directions are sampled as

\[
h = \sum_{j=1}^{k} h_j \hat{e}_j,
\]

with \(h_j \sim N(0, \sigma_j^2) \), \(j = 1, \ldots, k \). Useful for sampling non-orthogonal random directions \(h \) such that they are non-orthogonal for the random sample.
Usage

```r
dir.pc(n, X.fdata, ncomp = 0.95, fdata2pc.obj = fda.usc::fdata2pc(X.fdata,
  ncomp = min(length(X.fdata$argvals), nrow(X.fdata)), sd = 0,
  zero.mean = TRUE, norm = FALSE)
```

Arguments

- `n`: number of curves to be generated.
- `X.fdata`: an `fdata` object used to compute the functional principal components.
- `ncomp`: if an integer vector is provided, the index for the principal components to be considered. If a threshold between 0 and 1 is given, the number of components \(k \) is determined automatically as the minimum number that explains at least the `ncomp` proportion of the total variance of `X.fdata`.
- `fdata2pc.obj`: output of `fdata2pc` containing as many components as the ones to be selected by `ncomp`. Otherwise, it is computed internally.
- `sd`: if 0, the standard deviations \(\sigma_j \) are estimated by the standard deviations of the scores for \(\varepsilon_j \). If not, the \(\sigma_j \)'s are set to `sd`.
- `zero.mean`: whether the projections should have zero mean. If not, the mean is set to the mean of `X.fdata`.
- `norm`: whether the samples should be L2-normalized or not.

Value

A `fdata` object with the sampled directions.

Author(s)

Eduardo Garcia-Portugues (<edgarcia@est-econ.uc3m.es>) and Manuel Febrero-Bande (<manuel.febrero@usc.es>).

Examples

```r
# Simulate some data
set.seed(345673)
X.fdata <- rou(n = 200, mu = 0, alpha = 1, sigma = 2, t = seq(0, 1, l = 201),
  x0 = rep(0, 200))
pc <- fdata2pc(X.fdata, ncomp = 20)

# Samples
set.seed(34567)
dir.pc(n = 5, X.fdata = X.fdata, zero.mean = FALSE)$data[, 1:5]
set.seed(34567)
dir.pc(n = 5, X.fdata = X.fdata, fdata2pc.obj = pc)$data[, 1:5]

# Not run:
# Comparison for the variance type
set.seed(456732)
n.proj <- 100
set.seed(456732)
```
```r
samp1 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 1, norm = FALSE, ncomp = 0.99)
set.seed(456732)
samp2 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 0, norm = FALSE, ncomp = 0.99)
set.seed(456732)
samp3 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 1, norm = TRUE, ncomp = 0.99)
set.seed(456732)
samp4 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 0, norm = TRUE, ncomp = 0.99)
par(mfrow = c(1, 2))
plot(X.fdata, col = gray(0.85), lty = 1)
lines(samp1[1:10], col = 2, lty = 1)
lines(samp2[1:10], col = 4, lty = 1)
legend("topleft", legend = c("Data", "Different variances", "Equal variances"),
     col = c(gray(0.85), 2, 4), lwd = 2)
plot(X.fdata, col = gray(0.85), lty = 1)
lines(samp3[1:10], col = 5, lty = 1)
lines(samp4[1:10], col = 6, lty = 1)
legend("topleft", legend = c("Data", "Different variances, normalized", "Equal variances, normalized"),
     col = c(gray(0.85), 5:6), lwd = 2)

# Correlations (stronger with different variances and unnormalized; stronger with lower ncomp)
ind <- lower.tri(matrix(nrow = n.proj, ncol = n.proj))
median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp1[i]))))[ind])
median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp2[i]))))[ind])
median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp3[i]))))[ind])
median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp4[i]))))[ind])

# Comparison for the threshold
samp1 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.25, fdata2pc.obj = pc)
samp2 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.50, fdata2pc.obj = pc)
samp3 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.90, fdata2pc.obj = pc)
samp4 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.95, fdata2pc.obj = pc)
samp5 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.99, fdata2pc.obj = pc)
cols <- rainbow(5, alpha = 0.25)
par(mfrow = c(3, 2))
plot(X.fdata, col = gray(0.75), lty = 1, main = "Data")
plot(samp1, col = cols[1], lty = 1, main = "Threshold = 0.25")
plot(samp2, col = cols[2], lty = 1, main = "Threshold = 0.50")
plot(samp3, col = cols[3], lty = 1, main = "Threshold = 0.90")
plot(samp4, col = cols[4], lty = 1, main = "Threshold = 0.95")
plot(samp5, col = cols[5], lty = 1, main = "Threshold = 0.99")

# Normalizing
samp1 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.50, fdata2pc.obj = pc, norm = TRUE)
samp2 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.90, fdata2pc.obj = pc, norm = TRUE)
samp3 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.95, fdata2pc.obj = pc, norm = TRUE)
samp4 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.99, fdata2pc.obj = pc, norm = TRUE)
samp5 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.999, fdata2pc.obj = pc, norm = TRUE)
```
Statistics for testing the functional linear model using random projections

Description

Computes the Cramer-von Mises (CvM) and Kolmogorov-Smirnov (kS) statistics on the projected process

$$T_{n,h}(u) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \langle X_i, \hat{\beta} \rangle) 1_{\langle X_i, h \rangle \leq u},$$

designed to test the goodness-of-fit of a functional linear model with scalar response.

Usage

```r
rp.flm.statistic(proj.X, residuals, proj.X.ord = NULL, F.code = TRUE)
```

Arguments

- `proj.X`: matrix of size $c(n, n.proj)$ containing, for each column, the projections of the functional data X_1, \ldots, X_n into a random direction h. Not required if `proj.X.ord` is provided.
- `residuals`: the residuals of the fitted functional linear model, $Y_i - \langle X_i, \hat{\beta} \rangle$. Either a vector of length n (same residuals for all projections) or a matrix of size $c(n, n.proj, n)$ (each projection has an associated set residuals).
- `proj.X.ord`: matrix containing the row permutations of `proj.X` which rearranges them increasingly, for each column. So, for example `proj.X[proj.X.ord[, 1], 1]` equals `sort(proj.X[, 1])`. If not provided, it is computed internally.
- `F.code`: whether to use faster FORTRAN code or R code.

Details

NA’s are not allowed neither in the functional covariate nor in the scalar response.
Value

A list containing:

- statistic: a matrix of size \(c(n, \text{proj}, 2)\) with the the CvM (first column) and KS (second) statistics, for the \(n, \text{proj}\) different projections.
- proj.X.ord: the computed row permutations of \(\text{proj.X}\), useful for recycling in subsequent calls to \(\text{rp.flm.statistic}\) with the same projections but different residuals.

Author(s)

Eduardo Garcia-Portugues (<edgarcia@est-econ.uc3m.es>) and Manuel Febrero-Bande (<manuel.febrero@usc.es>).

