Package ‘fdm2id’

March 12, 2020

Title Data Mining and R Programming for Beginners
Version 0.9.3
Description Contains functions to simplify the use of data mining methods (classification, regression, clustering, etc.), for students and beginners in R programming. Various R packages are used and wrappers are built around the main functions, to standardize the use of data mining methods (input/output): it brings a certain loss of flexibility, but also a gain of simplicity. The package name came from the French "Fouille de Données en Master 2 Informatique Décisionnelle".

Depends R (>= 3.5.0), arules, mclust, mnet, pls
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Imports car, caret, class, cluster, e1071, FactoMineR, flexclust, fpc, glmnet, graphics, grDevices, ibr, irr, kohonen, leaps, MASS, mda, meanShiftR, methods, questionr, randomForest, ROCR, rpart, Rtsne, SnowballC, stats, text2vec, stopwords, utils, wordcloud, xgboost
Suggests datasets, fds
Enhances NMF
NeedsCompilation no
Author Alexandre Blanscé [aut, cre]
Maintainer Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>
Repository CRAN
Date/Publication 2020-03-12 14:40:02 UTC

R topics documented:

 accident2014 .. 5
 ADABOOST .. 6
 alcohol ... 7
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>APRIORI</td>
</tr>
<tr>
<td>apriori-class</td>
</tr>
<tr>
<td>autompg</td>
</tr>
<tr>
<td>BAGGING</td>
</tr>
<tr>
<td>beetles</td>
</tr>
<tr>
<td>birth</td>
</tr>
<tr>
<td>boosting-class</td>
</tr>
<tr>
<td>boxclus</td>
</tr>
<tr>
<td>britpop</td>
</tr>
<tr>
<td>CA</td>
</tr>
<tr>
<td>CART</td>
</tr>
<tr>
<td>cartdepth</td>
</tr>
<tr>
<td>cartinfo</td>
</tr>
<tr>
<td>cartleafs</td>
</tr>
<tr>
<td>cartnodes</td>
</tr>
<tr>
<td>cartplot</td>
</tr>
<tr>
<td>CDA</td>
</tr>
<tr>
<td>cda-class</td>
</tr>
<tr>
<td>closegraphics</td>
</tr>
<tr>
<td>compare</td>
</tr>
<tr>
<td>compare.accuracy</td>
</tr>
<tr>
<td>compare.jaccard</td>
</tr>
<tr>
<td>compare.kappa</td>
</tr>
<tr>
<td>confusion</td>
</tr>
<tr>
<td>cookies</td>
</tr>
<tr>
<td>cookplot</td>
</tr>
<tr>
<td>cost.curves</td>
</tr>
<tr>
<td>credit</td>
</tr>
<tr>
<td>data.diag</td>
</tr>
<tr>
<td>data.gauss</td>
</tr>
<tr>
<td>data.parabol</td>
</tr>
<tr>
<td>data.target1</td>
</tr>
<tr>
<td>data.target2</td>
</tr>
<tr>
<td>data.twomoons</td>
</tr>
<tr>
<td>data1</td>
</tr>
<tr>
<td>data2</td>
</tr>
<tr>
<td>data3</td>
</tr>
<tr>
<td>dataset-class</td>
</tr>
<tr>
<td>dbs-class</td>
</tr>
<tr>
<td>DBSCAN</td>
</tr>
<tr>
<td>decathlon</td>
</tr>
<tr>
<td>distplot</td>
</tr>
<tr>
<td>EM</td>
</tr>
<tr>
<td>em-class</td>
</tr>
<tr>
<td>eucalyptus</td>
</tr>
<tr>
<td>evaluation</td>
</tr>
<tr>
<td>evaluation.accuracy</td>
</tr>
<tr>
<td>evaluation.fmeasure</td>
</tr>
</tbody>
</table>
evaluation.fowlkesmallows
evaluation.goodness
evaluation.jaccard
evaluation.kappa
evaluation.msep
evaluation.precision
evaluation.r2
evaluation.recall
exportgraphics
exportgraphics.off
factorial-class
FEATURESELECTION
filter.rules
frequentwords
general.rules
getvocab
GRADIENTBOOSTING
HCA
intern
intern.dunn
intern.interclass
intern.intraclass
ionosphere
keiser
KERREG
KMEANS
kmeans.getk
KNN
knn-class
LDA
leverageplot
LINREG
linsep
loadtext
LR
MCA
MEANSHIFT
meanshift-class
MLP
MLPREG
model-class
movies
NB
NMF
ozone
params-class
PCA
performance
<table>
<thead>
<tr>
<th>R topics documented</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot.cda</td>
<td>82</td>
</tr>
<tr>
<td>plot.factorial</td>
<td>82</td>
</tr>
<tr>
<td>plot.som</td>
<td>83</td>
</tr>
<tr>
<td>plotcloud</td>
<td>84</td>
</tr>
<tr>
<td>plotclus</td>
<td>85</td>
</tr>
<tr>
<td>plotdata</td>
<td>86</td>
</tr>
<tr>
<td>plotzipf</td>
<td>87</td>
</tr>
<tr>
<td>POLYREG</td>
<td>88</td>
</tr>
<tr>
<td>predict.apriori</td>
<td>89</td>
</tr>
<tr>
<td>predict.boosting</td>
<td>90</td>
</tr>
<tr>
<td>predict.cda</td>
<td>91</td>
</tr>
<tr>
<td>predict.dbs</td>
<td>91</td>
</tr>
<tr>
<td>predict.em</td>
<td>92</td>
</tr>
<tr>
<td>predict.kmeans</td>
<td>93</td>
</tr>
<tr>
<td>predict.knn</td>
<td>93</td>
</tr>
<tr>
<td>predict.meanshift</td>
<td>94</td>
</tr>
<tr>
<td>predict.model</td>
<td>95</td>
</tr>
<tr>
<td>predict.selection</td>
<td>96</td>
</tr>
<tr>
<td>predict.textmining</td>
<td>97</td>
</tr>
<tr>
<td>print.apriori</td>
<td>98</td>
</tr>
<tr>
<td>print.factorial</td>
<td>98</td>
</tr>
<tr>
<td>pseudoF</td>
<td>99</td>
</tr>
<tr>
<td>QDA</td>
<td>100</td>
</tr>
<tr>
<td>query.docs</td>
<td>100</td>
</tr>
<tr>
<td>query.words</td>
<td>101</td>
</tr>
<tr>
<td>RANDOMFOREST</td>
<td>102</td>
</tr>
<tr>
<td>reg1</td>
<td>103</td>
</tr>
<tr>
<td>reg2</td>
<td>104</td>
</tr>
<tr>
<td>regplot</td>
<td>104</td>
</tr>
<tr>
<td>resplot</td>
<td>105</td>
</tr>
<tr>
<td>roc.curves</td>
<td>105</td>
</tr>
<tr>
<td>rotation</td>
<td>106</td>
</tr>
<tr>
<td>runningtime</td>
<td>107</td>
</tr>
<tr>
<td>scatterplot</td>
<td>107</td>
</tr>
<tr>
<td>selectfeatures</td>
<td>108</td>
</tr>
<tr>
<td>selection-class</td>
<td>109</td>
</tr>
<tr>
<td>snore</td>
<td>110</td>
</tr>
<tr>
<td>SOM</td>
<td>111</td>
</tr>
<tr>
<td>som-class</td>
<td>112</td>
</tr>
<tr>
<td>SPECTRAL</td>
<td>112</td>
</tr>
<tr>
<td>spectral-class</td>
<td>113</td>
</tr>
<tr>
<td>spine</td>
<td>113</td>
</tr>
<tr>
<td>splitdata</td>
<td>114</td>
</tr>
<tr>
<td>stability</td>
<td>115</td>
</tr>
<tr>
<td>STUMP</td>
<td>116</td>
</tr>
<tr>
<td>summary.apriori</td>
<td>117</td>
</tr>
<tr>
<td>SVD</td>
<td>117</td>
</tr>
<tr>
<td>SVM</td>
<td>118</td>
</tr>
</tbody>
</table>
accident2014