References

Examples

```r
# Simulated example
set.seed(345678)
t <- seq(0, 1, l = 101)
n <- 100
X <- r.ou(n = n, t = t)
beta0 <- fdata(mdata = cos(2 * pi * t) - (t - 0.5)^2, argvals = t, rangeval = c(0, 1))
Y <- inprod.fdata(X, beta0) + rnorm(n, sd = 0.1)

# Linear model
mod <- fregre.pc(fdataobj = X, y = Y, l = 1:3)

# Projections
proj.X1 <- inprod.fdata(X, r.ou(n = 1, t = t))
proj.X2 <- inprod.fdata(X, r.ou(n = 1, t = t))
proj.X12 <- cbind(proj.X1, proj.X2)

# Statistics
tl <- rp.flm.statistic(proj.X = proj.X1, residuals = mod$residuals)
t2 <- rp.flm.statistic(proj.X = proj.X2, residuals = mod$residuals)
t12 <- rp.flm.statistic(proj.X = proj.X12, residuals = mod$residuals)
tl$statistic
t2$statistic
t12$statistic

# Recycling proj.X.ord
rp.flm.statistic(proj.X.ord = tl$proj.X.ord, residuals = mod$residuals)$statistic
tl$statistic

# Sort in the columns
cbind(proj.X12[tl2$proj.X.ord[, 1], 1], proj.X12[tl2$proj.X.ord[, 2], 2]) -
```
rp.flm.test

Goodness-of fit test for the functional linear model using random projections

Description

Tests the composite null hypothesis of a Functional Linear Model with scalar response (FLM),

\[H_0 : Y = \langle X, \beta \rangle + \epsilon \quad \text{vs} \quad H_1 : Y \neq \langle X, \beta \rangle + \epsilon. \]

If \(\beta = \beta_0 \) is provided, then the simple hypothesis \(H_0 : Y = \langle X, \beta_0 \rangle + \epsilon \) is tested. The way of testing the null hypothesis is via a norm (Cramer-von Mises or Kolmogorov-Smirnov) in the empirical process indexed by the projections.

Usage

```r
rp.flm.test(X.fdata, Y, beta0.fdata = NULL, B = 1000, n.proj = 10,
            est.method = "pc", p = NULL, p.criterion = "SICc", pmax = 20,
            type.basis = "bspline", projs = 0.95, verbose = TRUE,
            same.rwild = FALSE, ...)```

Arguments

- `X.fdata`: functional observations in the class `fdata`.
- `Y`: scalar responses for the FLM. Must be a vector with the same number of elements as functions are in `X.fdata`.
- `beta0.fdata`: functional parameter for the simple null hypothesis, in the `fdata` class. The argvals and rangeval arguments of `beta0.fdata` must be the same of `X.fdata`. If `beta0.fdata=NULL` (default), the function will test for the composite null hypothesis.
- `B`: number of bootstrap replicates to calibrate the distribution of the test statistic.
- `n.proj`: vector with the number of projections to consider.
- `est.method`: estimation method for \( \beta \), only used in the composite case. There are three methods:
"pc" if p is given, then $\beta$ is estimated by fregre.pc. Otherwise, p is chosen using fregre.pc.cv and the p.criterion criterion.

"pls" if p is given, $\beta$ is estimated by fregre.pls. Otherwise, p is chosen using fregre.pls.cv and the p.criterion criterion.

"basis" if p is given, $\beta$ is estimated by fregre.basis. Otherwise, p is chosen using fregre.basis.cv and the p.criterion criterion. Both in fregre.basis and fregre.basis.cv, the same basis for basis.x and basis.b is considered.

p number of elements for the basis representation of beta. If not supplied, it is estimated from the data.

p.criterion for est.method equal to "pc" or "pls", either "SIC", "SICc" or one of the criterions described in fregre.pc.cv. For "basis" a value for type.CV in fregre.basis.cv such as GCV.

pmax maximum size of the basis expansion to consider in when using p.criterion.

type.basis type of basis if est.method = "basis".

projs a fdata object containing the random directions employed to project X.fdata. If numeric, the convenient value for ncomp in rdir.pc.

verbose whether to show or not information about the testing progress.

same.rwild whether to employ the same wild bootstrap residuals for different projections or not.

... further arguments passed to create.basis (not rangeval that is taken as the rangeval of X.fdata).

Details

No NA's are allowed neither in the functional covariate nor in the scalar response.

Value

An object with class "htest" whose underlying structure is a list containing the following components:

p.values.fdr a matrix of size c(n.proj, 2), containing in each row the FDR p-values of the CvM and KS tests up to that projection.

proj.statistics a matrix of size c(max(n.proj), 2) with the value of the test statistic on each projection.

boot.proj.statistics an array of size c(max(n.proj), 2, B) with the values of the bootstrap test statistics for each projection.

proj.p.values a matrix of size c(max(n.proj), 2)

method information about the test performed and the kind of estimation performed.

B number of bootstrap replicates used.

n.proj number of projections specified

projs random directions employed to project X.fdata.
type.basis type of basis for est.method = "basis".
beta.est estimated functional parameter $\hat{\beta}$ in the composite hypothesis. For the simple hypothesis, beta0.fdata.
p number of basis elements considered for estimation of $\beta$.
p.criterion criterion employed for selecting p.
data.name the character string "$Y = <X, b> + e$"

Author(s)
Eduardo Garcia-Portugues (<edgarcia@est-econ.uc3m.es>) and Manuel Febrero-Bande (<manuel-febrero@usc.es>).

References

Examples

```r
ten.seed(345678)
t <- seq(0, 1, l = 101)
n <- 100
X <- r.ou(n = n, t = t, alpha = 2, sigma = 0.5)
beta0 <- fdata(mdata = cos(2 * pi * t) - (t - 0.5)^2, argvals = t,
rangeval = c(0,1))
Y <- inprod.fdata(X, beta0) + rnorm(n, sd = 0.1)

Test all cases
rp.flm.test(X.fdata = X, Y = Y, est.method = "pc")
Not run:
rp.flm.test(X.fdata = X, Y = Y, est.method = "pls")
rp.flm.test(X.fdata = X, Y = Y, est.method = "basis",
p.criterion = fda.usc::GCV.S)
rp.flm.test(X.fdata = X, Y = Y, est.method = "pc", p = 5)
rp.flm.test(X.fdata = X, Y = Y, est.method = "pls", p = 5)
rp.flm.test(X.fdata = X, Y = Y, est.method = "basis", p = 5)
rp.flm.test(X.fdata = X, Y = Y, beta0.fdata = beta0)