Sample of car accident location in the UK during year 2014.

Description

Longitude and latitude of 500 car accident during year 2014 (source: data.gov.uk).

Usage

accident2014

Format

The dataset has 500 instances described by 2 variables (coordinates).

Source

https://data.gov.uk/
ADABOOST

Classification using AdaBoost

Description

Ensemble learning, through AdaBoost Algorithm.

Usage

```
ADABOOST(
  x, 
  y, 
  learningmethod, 
  nsamples = 100, 
  fuzzy = FALSE, 
  tune = FALSE, 
  seed = NULL, 
  ... 
)
```

Arguments

- `x` The dataset (description/predictors), a matrix or data.frame.
- `y` The target (class labels or numeric values), a factor or vector.
- `learningmethod` The boosted method.
- `nsamples` The number of samplings.
- `fuzzy` Indicates whether or not fuzzy classification should be used or not.
- `tune` If true, the function returns parameters instead of a classification model.
- `seed` A specified seed for random number generation.
- `...` Other specific parameters for the learning method.

Value

The classification model.

See Also

BAGGING, predict.boosting

Examples

```
## Not run:
require (datasets)
data (iris)
ADABOOST (iris [, -5], iris [, 5], NB)

## End(Not run)
```
alcohol

Alcohol dataset

Description

This dataset has been extracted from the WHO database and depict the alcohol habits in the 27 European countries (in 2010).

Usage

alcohol

Format

The dataset has 27 instances described by 4 variables. The variables are the average amount of alcohol of different types per year per inhabitent.

Source

https://www.who.int/

APRIORI

Classification using APRIORI

Description

This function builds a classification model using the association rules method APRIORI.

Usage

APRIORI(
 train,
 labels,
 supp = 0.05,
 conf = 0.8,
 prune = FALSE,
 tune = FALSE,
 ...
)
Arguments

- **train**: The training set (description), as a data.frame.
- **labels**: Class labels of the training set (vector or factor).
- **supp**: The minimal support of an item set (numeric value).
- **conf**: The minimal confidence of an item set (numeric value).
- **prune**: A logical indicating whether to prune redundant rules or not (default: FALSE).
- **tune**: If true, the function returns parameters instead of a classification model.
- **...**: Other parameters.

Value

The classification model, as an object of class `apriori`.

See Also

- predict.apriori, apriori-class, apriori

Examples

```r
require("datasets")
data(iris)
d = discretizeDF(iris, 
default = list(method = "interval", breaks = 3, labels = c("small", "medium", "large")))
APRIORI(d [, -5], d [, 5], supp = .1, conf = .9, prune = TRUE)
```

apriori-class

APRIORI classification model

Description

This class contains the classification model obtained by the APRIORI association rules method.