Composite hypothesis: do not reject FLM
rp.test <- rp.flm.test(X.fdata = X, Y = Y, est.method = "pc")
rp.test$p.values.fdr
pcvm.test <- flm.test(X.fdata = X, Y = Y, est.method = "pc", B = 1e3,
plot.it = FALSE)
pcvm.test
```
# Estimation of beta
par(mfrow = c(1, 3))
plot(X, main = "X")
plot(bet0, main = "beta")
lines(rp.test$beta.est, col = 2)
lines(pcvm.test$beta.est, col = 3)
plot(density(Y), main = "Density of Y", xlab = "Y", ylab = "Density")
rug(Y)

# Simple hypothesis: do not reject beta = beta0
rp.flm.test(X.fdata = X, Y = Y, beta0.fdata = beta0)$p.values.fdr
flm.test(X.fdata = X, Y = Y, beta0.fdata = beta0, B = 1e3, plot.it = FALSE)

# Simple hypothesis: reject beta = beta0^2
rp.flm.test(X.fdata = X, Y = Y, beta0.fdata = beta0^2)$p.values.fdr
flm.test(X.fdata = X, Y = Y, beta0.fdata = beta0^2, B = 1e3, plot.it = FALSE)

# Tecator dataset

# Load data
data(tecator)
absorp <- tecator$absorp.fdata
ind <- 1:129 # or ind <- 1:215
x <- absorp[ind,]
y <- tecator$y$Fat[ind]

# Composite hypothesis
rp.tecat <- rp.flm.test(X.fdata = x, Y = y, est.method = "pc")
pcvm.tecat <- flm.test(X.fdata = x, Y = y, est.method = "pc", B = 1e3,
                      plot.it = FALSE)
rp.tecat$p.values.fdr[c(5, 10),]

# Simple hypothesis
zero <- fdata(mdata = rep(0, length(x$argvals)), argvals = x$argvals,
               rangeval = x$rangeval)
rp.flm.test(X.fdata = x, Y = y, beta0.fdata = zero)
flm.test(X.fdata = x, Y = y, beta0.fdata = zero, B = 1e3)

# With derivatives
rp.tecat <- rp.flm.test(X.fdata = fdata.deriv(x, 1), Y = y, est.method = "pc")
rp.tecat$p.values.fdr
rp.tecat <- rp.flm.test(X.fdata = fdata.deriv(x, 2), Y = y, est.method = "pc")
rp.tecat$p.values.fdr

# AEMET dataset

# Load data
data(aemet)
wind.speed <- apply(aemet$wind.speed$data, 1, mean)
temp <- aemet$temp

# Remove the 5% of the curves with less depth (i.e. 4 curves)
rproc2fdata

Simulate several random processes.

Description
Simulate Functional Data from different processes: Ornstein Uhlenbeck, Brownian, Fractional Brownian, Gaussian or Exponential variogram.

Usage
rproc2fdata(n, t=NULL, mu=rep(0, length(t)), sigma=1,
par.list=list("scale"=1,"theta"=.2*diff(rtt),"H"=0.5),
norm=FALSE, verbose=FALSE,...)

Arguments
n Number of functional curves to be generated.
t Discretization points.
u mu vector which specifies the trend values at the discretization points, by default mu=\mu(t) = 0. If mu is a fdata class object, t=argvals(mu).
sigma

A positive-definite symmetric matrix, $\Sigma_{s,t}$, specifying the covariance matrix among grid points. If sigma is a scalar, creates a random Gaussian process with $\Sigma_{s,t} = \text{sigma}$ (by default sigma=1).

If sigma is a vector, creates a random Gaussian process with $\Sigma_{s,t} = \text{diag}(\text{sigma})$.

If sigma is a character: create a random process using the covariance matrix $\Sigma_{s,t}$ indicated in the argument,

- "OU" or "OrnsteinUhlenbeck", creates a random Ornstein Uhlenbeck process with $\Sigma_{s,t} = \frac{\sigma^2}{\theta} e^{-\theta(s+t)} \left( e^{2\theta(s+t)} - 1 \right)$, by default $\theta = \frac{1}{3 \text{range}(t)}$, $\sigma^2 = 1$.
- "brownian" or "wiener", creates a random Wiener process with $\Sigma_{s,t} = \sigma^2 \text{min}(s,t)$, by default $\sigma^2 = 1$.
- "fbrownian", creates a random fractional brownian process with $\Sigma_{s,t} = \sigma^2 H |s|^{2H} + |t|^{2H} - |s - t|^{2H}$, by default $\sigma^2 = 1$ and $H = 0.5$ (brownian process).
- "vexponential", creates a random gaussian process with exponential variogram $\Sigma_{s,t} = \sigma^2 e^{-\theta|s-t|}$, by default $\theta = 0.2 \text{range}(t)$, $\sigma^2 = 1$.

par.list

List of parameter to process, by default "scale" $\sigma^2 = 1$, "theta" $\theta = 0.2 \text{range}(t)$ and "H"=0.5.

norm

If TRUE the norm of random projection is 1. Default is FALSE.

verbose

If TRUE, information about procedure is printed. Default is FALSE.

... Further arguments passed to or from other methods.

Value

Return the functional random processes as a fdata class object.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Examples

```r
par(mfrow=c(3,2))
lent<30
tt<-seq(0,1,len=lent)
mu<-fdata(rep(0,lent),tt)
plot(rproc2fdata(200,t=tt,sigma="OU",par.list=list("scale"=1)))
plot(rproc2fdata(200,mu=mu,sigma="OU",par.list=list("scale"=1)))
plot(rproc2fdata(200,t=tt,sigma="vexpopontial"))
plot(rproc2fdata(200,t=tt,sigma=1:lent))
plot(rproc2fdata(200,t=tt,sigma="brownian"))
plot(rproc2fdata(200,t=tt,sigma="wiener"))
#plot(rproc2fdata(200,seq(0,1,len=30),sigma="oo")) # this is an error
```
Wild bootstrap residuals

Description

The wild bootstrap residuals are computed as $\text{residuals} \ast V$, where $V$ is a sampling from a random variable (see details section).

Usage

```
rwild(residuals, type="golden")
```

Arguments

- `residuals`: residuals
- `type`: Type of distribution of $V$.

Details

For the construction of wild bootstrap residuals, sampling from a random variable $V$ such that $E[V^2] = 0$ and $E[V] = 0$ is needed. A simple and suitable $V$ is obtained with a discrete variable of the form:

  
  $$P\left\{ V = \frac{1 - \sqrt{5}}{2} \right\} = \frac{5 + \sqrt{5}}{10} \quad \text{and} \quad P\left\{ V = \frac{1 + \sqrt{5}}{2} \right\} = \frac{5 - \sqrt{5}}{10},$$

  which leads to the golden section bootstrap.

- “Rademacher”, Sampling from Rademacher distribution values $\{-1, 1\}$ with probabilities $\{\frac{1}{2}, \frac{1}{2}\}$, respectively.

- “normal”, Sampling from a standard normal distribution.

Value

The wild bootstrap residuals computed using a sample of the random variable $V$.

Author(s)

Eduardo Garcia-Portugues, Manuel Febrero-Bande and
Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>.

References


Davidson, R. and E. Flachaire (2001). The wild bootstrap, tamed at last. working paper IER1000, Queens University.
S.basis

Smoothing matrix with roughness penalties by basis representation.

Description

Provides the smoothing matrix S with roughness penalties.

Examples

```r
n<-100
For golden wild bootstrap variable
e.boot0=rwild(rep(1,len=n),"golden")
Construction of wild bootstrap residuals
e=rnorm(n)
e.boot1=rwild(e,"golden")
e.boot2=rwild(e,"Rademacher")
e.boot3=rwild(e,"normal")
summary(e.boot1)
summary(e.boot2)
summary(e.boot3)
```

See Also

flm.test, flm.Ftest, dfv.test, fregre.bootstrap

Arguments

- `tt`: Discretization points.
- `basis`: Basis to use. See `create.basis`.
- `lambda`: A roughness penalty. By default, no penalty `lambda=0`.
- `Lfdobj`: See `eval.penalty`.
- `w`: Optional case weights.
- `...`: Further arguments passed to or from other methods. Arguments to be passed by default to `create.basis`.

Details

Provides the smoothing matrix S for the discretization points `tt` and `basis` with roughness penalties. If `lambda=0` is not used penalty, else a basis roughness penalty matrix is calculated using `getbasispenalty`.
Value

Return the smoothing matrix $S$.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as *S.*np

Examples

```r
np=101
 tt=seq(0,1,len=np)

 nbasis=11
 base1 <- create.bspline.basis(c(0, np), nbasis)
 base2 <- create.fourier.basis(c(0, np), nbasis)

 S1<-S.basis(tt,basis=base1,lambda=3)
 image(S1)
 S2<-S.basis(tt,basis=base2,lambda=3)
 image(S2)
```

---

**S**.np  
*Smoothing matrix by nonparametric methods.*

Description

Provides the smoothing matrix $S$ for the discretization points $tt$ by:  
Nadaraya-Watson kernel estimator ($S$.NW) with bandwidth parameter $h$.  
Local Linear Smoothing ($S$.LLR) with bandwidth parameter $h$.  
K nearest neighbors estimator ($S$.KNN) with parameter $knn$.  

Usage

S.LLR(tt, h, Ker = Ker.norm, w=NULL, cv=FALSE)
S.NW(tt, h, Ker = Ker.norm, w=NULL, cv=FALSE)
S.KNN(tt, h=NULL, Ker=Ker.unif, w=NULL, cv=FALSE)

Arguments

- **tt**: Vector of discretization points or distance matrix `mdist`
- **h**: Smoothing parameter or bandwidth. In S.KNN, number of k-nearest neighbors.
- **Ker**: Type of kernel used, by default normal kernel.
- **w**: Optional case weights.
- **cv**: =TRUE cross-validation is done.

Value

If S.LLR return the smoothing matrix by Local Linear Smoothing. If S.NW return the smoothing matrix by Nadaraya-Watson kernel estimator. If S.KNN return the smoothing matrix by k nearest neighbors estimator.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References


See Also

See Also as **S.basis**

Examples