Slots

- **rules**: The set of rules obtained by APRIORI.
- **transactions**: The training set as a transaction object.
- **train**: The training set (description). A matrix or data.frame.
- **labels**: Class labels of the training set. Either a factor or an integer vector.
- **supp**: The minimal support of an item set (numeric value).
- **conf**: The minimal confidence of an item set (numeric value).

See Also

- APRIORI, predict.apriori, print.apriori, summary.apriori, apriori
autompg

Auto MPG dataset

Description
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University. The dataset was used in the 1983 American Statistical Association Exposition.

Usage

```r
classification(autompg)
```

Format
The dataset has 392 instances described by 8 variables. The seven first variables are numeric variables. The last variable is qualitative (car origin).

Source
https://archive.ics.uci.edu/ml/datasets/auto+mpg

BAGGING

Classification using Bagging

Description
Ensemble learning, through Bagging Algorithm.

Usage

```r
BAGGING(x, y, learningmethod, nsamples = 100, size = nrow(x), seed = NULL, ...)
```

Arguments

- `x`: The dataset (description/predictors), a matrix or data.frame.
- `y`: The target (class labels or numeric values), a factor or vector.
- `learningmethod`: The boosted method.
- `nsamples`: The number of samplings.
- `size`: The size of the samples.
- `seed`: A specified seed for random number generation.
- `...`: Other specific parameters for the leaning method.

Value
The classification model.
See Also

ADABOOST, predict.boosting

Examples

Not run:
require (datasets)
data (iris)
BAGGING (iris [, -5], iris [, 5], NB)
End(Not run)

beetles	Flea beetles dataset

Description

Data were collected on the genus of flea beetle *Chaetocnema*, which contains three species: *concinna*, *heikertingeri*, and *heptapotamica*. Measurements were made on the width and angle of the aedeagus of each beetle. The goal of the original study was to form a classification rule to distinguish the three species.

Usage

beetles

Format

The dataset has 74 instances described by 3 variables. The variables are as follows:

- **Width** The maximal width of aedeagus in the forpart (in microns).
- **Angle** The front angle of the aedeagus (1 unit = 7.5 degrees).
- **Shot.put** Species of flea beetle from the genus *Chaetocnema*.

Source

birth

birth

Birth dataset

Description

Tutorial data set (vector).

Usage

```
birth
```

Format

The dataset is a names vector of nine values (birth years).

boosting-class

Boosting methods model

Description

This class contains the classification model obtained by the CDA method.

Slots

- `models` List of models.
- `x` The learning set.
- `y` The target values.

See Also

`ADABOOST, BAGGING, predict.boosting`
boxclus

Clustering Box Plots

Description

Produce a box-and-whisker plot for clustering results.

Usage

```r
boxclus(d, clusters, legendpos = "topleft", ...)
```

Arguments

- `d`: The dataset (matrix or data.frame).
- `clusters`: Cluster labels of the training set (vector or factor).
- `legendpos`: Position of the legend
- `...`: Other parameters.

See Also

`boxplot`

Examples

```r
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
boxclus (iris [, -5], km$cluster)
```

britpop

Population and location of 18 major british cities.

Description

Longitude and latitude and population of 18 major cities in the Great Britain.

Usage

```r
britpop
```

Format

The dataset has 18 instances described by 3 variables.
Correspondence Analysis (CA)

Description
Performs Correspondence Analysis (CA) including supplementary row and/or column points.

Usage
CA(
d,
ncp = 5,
row.sup = NULL,
col.sup = NULL,
quanti.sup = NULL,
quali.sup = NULL,
row.w = NULL
)

Arguments
- **d**: A ddata frame or a table with n rows and p columns, i.e. a contingency table.
- **ncp**: The number of dimensions kept in the results (by default 5).
- **row.sup**: A vector indicating the indexes of the supplementary rows.
- **col.sup**: A vector indicating the indexes of the supplementary columns.
- **quanti.sup**: A vector indicating the indexes of the supplementary continuous variables.
- **quali.sup**: A vector indicating the indexes of the categorical supplementary variables.
- **row.w**: An optional row weights (by default, a vector of 1 for uniform row weights); the weights are given only for the active individuals.

Value
The CA on the dataset.

See Also
CA, MCA, PCA, plot.factorial, factorial-class

Examples
```r
data (children, package = "FactoMineR")
CA (children, row.sup = 15:18, col.sup = 6:8)
```
Description

This function builds a classification model using CART.

Usage

CART(
 train,
 labels,
 minsplit = 1,
 maxdepth = log2(length(labels)),
 cp = NULL,
 tune = FALSE,
 ...
)

Arguments

train The training set (description), as a data.frame.
labels Class labels of the training set (vector or factor).
minsplit The minimum leaf size during the learning.
maxdepth Set the maximum depth of any node of the final tree, with the root node counted as depth 0.
cp The complexity parameter of the tree. Cross-validation is used to determine optimal cp if NULL.
tune If true, the function returns parameters instead of a classification model.
... Other parameters.

Value

The classification model.

See Also

cartdepth, cartinfo, cartleafs, cartnodes, cartplot, rpart

Examples

require (datasets)
data (iris)
CART (iris [, -5], iris [, 5])
cartdepth

<table>
<thead>
<tr>
<th>cartdepth</th>
<th>Depth</th>
</tr>
</thead>
</table>

Description

Return the dept of a decision tree.