```
S=seq(1:101)
S2=S.LLR(tt,h=5)
S=seq(1:101)
S2=S.LLR(tt,h=10,Ker=Ker.tri)
S3=S.NW(tt,h=10,Ker=Ker.tri)
S4=S.KNN(tt,h=5,Ker=Ker.tri)
par(mfrow=c(2,2))
image(S)
image(S2)
image(S3)
image(S4)
```
Description

Approximates semi-metric distances for functional data of class fdata or fd.

Usage

```r
semimetric.basis(fdata1, fdata2 = fdata1,nderiv=0,type.basis1=NULL,
nbasis1=NULL,type.basis2=type.basis1,nbasis2=NULL,...)
```

Arguments

- `fdata1`: Functional data 1 or curve 1.
- `fdata2`: Functional data 2 or curve 2.
- `nderiv`: Order of derivation, used in `deriv.fd`
- `type.basis1`: Type of Basis for `fdata1`.
- `nbasis1`: Number of Basis for `fdata1`.
- `type.basis2`: Type of Basis for `fdata2`.
- `nbasis2`: Number of Basis for `fdata2`.
- `...`: Further arguments passed to or from other methods.

Details

Approximates semi-metric distances for functional data of two fd class objects. If functional data are not functional fd class, the `semimetric.basis` function creates a basis to represent the functional data, by default is used `create.bspline.basis` and the fdata class object is converted to fd class using the `Data2fd`.

The function calculates distances between the derivative of order `nderiv` of curves using `deriv.fd` function.

Value

Returns a proximities matrix between functional data.

References


See Also

See also `metric.lp`, `semimetric.NPFD` and `deriv.fd`
Examples

```r
data(phoneme)
DATA1<-phoneme$learn[c(30:50,210:230),]
DATA2<-phoneme$test[131:250,]
a1=semimetric.basis(DATA1,DATA2)
a2=semimetric.basis(DATA1,DATA2,type.basis1="fourier",nbasis1=11,
type.basis2="fourier",nbasis2=11)
fd1 <- fdata2fd(DATA1)
fd2 <- fdata2fd(DATA2)
a3=semimetric.basis(fd1,fd2)
a4=semimetric.basis(fd1,fd2,nderiv=1)
```

Description


- `semimetric.deriv`: approximates $L_2$ metric between derivatives of the curves based on their B-spline representation. The derivatives set with the argument `nderiv`.
- `semimetric.fourier`: approximates $L_2$ metric between the curves based on their B-spline representation. The derivatives set with the argument `nderiv`.
- `semimetric.hshift`: computes distance between curves taking into account an horizontal shift effect.
- `semimetric.mplsr`: computes distance between curves based on the partial least squares method.
- `semimetric.pca`: computes distance between curves based on the functional principal components analysis method.

Usage

```r
semimetric.hshift(fd1, fd2, t=1:ncol(DATA1),...)
semimetric.mplsr(fd1, fd2=fd1, q=2, class1,...)
semimetric.pca(fd1, fd2=fd1, q=1,...)
semimetric.deriv(fd1, fd2=fd1, nderiv=1,
nknot=ifelse(floor(ncol(DATA1))/3>floor((ncol(DATA1)-nderiv-4)/2),
floor((ncol(DATA1)-nderiv-4)/2),floor(ncol(DATA1)/3)),...)
semimetric.fourier(fd1, fd2=fd1, nderiv=0,
nbasis=ifelse(floor(ncol(DATA1))/3>floor((ncol(DATA1)-nderiv-4)/2),
floor((ncol(DATA1)-nderiv-4)/2), floor(ncol(DATA1)/3)),
period=NULL,...)
```

Arguments

- `fd1`: Functional data 1 or curve 1. DATA1 with dimension ($n_1 \times m$), where $n_1$ is the number of curves and $m$ are the points observed in each curve.
fd2data
Functional data 2 or curve 2. DATA1 with dimension (n2 x m), where n2 is the number of curves and m are the points observed in each curve.

q
If semimetric.pca: the retained number of principal components.
If semimetric.mpls: the retained number of factors.

nknot
semimetric.deriv argument: number of interior knots (needed for defining the B-spline basis).

nderiv
Order of derivation, used in semimetric.deriv and semimetric.fourier

nbasis
semimetric.fourier: size of the basis.

period
semimetric.fourier: allows to select the period for the fourier expansion.

t
semimetric.hshift: vector which defines t (one can choose 1,2,...,nbt where nbt is the number of points of the discretization)

class1
semimetric.mpls: vector containing a categorical response which corresponds to class number for units stored in DATA1.

Details
In the next semi-metric functions the functional data $X$ is approximated by $k_n$ elements of the Fourier, B-spline, PC or PLS basis using, $\hat{X}_i = \sum_{k=1}^{k_n} \nu_k, i \xi_k$, where $\nu_k$ are the coefficient of the expansion on the basis function $\{\xi_k\}_{k=1}^{\infty}$.

The distances between the q-order derivatives of two curves $X_1$ and $X_2$ is,

$$d_2^{(q)}(X_1, X_2)_{k_n} = \sqrt{\frac{1}{T} \int_T (X_1^{(q)}(t) - X_2^{(q)}(t))^2 dt}$$

where $X_i^{(q)}(t)$ denote the q derivative of $X_i$.

semimetric.deriv and semimetric.fourier function use a B-spline and Fourier approximation respectively for each curve and the derivatives are directly computed by differentiating several times their analytic form, by default $q=1$ and $q=0$ respectively. semimetric.pca and semimetric.mpls function compute proximities between curves based on the functional principal components analysis (FPCA) and the functional partial least square analysis (FPLS), respectively. The FPC and FPLS reduce the functional data in a reduced dimensional space (q components). semimetric.mpls function requires a scalar response.

$$d_2^{(q)}(X_1, X_2)_{k_n} \approx \sqrt{\sum_{k=1}^{k_n} (\nu_{k,1} - \nu_{k,2})^2 \| \xi_k \|^{(q)} dt}$$

semimetric.hshift computes proximities between curves taking into account an horizontal shift effect.

$$d_{hshift}(X_1, X_2) = \min_{h \in [-mh, mh]} d_2(X_1(t), X_2(t + h))$$

where $mh$ is the maximum horizontal shifted allowed.
**semimetric.NPFDA**

**Value**

Returns a proximities matrix between two functional datasets.

**Source**

http://www.math.univ-toulouse.fr/staph/npfda/

**References**


**See Also**

See also `metric.lp` and `semimetric.basis`

**Examples**

```r
INFERENC PHONDAT
data(phoneme)
ind=1:100 # 2 groups
mlearn<-phoneme$mlearn[ind,]
mtest<-phoneme$mtest[ind,]
n=nrow(mlearn["data"])
np=ncol(mlearn["data"])
mdist1=semimetric.pca(mlearn,mtest)
mdist2=semimetric.pca(mlearn,mtest,q=2)
mdist3=semimetric.deriv(mlearn,mtest,nderiv=0)
mdist4=semimetric.fourier(mlearn,mtest,nderiv=2,nbasis=21)
#uses hshift function
#mdist5=semimetric.hshift(mlearn,mtest) #takes a lot
glearn<-phoneme$classlearn[ind]
#uses mplsr function
mdist6=semimetric.mplsr(mlearn,mtest,glearn)
mdist0=metric.lp(mlearn,mtest)
b=as.dist(mdist6)
c2=hclust(b)
plot(c2)
memb <- cutree(c2, k = 2)
table(memb,phoneme$classlearn[ind])
```
subset.fdata  Subsetting

Description
Return subsets of fdata which meet conditions.

Usage
## S3 method for class 'fdata'
subset(x, subset, select, drop = TRUE,...)

Arguments
x    object to be subsetted (fdata class).
subset    logical expression indicating elements or rows to keep.
select    logical expression indicating points or columns to keep.
drop    passed on to [ indexing operator.
...    further arguments to be passed to or from other methods.

Value
An object similar to x contain just the selected elements.

See Also
See subset and fdata.

summary.classif  Summarizes information from kernel classification methods.

Description
Summary function for classif.knn or classif.kernel.

Usage
## S3 method for class 'classif'
summary(object,...)
## S3 method for class 'classif'
print(x,digits = max(3,getOption("digits") - 3),...)

Arguments

- **object**: Estimated by kernel classification.
- **x**: Estimated by kernel classification.
- **digits**: A non-null value for digits specifies the minimum number of significant digits to be printed in values. The default, NULL, uses `getOption(digits)`.
- **...**: Further arguments passed to or from other methods.

Details

- **object** from one of the following functions:
  - `classif.knn`
  - `classif.kernel`

Value

- Probability of correct classification by group `prob.classification`.
- Confusion matrix between the theoretical groups and estimated groups.
- Highest probability of correct classification `max.prob`.

If the object is returned from the function: `classif.knn`

- Vector of probability of correct classification by number of neighbors `knn`.
- Optimal number of neighbors: `knn.opt`.

If the object is returned from the function: `classif.kernel`

- Vector of probability of correct classification by bandwidth `h`.
- Functional measure of closeness (optimal distance, `h.opt`).

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>
**summary.fdata.comp**

**Correlation for functional data by Principal Component Analysis**

**Description**

Compute correlation principal components of functional data and scalar response \( y \).

**Usage**

```r
S3 method for class 'fdata.comp'
summary(object, y=NULL, biplot=TRUE, corplot=FALSE, ...)
```

**Arguments**

- `object` : fdata.comp class object calculated by: fdata2pc, fdata2pls, fregre.pc or fregre.pls.
- `y` : (optional) The argument is only necessary if corplot=TRUE.
- `biplot` : =TRUE draw the biplot and PC (or PLS) components.
- `corplot` : =TRUE draw correlations between \( y \) and PC (or PLS) components.
- `...` : Further arguments passed to or from other methods.

**Value**

If corplot=TRUE, are displaying the biplot between the PC (or PLS) components.
If corplot=TRUE, are displaying the correlations between the PC (or PLS) components and response \( y \).
If ask=TRUE, draw each graph in a window, waiting to confirm the change of page with a click of the mouse or pressing ENTER. If ask=FALSE draw graphs in one window.

**Author(s)**

Manuel Febrero-Bande and Manuel Oviedo de la Fuente
<manuel.oviedo@usc.es>
References


See Also

See Also as fdata2pc, fdata2pls and cor

Examples

```r
Not run
n= 200; tt = seq(0,1,len=101)
x0<-rproc2fdata(n,tt,sigma="wiener")
x1<-rproc2fdata(n,tt,sigma=0.1)
x<-x0+x1
beta = tt*sin(2*pi*tt)^2
fbeta = fdata(beta,tt)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)
pc1=fdata2pc(x)
summary(pc1,y)
pls1=fdata2pls(x,y)
summary(pls1,cor=TRUE)
```

summary.fregre.fd  
*Summarizes information from fregre.fd objects.*

Description

Summary function for fregre.fd, fregre.basis, fregre.pls, fregre.np and fregre.plm functions.

Usage

```r
S3 method for class 'fregre.fd'
summary(object,times.influ=3,times.sigma=3,draw=TRUE,....)
S3 method for class 'fregre.fd'
print(x, digits = max(3, getOption("digits") - 3),....)
```

Arguments

- **object,x** Estimated by functional regression, fregre.fd object.
- **times.influ** Limit for detect possible influence curves.
- **times.sigma** Limit for detect possible outliers or atypical curves.
- **draw** =TRUE draw estimation and residuals graphics.
digits

A non-null value for digits specifies the minimum number of significant digits to be printed in values. The default, NULL, uses `getOption(digits)`.

Further arguments passed to or from other methods.

**Details**

Shows:

- Call.
- R squared.
- Residual variance.
- Index of possible atypical curves or possible outliers.
- Index of possible influence curves.

If the `fregre.fd` object comes from the `fregre.pc` then shows:

- Variability of explicative variables explained by Principal Components.
- Variability for each principal components -PC-.

If `draw=TRUE` plot:

- y vs y fitted values.
- Residuals vs fitted values.
- Standardized residuals vs fitted values.
- Leverage.
- Residual boxplot.
- Quantile-Quantile Plot (qqnorm).

If `ask=FALSE` draw graphs in one window, by default. If `ask=TRUE`, draw each graph in a window, waiting to confirm.

**Value**

<table>
<thead>
<tr>
<th>Influence</th>
<th>Vector of influence measures.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.influence</td>
<td>Index of possible influence curves.</td>
</tr>
<tr>
<td>i.atypical</td>
<td>Index of possible atypical curves or possible outliers.</td>
</tr>
</tbody>
</table>

**Author(s)**

Manuel Febrero-Bande and Manuel Oviedo de la Fuente

<manuel.oviedo@usc.es>
See Also

Summary function for `fregre.pc`, `fregre.basis`, `fregre.pls`, `fregre.np` and `fregre.plm`.

Examples

```r
Ex 1. Simulated data
n = 200; tt = seq(0, 1, len = 101)
x0 <- rproc2fdata(n, tt, sigma = "wiener")
x1 <- rproc2fdata(n, tt, sigma = 0.1)
x <- x0 + 3 * x1
beta = tt * sin(2 * pi * tt)^2
fbeta = fdata(beta, tt)
y <- inprod.fdata(x, fbeta) + rnorm(n, sd = 0.1)

Functional regression
res = fregre.pc(x, y, l = c(1:5))
summary(res, ask = TRUE)

res2 = fregre.pls(x, y, l = c(1:4))
summary(res2)

res3 = fregre.pls(x, y)
summary(res3)
```

summary.fregre.gkam  
Summarizes information from fregre.gkam objects.

Description

Summary function for `fregre.gkam` function.

Usage

```r
S3 method for class 'fregre.gkam'
summary(object, draw = TRUE, selec = NULL, times.influ = 3, ...)
S3 method for class 'fregre.gkam'
print(x, digits = max(3,getOption("digits") - 3), ...)
```

Arguments

- `object,x`  
  Estimated by functional regression, `fregre.fd` object.
- `draw`=TRUE draw estimation and residuals graphics.
- `selec`  
  Allows the plot for a single model term to be selected for printing. e.g. if you just want the plot for the second smooth term set selec=2.
- `times.influ`  
  Limit for detect possible influence curves.
digits

... Further arguments passed to or from other methods.

Details

- Family used.
- Number or iteration of algorithm and if it has converged.
- Residual and null deviance.
- Number of data.

Produces a list of summary information for a fitted fregre.np object for each functional covariate.

- Call.
- R squared.
- Residual variance.
- Index of possible atypical curves or possible outliers.
- Index of possible influence curves.

If draw=TRUE plot:

- y vs y fitted values.
- Residuals vs fitted values.
- Residual boxplot.
- Quantile-Quantile Plot (qqnorm).
- Plot for a each single model term.

If ask=FALSE draw graphs in one window, by default. If ask=TRUE, draw each graph in a window, waiting to confirm.

Value

object Object.

Author(s)

Manuel Febrero-Bande and Manuel Oviedo de la Fuente
<manuel.oviedo@usc.es>

See Also

Summary function for fregre.gkam.
Examples

```r
Time consuming
data(tecator)
ind<-1:129
ab=tecator$absorp.fdata[ind]
ab2=fdata.deriv(ab,2)
yfat=as.integer(cut(tecator$y[ind,"Fat"],c(0,15,100)))-1
xlist=list("df"=data.frame(yfat),"ab2"=ab2,"ab"=ab)
f<-yfat-ab+ab2
res=fregre.gkam(f,data=xlist,family=binomial("logit"),control=list(maxit=2))
summary(res)
res
```

---

### tecator

**tecator data**

---

**Description**

Water, Fat and Protein content of meat samples

**Usage**