Usage

```r
cartdepth(model)
```

Arguments

- `model`: The decision tree.

Value

The depth.

See Also

CART, cartinfo, cartleafs, cartnodes, cartplot

Examples

```r
require (datasets)
data (iris)
model = CART (iris [, -5], iris [, 5])
cartdepth (model)
```

cartinfo

<table>
<thead>
<tr>
<th>cartinfo</th>
<th>CART information</th>
</tr>
</thead>
</table>

Description

Return various information on a CART model.

Usage

```r
cartinfo(model)
```

Arguments

- `model`: The decision tree.
Value

Various information organized into a vector.

See Also

CART, cartdepth, cartleafs, cartnodes, cartplot

Examples

```r
require (datasets)
data (iris)
model = CART (iris [, -5], iris [, 5])
cartinfo (model)
```

<table>
<thead>
<tr>
<th>cartleafs</th>
<th>Number of Leafs</th>
</tr>
</thead>
</table>

Description

Return the number of leafs of a decision tree.

Usage

`cartleafs(model)`

Arguments

- `model` The decision tree.

Value

The number of leafs.

See Also

CART, cartdepth, cartinfo, cartnodes, cartplot

Examples

```r
require (datasets)
data (iris)
model = CART (iris [, -5], iris [, 5])
cartleafs (model)
```
cartnodes

Number of Nodes

description

Return the number of nodes of a decision tree.

Usage

cartnodes(model)

Arguments

model The decision tree.

Value

The number of nodes.

see also

CART, cartdepth, cartinfo, cartleaves, cartplot

Examples

require (datasets)
data (iris)
model = CART (iris [, -5], iris [, 5])
cartnodes (model)

cartplot

CART Plot

description

Plot a decision tree obtained by CART.

Usage

cartplot(
 model,
 margin = 0.2,
 branch = 0.3,
 uniform = TRUE,
 fancy = TRUE,
 pretty = TRUE,
fwidth = 0,
fheight = 0,
...
)

Arguments

model The decision tree.
margin an extra fraction of white space to leave around the borders of the tree. (Long labels sometimes get cut off by the default computation).
branch controls the shape of the branches from parent to child node. Any number from 0 to 1 is allowed. A value of 1 gives square shouldered branches, a value of 0 give V shaped branches, with other values being intermediate.
uniform if TRUE, uniform vertical spacing of the nodes is used; this may be less cluttered when fitting a large plot onto a page. The default is to use a non-uniform spacing proportional to the error in the fit.
fancy Logical. If TRUE, nodes are represented by ellipses (interior nodes) and rectangles (leaves) and labeled by yval. The edges connecting the nodes are labeled by left and right splits.
pretty an alternative to the minlength argument, see labels.rpart.
fwidth Relates to option fancy and the width of the ellipses and rectangles. If fwidth < 1 then it is a scaling factor (default = 0.8). If fwidth > 1 then it represents the number of character widths (for current graphical device) to use.
fheight Relates to option fancy and the width of the ellipses and rectangles. If fwidth < 1 then it is a scaling factor (default = 0.8). If fwidth > 1 then it represents the number of character heights (for current graphical device) to use.
... Other parameters.

See Also

CART, cartdepth, cartinfo, cartleafs, cartnodes

Examples

require (datasets)
data (iris)
model = CART (iris [, -5], iris [, 5])
cartplot (model)
Classification using Canonical Discriminant Analysis

Description
This function builds a classification model using Canonical Discriminant Analysis.

Usage
CDA(train, labels, tune = FALSE, ...)

Arguments
- train: The training set (description), as a data.frame.
- labels: Class labels of the training set (vector or factor).
- tune: If true, the function returns parameters instead of a classification model.
- ...: Other parameters.

Value
The classification model, as an object of class glmnet.

See Also
plot.cda, predict.cda, cda-class

Examples
require (datasets)
data (iris)
CDA (iris [, -5], iris [, 5])

cda-class

Canonical Discriminant Analysis model

Description
This class contains the classification model obtained by the CDA method.
Slots

proj The projection of the dataset into the canonical base. A data.frame.
transform The transformation matrix between. A matrix.
centers Coordinates of the class centers. A matrix.
within The intr-class covarianc matrix. A matrix.
eig The eigen-values. A matrix.
dim The number of dimensions of the canonical base (numeric value).
nb.classes The number of clusters (numeric value).
train The training set (description). A data.frame.
labels Class labels of the training set. Either a factor or an integer vector.
model The prediction model.

See Also

CDA, plot.cda, predict.cda

closegraphics Close a graphics device

Description

Close the graphics device driver

Usage

closegraphics()

See Also

exportgraphics, toggleexport, dev.off

Examples

Not run:
data (iris)
exportgraphics ("export.pdf")
plotdata (iris [, -5], iris [, 5])
closegraphics()

End(Not run)

Description

Comparison of two sets of clusters

Usage

```r
compare(clus, gt, eval = "accuracy", comp = c("max", "pairwise", "cluster"))
```

Arguments

- `clus`: The extracted clusters.
- `gt`: The real clusters.
- `eval`: The evaluation criterion.
- `comp`: Indicates whether a "max" or a "pairwise" evaluation should be used, or the evaluation for each individual "cluster".

Value

A numeric value indicating how much the two sets of clusters are similar.