```r
data(tecator)
```

**Format**

The format is:

- `.absorp.fdata`: absorbance data. `fdata` class object with:
  - "data": Matrix of class `fdata` with 215 curves (rows) discretized in 100 points or `argvals` (columns).
  - "argvals": 100 discretization points from 850 to 1050mm
  - "rangeval"=(850,1050): range("argvals")
  - "names" list with: main an overall title "Tecator data set", `xlab` title for x axis "Wavelength (mm)" and `ylab` title for y axis "Absorbances".

- `.y`: the percentages of Fat, Water and Protein. The three contents are determined by analytic chemistry.
Details

absorp.fdata absorbance data for 215 samples. The first 129 were originally used as a training set endpoints the percentages of Fat, Water and Protein. for more details see tecator package

Author(s)

Manuel Febrero-Bande and Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

Examples

data(tecator)
names(tecator)
names(tecator$absorp.fdata)
names(tecator$y)
class(tecator$absorp.fdata)
class(tecator$y)
dim(tecator$absorp.fdata)
dim(tecator$y)

Utilities

A wrapper for the split and unlist function for fdata object

Description

split.fdata divides the data in the fdata object x into the groups defined by f. Given a list structure x, unlist simplifies it to produce a fdata class object which contains all the atomic components which occur in x.

Usage

## S3 method for class 'fdata'
split(x,f,drop=FALSE,...)
## S3 method for class 'fdata'
unlist(x, recursive = TRUE, use.names = TRUE)

Arguments

x an fdata object containing values to be divided into groups or an list of fdata objects containing values to be combine by rows in a to be flatten one fdata object
f a factor in the sense that as.factor(f) defines the grouping, or a list of such factors in which case their interaction is used for the grouping.
Var.y

drop logical indicating if levels that do not occur should be dropped (if f is a factor or a list).
...
recursive logical. Should unlisting be applied to list components of x?
use.names logical. Should names be preserved?

Value

The value returned from split is a list of fdata objects containing the values for the groups. The components of the list are named by the levels of f (after converting to a factor, or if already a factor and drop = TRUE, dropping unused levels).
The value returned from unlist is a fdata object containing the fdata components of the list.

Author(s)

Manuel Febrero Bande and Manuel Oviedo de la Fuente <manuel.oiedo@usc.es>

Examples

fdataobj<-fdata(MontrealTemp)
fac<-factor(c(rep(1,len=17),rep(2,len=17)))
a1<-split.fdata(fdataobj,fac)
dim(a1[[1]]);dim(a1[[2]])
a2<-unlist.fdata(a1)
a2==fdataobj

Var.y Sampling Variance estimates

Description

Sampling variance or error variance estimates for regression estimates.

Usage

Var.y(y,S,Var.e=NULL)
Var.e(y,S)

Arguments

y fdata class object.
S Smoothing matrix calculated by S.basis or S.NW functions.
Var.e Error Variance Estimates. If Var.e=NULL, Var.e is calculated.

Value

Var.y: returns the sampling variance of the functional data. Var.e: returns the sampling error variance of the functional data.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente <manuel.oviedo@usc.es>

References

See Also
See Also as `Var.e`

Examples

```r
a1<-seq(0,1,by=.01)
a2=rnorm(length(a1),sd=0.2)
f1<-(sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
nc<-50
np<-length(f1)
tt=1:101
mdata<-matrix(NA,ncol=np,nrow=nc)
for (i in 1:nc) mdata[i,]<- (sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
mdata<-fdata(mdata,tt)
S=S.NW(tt,h=0.15)
var.e<-Var.e(mdata,S)
var.y<-Var.y(mdata,S)
var.y2<-Var.y(mdata,S,var.e) #the same
```
Index

=! .fdata(fda.usc.internal), 58
+Topic **anova**
  anova.hetero, 9
  anova.onefactor, 11
  anova.RPm, 13
+Topic **classif**
  classif.DD, 15
  classif.depth, 19
  classif.gkam, 21
  classif.glm, 23
  classif.gsam, 25
  classif.np, 27
  classif.tree, 29
  predict.classif, 173
  predict.classif.DD, 174
+Topic **cluster**
  dis.cos.cor, 57
  inprod.fdata, 137
  int.simpson, 139
  kmeans.fd, 144
  metric.dist, 150
  metric.hausdorff, 151
  metric.kl, 152
  metric.lp, 154
  semimetric.basis, 200
  semimetric.NPFDA, 201
+Topic **datagen**
  fdata.bootstrap, 62
  rproc2fdata, 194
+Topic **datasets**
  aemet, 8
  MCO, 149
  phoneme, 168
  poblenou, 172
  tecator, 211
+Topic **descriptive**
  Depth for a multivariate dataset, 41
  Depth for multivariate fdata, 43
  Depth for univariate fdata, 46
  Descriptive, 49
  na.omit.fdata, 161
  Utilities, 212
+Topic **distribution**
  cond.F, 30
  cond.mode, 32
  cond.quantile, 34
  rwild, 196
+Topic **generation**
  gridfdata, rcombfdata, 132
+Topic **hplot**
  plot.fdata, 170
+Topic **htest**
  dcor.xy, 39
  dfv.test, 54
  flm.Ftest, 73
  flm.test, 75
  PCvM.statistic, 167
+Topic **kernel**
  Kernel, 139
  Kernel.asymmetric, 141
  Kernel.integrate, 142
+Topic **manip**
  fdata, 60
  fdata.cen, 64
  fdata.deriv, 65
  fdata2fd, 67
+Topic **math**
  fda.usc.internal, 58
  fdata.methods, 66
  norm.fdata, 162
  order.fdata, 163
  P.penalty, 166
+Topic **models**
  dfv.test, 54
  flm.Ftest, 73
  flm.test, 75
  fregre.igls, 100
predict.fregre.gls, 181

*Topic multivariate
create.fdata.basis, 35
dcor.xy, 39
fdata2pc, 68
fdata2pls, 70
summary.fdata.comp, 206

*Topic nonparametric
dcor.xy, 39
h.default, 133
min.basis, 156
min.np, 159

*Topic outliers
influence.quan, 134
influence.fdata, 136
Outliers.fdata, 164

*Topic package
fda.usc-package, 4

*Topic print
summary.classif, 204
summary.fregre.fd, 207
summary.fregre.gkam, 209

*Topic regression, models
fregre.gls, 96

*Topic regression
dfv.test, 54
flm.Ftest, 73
flm.test, 75
fregre.basis, 80
fregre.basis.cv, 83
fregre.basis.fr, 86
fregre.bootstrap, 89
fregre.gkam, 91
fregre.glm, 93
fregre.gsam, 98
fregre.lm, 103
fregre.np, 105
fregre.np.cv, 108
fregre.pc, 110
fregre.pc.cv, 113
fregre.plm, 116
fregre.pls, 119
fregre.pls.cv, 121
fregre.ppc, fregre.ppls, 123
fregre.ppc.cv, 125
LMDC.select, 146
predict.fregre.fd, 176
predict.fregre.GAM, 178

predict.functional.response, 183

*Topic smooth
S.basis, 197
S.np, 198

*Topic utilities
CV.S, 37
dev.S, 52
GCCV.S, 127
GCV.S, 129

*Topic functional.response

*Topic smooth
s.basis, 197
s.np, 198

*Topic utilities
cv.s, 37
dev.s, 52
gccv.s, 127
gcv.s, 129

*Topic fdata (fda.usc.internal), 58
+.fdata (fda.usc.internal), 58
-.fdata (fda.usc.internal), 58
/.fdata (fda.usc.internal), 58
[.fdata (fda.usc.internal), 58
[.fdist (fda.usc.internal), 58
^..fdata (fda.usc.internal), 58

Adot, 78
Adot(PCvM.statistic), 167
aemet, 8
AKer.cos (Kernel.asymmetric), 141
AKer.epa (Kernel.asymmetric), 141
AKer.norm (Kernel.asymmetric), 141
AKer.quar (Kernel.asymmetric), 141
AKer.tri (Kernel.asymmetric), 141
AKer.unif (Kernel.asymmetric), 141
anova.hetero, 7, 9
anova.onefactor, 7, 11, 14
anova.RPm, 7, 11, 12, 13, 72
anyNA.fdata (fda.usc.internal), 58
argvals (fda.usc.internal), 58

bcdcor.dist (dcor.xy), 39
bifd, 170

c.fdata (fda.usc.internal), 58
classif.DD, 7, 15, 175
classif.depth, 7, 19
classif.gkam, 7, 21, 26, 174
classif.glm, 7, 17, 22, 23, 26, 30, 174
classif.gsam, 7, 17, 25, 174
classif.kernel, 6, 204–206
classif.kernel (classif.np), 27
classif.knn, 6, 17, 204–206
classif.knn (classif.np), 27
classif.np, 17, 26, 27, 174
classif.tree, 29
coe, 97, 102
INDEX

Complex, 66
cond.F, 7, 30, 33, 34
cond.mode, 7, 31, 32, 34
cond.quantile, 7, 31, 33, 34
contour, 171
contr.helmert, 10, 13
contr.sum, 10, 13
contr.treatment, 10, 13
cor, 207
corClasses, 96, 101
corStruct, 96, 101
count.na.fdata (fda.usc.internal), 58
create.basis, 23, 25, 29, 36–78, 94, 99, 104, 157, 191, 197
create.bspline.basis, 81, 87, 200
create.fdata.basis, 23, 25, 29, 35, 94, 99, 104
create.pc.basis, 23, 25, 29, 94, 99, 104, 111
create.pls.basis (create.fdata.basis), 35
create.raw.fdata (create.fdata.basis), 35
cV.S, 4, 37, 54, 108, 109, 131
data.frame, 15
data2fd, 65, 68, 200
dcor.dist (dcor.xy), 39
dcor.test (dcor.xy), 39
dcor.xy, 39, 148
Depth, 5, 16, 165
Depth (Depth for univariate fdata), 46
Depth for a multivariate dataset, 41
Depth for multivariate fdata, 43
Depth for univariate fdata, 46
depth.FM, 5, 42, 46
depth.FM (Depth for univariate fdata), 46
depth.FMp, 16, 44
depth.FMp (Depth for multivariate fdata), 43
depth.FSD, 46, 48
depth.FSD (Depth for univariate fdata), 46
depth.KFSD, 46, 48
depth.KFSD (Depth for univariate fdata), 46
depth.mode, 5, 42, 46–48
depth.mode (Depth for univariate fdata), 46
depth.modep, 16, 44
depth.modep (Depth for multivariate fdata), 43
Depth.Multivariate, 16, 44
Depth.Multivariate (Depth for a multivariate dataset), 41
Depth.pfd, 16
Depth.pfd (Depth for multivariate fdata), 43
depth.RP, 5, 42, 46, 48
depth.RP (Depth for univariate fdata), 46
depth.RPD, 5, 42, 44, 46, 48, 50
depth.RPD (Depth for univariate fdata), 46
depth.Rpp, 16, 44
depth.Rpp (Depth for multivariate fdata), 43
depth.RT, 5, 42, 46, 48
depth.RT (Depth for univariate fdata), 46
deriv.fd, 65, 200
Descriptive, 5, 45, 49, 49, 62, 63
dev.S, 52
dfv.statistic (dfv.test), 54
dfv.test, 54, 74, 78, 197
dim.fdata (fda.usc.internal), 58
dis.cos.cor, 57
dist, 28, 151
eval.penalty, 81, 84, 86, 197
family, 21, 23, 25, 52, 91, 94, 98
fd, 162, 167
fda.usc (fda.usc-package), 4
fda.usc-package, 4
fda.usc.internal, 58
fdata.bootstrap, 7, 62, 164, 165
fdata.cen, 64
fdata.deriv, 4, 47, 65
fdata.methods, 66
INDEX

fdata2fd, 7, 67
fdata2pc, 7, 36, 68, 71, 112, 186, 207
fdata2pls, 7, 70, 119, 120, 125, 207
fdata2ppc, 124
fdata2ppc (fdata2pc), 68
fdata2plpls, 124, 167
fdata2plplsls (fdata2plpls), 70
FDR, 7, 72
filled.contour, 171
fitted, 97, 102
flmNftest, 6, 57, 73, 78, 197
flm.test, 6, 57, 74, 75, 147, 168, 197
formula, 10, 13
fregreNbasis, 5, 6, 76, 78, 80, 85, 89, 90, 103, 104, 107, 112, 135, 137, 177, 178, 191, 207, 209
fregreNbasis.cv, 5, 76, 78, 82, 83, 109, 135, 177, 178, 191
fregreNbasis.fr, 6, 86, 183
fregre.bootstrap, 89, 197
fregre.gkam, 6, 22, 91, 100, 179, 180, 209, 210
fregre.glm, 6, 24, 93, 93, 98, 100, 105, 179, 180
fregre.gls, 6, 96, 182
fregre.gsam, 6, 26, 93, 98, 179, 180
fregre.igls, 6, 100
fregre.lp, 6, 93, 95, 103, 118, 179, 180
fregre.np, 6, 55, 57, 82, 105, 109, 112, 116, 118, 134, 177, 178, 207, 209