See Also

- `compare.accuracy`
- `compare.jaccard`
- `compare.kappa`
- `intern`
- `stability`

Examples

```r
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
compare (km$cluster, iris [, 5])
compare (km$cluster, iris [, 5], eval = c("accuracy", "kappa"), comp = "pairwise")
```

Description

Comparison of two sets of clusters, using accuracy

Usage

```r
compare.accuracy(clus, gt, comp = c("max", "pairwise", "cluster"))
```
Arguments

- **clus** The extracted clusters.
- **gt** The real clusters.
- **comp** Indicates whether a "max" or a "pairwise" evaluation should be used, or the evaluation for each individual "cluster".

Value

A numeric value indicating how much the two sets of clusters are similar.

See Also

- `compare.jaccard`
- `compare.kappa`
- `compare.accuracy`

Examples

```r
require(datasets)
data(iris)
km = KMEANS(iris[, -5], k = 3)
compare.accuracy(km$cluster, iris[, 5])
```

Description

Comparison of two sets of clusters, using Jaccard index

Usage

```r
compare.jaccard(clus, gt, comp = c("max", "pairwise", "cluster"))
```

Arguments

- **clus** The extracted clusters.
- **gt** The real clusters.
- **comp** Indicates whether a "max" or a "pairwise" evaluation should be used, or the evaluation for each individual "cluster".

Value

A numeric value indicating how much the two sets of clusters are similar.

See Also

- `compare.accuracy`
- `compare.kappa`
- `compare`
Examples

require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
compare.jaccard (km$cluster, iris [, 5])

Description

Comparison of two sets of clusters, using kappa

Usage

compare.kappa(clus, gt, comp = c("max", "pairwise", "cluster"))

Arguments

clus The extracted clusters.

t The real clusters.

comp Indicates whether a "max" or a "pairwise" evaluation should be used, or the evaluation for each individual "cluster".

Value

A numeric value indicating how much the two sets of clusters are similar.

See Also

compare.accuracy, compare.jaccard, compare

Examples

require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
compare.kappa (km$cluster, iris [, 5])
confusion

Confusion matrix

Description

Plot a confusion matrix.

Usage

```r
confusion(gt, pred, norm = TRUE, graph = TRUE)
```

Arguments

- `gt`: The ground truth.
- `pred`: The prediction.
- `norm`: Whether or not the confusion matrix is normalized.
- `graph`: Whether or not a graphic is displayed.

Value

The confusion matrix.

See Also

`evaluation`, `performance`, `splitdata`

Examples

```r
require("datasets")
data(iris)
d = splitdata(iris, 5)
model = NB(d$train.x, d$train.y)
pred = predict(model, d$test.x)
confusion(d$test.y, pred)
```
Description

This data set contains measurements from quantitative NIR spectroscopy. The example studied arises from an experiment done to test the feasibility of NIR spectroscopy to measure the composition of biscuit dough pieces (formed but unbaked biscuits). Two similar sample sets were made up, with the standard recipe varied to provide a large range for each of the four constituents under investigation: fat, sucrose, dry flour, and water. The calculated percentages of these four ingredients represent the 4 responses. There are 40 samples in the calibration or training set (with sample 23 being an outlier). There are a further 32 samples in the separate prediction or validation set (with example 21 considered as an outlier). An NIR reflectance spectrum is available for each dough piece. The spectral data consist of 700 points measured from 1100 to 2498 nanometers (nm) in steps of 2 nm.

Usage

cookies
cookies.desc.train
cookies.desc.test
cookies.y.train
cookies.y.test

Format

The cookies.desc.* datasets contains the 700 columns that correspond to the NIR reflectance spectrum. The cookies.y.* datasets contains four columns that correspond to the four constituents fat, sucrose, dry flour, and water. The cookies.*.train contains 40 rows that correspond to the calibration data. The cookies.*.test contains 32 rows that correspond to the prediction data.

Source

See Also

labp, labc, nirp, nirc
cookplot

Plot the Cook’s distance of a linear regression model

Description

Plot the Cook’s distance of a linear regression model.

Usage

```r
cookplot(model, index = NULL)
```

Arguments

- `model` The model to be plotted.
- `index` The index of the variable used for the x-axis.

Examples

```r
require (datasets)
data (trees)
model = LINREG (trees [, -3], trees [, 3])
cookplot (model)
```

cost.curves

Plot Cost Curves

Description

This function plots Cost Curves of several classification predictions.

Usage

```r
cost.curves(methods.names, predictions, labels)
```

Arguments

- `methods.names` The name of the compared methods (vector).
- `predictions` The predictions of a classification model (factor or vector).
- `labels` Actual labels of the dataset (factor or vector).

Value

The evaluation of the predictions (numeric value).
See Also

roc.curves, performance

Examples

require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
model.nb = NB (d [, -5], d [, 5])
model.lda = LDA (d [, -5], d [, 5])
pred.nb = predict (model.nb, d [, -5])
pred.lda = predict (model.lda, d [, -5])
cost.curves (c ("NB", "LDA"), cbind (pred.nb, pred.lda), d [, 5])

Description

This is a fake dataset simulating a bank database about loan clients.

Usage

credit

Format

The dataset has 66 instances described by 11 qualitative variables.

data.diag

Description

Generate a random dataset shaped like a square divided by a custom function.