fregre.npcv, 6, 85, 92, 93, 107, 108, 109, 117, 118, 134, 177, 178
fregre.pcc, 5, 6, 76, 78, 82, 89, 90, 103, 104, 107, 110, 111, 113–115, 121, 125, 135, 137, 177, 178, 191, 207–209
fregre.pccv, 5, 76, 78, 85, 112, 113, 177, 178, 191
fregre.plm, 6, 116, 179, 180, 207, 209
fregre.pls, 5, 71, 76, 78, 89, 90, 103, 104, 113, 119, 120–122, 124, 125, 177, 178, 191, 207, 209
fregre.plscv, 5, 71, 76, 78, 121, 121, 177, 178, 191
fregre.ppc, 123, 126, 127
fregre.ppc (fregre.ppc, fregre.pplsls), 123
fregre.ppc, fregre.pplsls, 123
fregre.ppc.cv, 125, 125
fregre.pplsls, 126, 127
fregre.plplsls (fregre.ppc, fregre.plplsls), 123
fregre.ppc, 123
fregre.pplsls, 123
fregre.ppc (fregre.ppc, fregre.pplsls), 123
fregre.ppc, fregre.pplsls, 123
fregre.ppc, 123
fregre.pplsls, 126, 127
fregre.pplsls (fregre.ppc, fregre.pplsls), 123
fregre.pplsls, 123
fregre.pplsls (fregre.ppc, fregre.pplsls), 123
Ftest.statistic (flm.Ftest), 73
func.mean, 50, 62
func.mean (Descriptive), 49
func.mean.formula, 50
func.med.FM, 50
func.med.FM (Descriptive), 49
func.med.mode, 50
func.med.mode (Descriptive), 49
func.med.RP, 50
func.med.RPD, 50
func.med.RPD (Descriptive), 49
func.med.RT (Descriptive), 49
func.trim.FM, 50
func.trim.FM (Descriptive), 49
func.trim.mode, 50
func.trim.mode (Descriptive), 49
func.trim.RP, 50
func.trim.RP (Descriptive), 49
func.trim.RPD, 50
func.trim.RPD (Descriptive), 49
func.trim.RT, 50
func.trim.RT (Descriptive), 49
func.trimvar.FM, 50
func.trimvar.FM (Descriptive), 49
func.trimvar.mode, 50
func.trimvar.mode (Descriptive), 49
func.trimvar.RP, 51
func.trimvar.RP (Descriptive), 49
func.trimvar.RPD, 51
func.trimvar.RPD (Descriptive), 49
func.trimvar.RT, 51
func.trimvar.RT (Descriptive), 49
func.var, 50
func.var (Descriptive), 49
gam, 98, 99, 148, 180
GCV.S, 97, 127
GCV.S, 4, 27, 38, 54, 84, 108, 109, 117, 129, 129
getbasispenalty, 197
getOption, 205, 208, 210
glm, 6, 21, 23–26, 29, 94, 95, 99, 180
glisControl, 96, 101
glisObject, 97, 102
INDEX

gridfdata (gridfdata, rcombfd), 132
h.default, 106, 108, 117, 133
iconv, 9
IKer.cos (Kernel.integrate), 142
IKer.epa (Kernel.integrate), 142
IKer.norm (Kernel.integrate), 142
IKer.quar (Kernel.integrate), 142
IKer.tri (Kernel.integrate), 142
IKer.unif (Kernel.integrate), 142
image, 171
influence.fdata, 135
influence.fdata (influence.fdata), 136
influence.quan, 134, 137
influence.fdata, 136
inprod, 138, 162
int.simpson, 139
integrate, 139, 143
is.fdata (fda.usc.internal), 58
is.na.fdata (fda.usc.internal), 58
Ker.cos (Kernel), 139
Ker.epa (Kernel), 139
Ker.norm (Kernel), 139
Ker.quar (Kernel), 139
Ker.tri (Kernel), 139
Ker.unif (Kernel), 139
Kernel, 7, 27, 134, 139, 143, 159
Kernel.asymmetric, 7, 31, 106, 109, 117, 141
Kernel.integrate, 7, 31, 142
kgam.H (fregre.gkgam), 91
kmeans, 145
kmeans.assign.groups (kmeans.fd), 144
kmeans.center.ini (kmeans.fd), 144
kmeans.centers.update (kmeans.fd), 144
kmeans.fd, 7, 144
lda, 17
length.fdata (fda.usc.internal), 58
lines.fdata (plot.fdata), 170
lm, 6, 104, 117, 120, 125, 148, 180
LMDC.regre (LMDC.select), 146
LMDC.select, 146
Math.fdata (fdata.methods), 66
matplot, 171
MCO, 149
mdepth.HS, 42, 43
mdepth.HS (Depth for a multivariate dataset), 41
mdepth.LD, 41–43
mdepth.LD (Depth for a multivariate dataset), 41
mdepth.MhD, 41, 42, 44
mdepth.MhD (Depth for a multivariate dataset), 41
mdepth.RP, 41, 42, 44
mdepth.RP (Depth for a multivariate dataset), 41
mdepth.SD, 41–43
mdepth.SD (Depth for a multivariate dataset), 41
mdepth.TD, 41, 43
mdepth.TD (Depth for a multivariate dataset), 41
metric.dist, 7, 16, 28, 39–41, 150
metric.hausdorff, 7, 151
metric.kl, 7, 152
metric.lp, 7, 16, 27, 31, 37, 39, 40, 44, 47,
48, 50, 55, 58, 106, 108, 109, 117,
128, 130, 133, 134, 144, 151–153,
154, 162, 200, 203
min.basis, 5, 76, 78, 156, 160
min.np, 5, 38, 129, 131, 158, 159
missing.fdata (fda.usc.internal), 58
na.fail.fdata (na.omit.fdata), 161
na.omit, 161
na.omit.fdata, 161
NCL.fdata (fda.usc.internal), 58
ncol.fdata (fda.usc.internal), 58
norm, 162
norm.fd (norm.fdata), 162
norm.fdata, 138, 162
NROW.fdata (fda.usc.internal), 58
nrow.fdata (fda.usc.internal), 58
omit.fdata (fda.usc.internal), 58
omit2.fdata (fda.usc.internal), 58
Ops.fdata (fdata.methods), 66
order, 163
order.fdata, 163, 163
outliers.depth.pond, 5
outliers.depth.pond (Outliers.fdata), 164
outliers.depth.trim, 5
outliers.depth.trim (Outliers.fdata), 164
Outliers.fdata, 164
outliers.lrt, 5
outliers.lrt (Outliers.fdata), 164
outliers.thres.lrt, 5
outliers.thres.lrt (Outliers.fdata), 164

P.penalty, 104, 111, 121, 125, 166
pca.fd, 23, 25, 29, 94, 99, 104
PCVM.statistic, 6, 78, 167
persp, 171
phoneme, 168
plot.bifd (plot.fdata), 170
plot.fdata, 4, 61, 170
poblenou, 172
predict.classif, 28, 173
predict.classif.DO, 18, 174
predict.fregre.fd, 82, 85, 107, 109, 112, 176
predict.fregre.fr, 88
predict.fregre.fr
   (predict.functional.response), 183
predict.fregre.GAM, 178
predict.fregre.gkam
   (predict.fregre.GAM), 178
predict.fregre glm, 95
predict.fregre glm
   (predict.fregre.GAM), 178
predict.fregre.gls, 181
predict.fregre.gsam, 100
predict.fregre.gsam
   (predict.fregre.GAM), 178
predict.fregre.igls
   (predict.fregre.gls), 181
predict.fregre.lm, 105
predict.fregre.lm (predict.fregre.GAM), 178
predict.fregre.plm, 118
predict.fregre.plm
   (predict.fregre.GAM), 178
predict.functional.response, 183
print.classif (summary.classif), 204
print.fregre.fd (summary.fregre.fd), 207
print.fregre.gkam
   (summary.fregre.gkam), 209
pvalue.FDR (FDR), 72
qda, 17
quantile.outliers.pond
   (Outliers.fdata), 164
quantile.outliers.trim
   (Outliers.fdata), 164
r.ou, 184
rangeval (fda.usc.internal), 58
rcombfd (gridfdata, rcombfd), 132
rdir.pc, 185, 191
resid, 97, 102
rp.flm.statistic, 188
rp.flm.test, 190
rpart, 30
rproc2fdata, 47, 132, 194
rwild, 57, 74, 78, 89, 196
s, 98
S.basis, 5, 157, 158, 197, 199, 213
S.KNN (S.np), 198
S.LLR, 5, 37, 128, 130, 131
S.LLR (S.np), 198
S.np, 198, 198
S.NW, 5, 37, 128, 130, 131, 134, 160, 213
S.NW (S.np), 198
scale, 41
semimetric.basis, 7, 106, 109, 155, 200, 203
semimetric.deriv (semimetric.NPFDA), 201
semimetric.fourier (semimetric.NPFDA), 201
semimetric.hshift (semimetric.NPFDA), 201
semimetric.mplsr (semimetric.NPFDA), 201
semimetric.NPFDA, 7, 44, 58, 106, 109, 155, 200, 201
semimetric.pca (semimetric.NPFDA), 201
splinefun, 33, 65
split.fdata (Utilities), 212
subset, 204
subset.fdata, 204
Summary, 66
summary.anova (anova.RPm), 13
summary.classif, 204, 206
summary.fdata (fdata.methods), 66
summary.fdata.comp, 7, 206
INDEX

summary.fregre.fd, 82, 85, 107, 109, 112, 118, 178, 207
summary.fregre.gkam, 209
summary.gam, 100
summary.glm, 95
summary.lm, 105
svd, 69
Sys.sleep, 171
tecator, 211
title, 171
title.fdata (plot.fdata), 170
unlist.fdata (Utilities), 212
Utilities, 212
Var.e, 5, 214
Var.e (Var.y), 213
Var.y, 5, 213
varClasses, 96, 101
varFixed, 96, 101
varFunc, 96, 101
varimax, 69