Usage

data.square(
 n = 200,
 min = 0,
 max = 1,
 f = function(x) x,
 levels = NULL,
 graph = TRUE,
 seed = NULL
)
Arguments

- **n**: Number of observations in the dataset.
- **min**: Minimum value on each variables.
- **max**: Maximum value on each variables.
- **f**: The function that separate the classes.
- **levels**: Name of each class.
- **graph**: A logical indicating whether or not a graphic should be plotted.
- **seed**: A specified seed for random number generation.

Value

A randomly generated dataset.

See Also

data.parabol, data.target1, data.target2, data.twomoons

Examples

data.square ()

data.gauss

Gaussian mixture dataset

Description

Generate a random multidimensional gaussian mixture.

Usage

data.gauss(
 n = 1000,
 k = 2,
 prob = rep(1/k, k),
 mu = cbind(rep(0, k), seq(from = 0, by = 3, length.out = k)),
 cov = rep(list(matrix(c(6, 0.9, 0.9, 0.3), ncol = 2, nrow = 2)), k),
 levels = NULL,
 graph = TRUE,
 seed = NULL
)
data.parabol

Arguments

n Number of observations.
k The number of classes.
prob The a priori probability of each class.
mu The means of the gaussian distributions.
cov The covariance of the gaussian distributions.
levels Name of each class.
graph A logical indicating whether or not a graphic should be plotted.
seed A specified seed for random number generation.

Value

A randomly generated dataset.

See Also

data.diag, data.parabol, data.target2, data.twomoons

Examples

data.gauss ()
data.target1

Arguments

- `n`: Number of observations in each class.
- `xlim`: Minimum and maximum on the x axis.
- `center`: Coordinates of the center of the gaussian distribution.
- `coeff`: Coefficient of the parabol.
- `sigma`: Variance in each class.
- `levels`: Name of each class.
- `graph`: A logical indicating whether or not a graphic should be plotted.
- `seed`: A specified seed for random number generation.

Value

A randomly generated dataset.

See Also

data.diag, data.target1, data.target2, data.twomoons

Examples

data.parabol ()

data.target1 | Target1 dataset

Description

Generate a random dataset shaped like a target.

Usage

data.target1(
 r = 1:3,
 n = 200,
 sigma = 0.1,
 levels = NULL,
 graph = TRUE,
 seed = NULL
)
data.target2

Arguments

- **r**
 Radius of each class.
- **n**
 Number of observations in each class.
- **sigma**
 Variance in each class.
- **levels**
 Name of each class.
- **graph**
 A logical indicating whether or not a graphic should be plotted.
- **seed**
 A specified seed for random number generation.

Value

A randomly generated dataset.

See Also

- `data.diag`, `data.parabol`, `data.target2`, `data.twomoons`

Examples

```r
data.target1()
```

data.target2

Target2 dataset

Description

Generate a random dataset shaped like a target.

Usage

```r
data.target2(
  minr = c(0, 2),
  maxr = minr + 1,
  initn = 1000,
  levels = NULL,
  graph = TRUE,
  seed = NULL
)
```

Arguments

- **minr**
 Minimum radius of each class.
- **maxr**
 Maximum radius of each class.
- **initn**
 Number of observations at the beginning of the generation process.
- **levels**
 Name of each class.
- **graph**
 A logical indicating whether or not a graphic should be plotted.
- **seed**
 A specified seed for random number generation.
Value
A randomly generated dataset.

See Also
data.diag, data.parabol, data.target1, data.twomoons

Examples

```r
data.target2()
```

data.twomoons

Two moons dataset

Description
Generate a random dataset shaped like two moons.

Usage

```r
data.twomoons(
  r = 1,
  n = 200,
  sigma = 0.1,
  levels = NULL,
  graph = TRUE,
  seed = NULL
)
```

Arguments

- `r` Radius of each class.
- `n` Number of observations in each class.
- `sigma` Variance in each class.
- `levels` Name of each class.
- `graph` A logical indicating whether or not a graphic should be plotted.
- `seed` A specified seed for random number generation.

Value
A randomly generated dataset.

See Also
data.diag, data.parabol, data.target1, data.target2
data1

Examples
data.twomoons()

Description
Synthetic dataset.

Usage
data1

Format
240 observations described by 4 variables and grouped into 16 classes.

Author(s)
Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>

data2

Description
Synthetic dataset.

Usage
data2

Format
500 observations described by 10 variables and grouped into 3 classes.

Author(s)
Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>
Description

Synthetic dataset.

Usage

data3

Format

300 observations described by 3 variables and grouped into 3 classes.

Author(s)

Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>

Description

This class contains a dataset divided into four parts: the training set and test set, description and class labels.

Slots

train.x the training set (description), as a data.frame or a matrix.
train.y the training set (target), as a vector or a factor.
test.x the training set (description), as a data.frame or a matrix.
test.y the training set (target), as a vector or a factor.

See Also

splitdata
dbs-class

DBSCAN model

Description

This class contains the model obtained by the DBSCAN method.

Slots

cluster A vector of integers indicating the cluster to which each point is allocated.
eps Reachability distance (parameter).
MinPts Reachability minimum no. of points (parameter).
isseed A logical vector indicating whether a point is a seed (not border, not noise).
data The dataset that has been used to fit the map (as a matrix).

See Also

DBSCAN

DBSCAN

DBSCAN clustering method

Description

Run the DBSCAN algorithm for clustering.

Usage

DBSCAN(d, minpts, eps, ...)

Arguments

d The dataset (matrix or data.frame).
minpts Reachability minimum no. of points.
eps Reachability distance.
... Other parameters.

Value

A clustering model obtained by DBSCAN.

See Also

dbscan, dbs-class, distplot, predict.dbs
Examples

```r
require (datasets)
data (iris)
DBSCAN (iris [, -5], minpts = 5, eps = 1)
```

decathlon

Decathlon dataset

Description

The dataset contains results from two athletics competitions. The 2004 Olympic Games in Athens and the 2004 Decastar.

Usage

decathlon

Format

The dataset has 41 instances described by 13 variables. The variables are as follows:

- **100m**: In seconds.
- **Long.jmp**: In meters.
- **Shot.put**: In meters.
- **High.jmp**: In meters.
- **400m**: In seconds.
- **110m.h**: In seconds.
- **Discus.throw**: In meters.
- **Pole.vault**: In meters.
- **Javelin.throw**: In meters.
- **1500m**: In seconds.
- **Rank**: The rank at the competition.
- **Points**: The number of points obtained by the athlete.
- **Competition**: Olympics or Decastar.

Source

https://husson.github.io/data.html
distplot

Plot a k-distance graphic

Description

Plot the distance to the k’s nearest neighbours of each object in decreasing order. Mostly used to determine the eps parameter for the `dbscan` function.

Usage

```
distplot(k, d, h = -1)
```

Arguments

- **k** The k parameter.
- **d** The dataset (matrix or data.frame).
- **h** The y-coordinate at which a horizontal line should be drawn.

See Also

`DBSCAN`, `dbscan`

Examples

```r
require (datasets)
data (iris)
distplot (5, iris [, -5], h = .65)
```

EM

Expectation-Maximization clustering method

Description

Run the EM algorithm for clustering.

Usage

```
EM(d, clusters, model = "VVV", ...)
```

Arguments

- **d** The dataset (matrix or data.frame).
- **clusters** Either an integer (the number of clusters) or a (vector) indicating the cluster to which each point is initially allocated.
- **model** A character string indicating the model. The help file for `mclustModelNames` describes the available models.
- **...** Other parameters.
Value

A clustering model obtained by EM.

See Also

em, mstep, mclustModelNames

Examples

```r
require (datasets)
data (iris)
EM (iris [, -5], 3) # Default initialization
km = KMEANS (iris [, -5], k = 3)
EM (iris [, -5], km$cluster) # Initialization with another clustering method
```

em-class

Expectation-Maximization model

Description

This class contains the model obtained by the EM method.

Slots

- `modelName` A character string indicating the model. The help file for `mclustModelNames` describes the available models.
- `prior` Specification of a conjugate prior on the means and variances.
- `n` The number of observations in the dataset.
- `d` The number of variables in the dataset.
- `G` The number of components of the mixture.
- `z` A matrix whose $[i,k]$th entry is the conditional probability of the ith observation belonging to the kth component of the mixture.
- `parameters` A names list giving the parameters of the model.
- `control` A list of control parameters for EM.
- `loglik` The log likelihood for the data in the mixture model.
- `cluster` A vector of integers (from 1:k) indicating the cluster to which each point is allocated.

See Also

EM, mclustModelNames
Description

Measuring the height of a tree is not an easy task. Is it possible to estimate the height as a function of the circumference of the trunk?

Usage

eucalyptus

Format

The dataset has 1429 instances (eucalyptus trees) with 2 measurements: the height and the circumference.

Source

http://www.cmap.polytechnique.fr/~lepennec/enseignement/MAP553/Lab2_Linear.html

evaluation

Evaluation of classification or regression predictions

Description

Evaluation predictions of a classification or a regression model.

Usage

evaluation(
 predictions,
 targets,
 eval = ifelse(is.factor(targets), "accuracy", "r2"),
 ...
)

Arguments

predictions The predictions of a classification model (factor or vector).
targets The actual targets of the dataset (factor or vector).
eval The evaluation method.
 ... Other parameters.
Value

The evaluation of the predictions (numeric value).

See Also

confusion, evaluation.accuracy, evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.goodness, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation.recall, evaluation.msep, evaluation.r2, performance

Examples

```
require (datasets)
data (iris)
d = splitdata (iris, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
# Default evaluation for classification
evaluation (pred.nb, d$test.y)
# Evaluation with two criteria
evaluation (pred.nb, d$test.y, eval = c ("accuracy", "kappa"))
data (trees)
d = splitdata (trees, 3)
model.linreg = LINREG (d$train.x, d$train.y)
pred.linreg = predict (model.linreg, d$test.x)
# Default evaluation for regression
evaluation (pred.linreg, d$test.y)
```

evaluation.accuracy

Accuracy of classification predictions

Description

Evaluation predictions of a classification model according to accuracy.

Usage

```
evaluation.accuracy(predictions, targets, ...)
```

Arguments

- `predictions` The predictions of a classification model (factor or vector).
- `targets` Actual targets of the dataset (factor or vector).
- `...` Other parameters.

Value

The evaluation of the predictions (numeric value).
evaluation.fmeasure

See Also

evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.goodness, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation.precision, evaluation.recall, evaluation

Examples

require (datasets)
data (iris)
d = splitdata (iris, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.accuracy (pred.nb, d$test.y)

evaluation.fmeasure F-measure

Description

Evaluation predictions of a classification model according to the F-measure index.

Usage

evaluation.fmeasure(
predictions,
targets,
beta = 1,
positive = levels(targets)[1],
...
)

Arguments

predictions The predictions of a classification model (factor or vector).
targets Actual targets of the dataset (factor or vector).
beta The weight given to precision.
positive The label of the positive class.
... Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

evaluation.accuracy, evaluation.fowlkesmallows, evaluation.goodness, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation.precision, evaluation.recall, evaluation
Examples

```r
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.fmeasure (pred.nb, d$test.y)
```

evaluation.fowlkesmallows

Fowlkes–Mallows index

Description

Evaluation predictions of a classification model according to the Fowlkes–Mallows index.

Usage

```r
evaluation.fowlkesmallows(
  predictions,
  targets,
  positive = levels(targets)[1],
  ...
)
```

Arguments

- `predictions` : The predictions of a classification model (factor or vector).
- `targets` : Actual targets of the dataset (factor or vector).
- `positive` : The label of the positive class.
- `...` : Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

`evaluation.accuracy`, `evaluation.fmeasure`, `evaluation.goodness`, `evaluation.jaccard`, `evaluation.kappa`, `evaluation.precision`, `evaluation.recall`, `evaluation`
Examples

require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "*", ",") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.fowlkesmallows (pred.nb, d$test.y)

evaluation.goodness Goodness

Description

Evaluation predictions of a classification model according to Goodness index.

Usage

evaluation.goodness(
predictions, targets, beta = 1, positive = levels(targets)[1],
...)

Arguments

predictions The predictions of a classification model (factor or vector).
targets Actual targets of the dataset (factor or vector).
beta The weight given to precision.
positive The label of the positive class.
...

Value

The evaluation of the predictions (numeric value).

See Also

evaluation.accuracy, evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation.recall, evaluation
Examples

```r
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.goodness (pred.nb, d$test.y)
```

Description

Evaluation predictions of a classification model according to Jaccard index.

Usage

```r
evaluation.jaccard(predictions, targets, positive = levels(targets)[1], ...)
```

Arguments

- `predictions`: The predictions of a classification model (`factor` or `vector`).
- `targets`: Actual targets of the dataset (`factor` or `vector`).
- `positive`: The label of the positive class.
- `...`: Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

- `evaluation.accuracy`
- `evaluation.fmeasure`
- `evaluation.fowlkesmallows`
- `evaluation.goodness`
- `evaluation.kappa`
- `evaluation.precision`
- `evaluation.recall`
- `evaluation`

Examples

```r
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.jaccard (pred.nb, d$test.y)
```
evaluation.kappa

Kappa evaluation of classification predictions

Description

Evaluation predictions of a classification model according to kappa.

Usage

```r
evaluation.kappa(predictions, targets, ...)
```

Arguments

- **predictions**: The predictions of a classification model (factor or vector).
- **targets**: Actual targets of the dataset (factor or vector).
- **...**: Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

- `evaluation.accuracy`
- `evaluation.fmeasure`
- `evaluation.fowlkesmallows`
- `evaluation.goodness`
- `evaluation.jaccard`
- `evaluation.precision`
- `evaluation.recall`
- `evaluation`

Examples

```r
require(datasets)
data(iris)
d = splitdata(iris, 5)
model.nb = NB(d$train.x, d$train.y)
pred.nb = predict(model.nb, d$test.x)
evaluation.kappa(pred.nb, d$test.y)
```

evaluation.msep

MSEP evaluation of regression predictions

Description

Evaluation predictions of a regression model according to MSEP

Usage

```r
evaluation.msep(predictions, targets)
```
Arguments

- `predictions` The predictions of a regression model (vector).
- `targets` Actual targets of the dataset (vector).

Value

The evaluation of the predictions (numeric value).

See Also

- `evaluation.r2`
- `evaluation`

Examples

```r
require (datasets)
data (trees)
d = splitdata (trees, 3)
model.lin = LINREG (d$train.x, d$train.y)
pred.lin = predict (model.lin, d$test.x)
evaluation.msep (pred.lin, d$test.y)
```

evaluation.precision Precision of classification predictions

Description

Evaluation predictions of a classification model according to precision. Works only for two classes problems.

Usage

```r
evaluation.precision (predictions, targets, positive = levels (targets)[1], ...)
```

Arguments

- `predictions` The predictions of a classification model (factor or vector).
- `targets` Actual targets of the dataset (factor or vector).
- `positive` The label of the positive class.
- `...` Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

- `evaluation.accuracy`
- `evaluation.fmeasure`
- `evaluation.fowlkesmallows`
- `evaluation.goodness`
- `evaluation.jaccard`
- `evaluation.kappa`
- `evaluation.recall`
- `evaluation`
Examples

```r
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.precision (pred.nb, d$test.y)
```

Description

Evaluation predictions of a regression model according to R2

Usage

```r
evaluation.r2(predictions, targets)
```

Arguments

- `predictions` The predictions of a regression model (vector).
- `targets` Actual targets of the dataset (vector).

Value

The evaluation of the predictions (numeric value).

See Also

`evaluation.msep`, `evaluation`

Examples

```r
require (datasets)
data (trees)
d = splitdata (trees, 3)
model.linreg = LINREG (d$train.x, d$train.y)
pred.linreg = predict (model.linreg, d$test.x)
evaluation.r2 (pred.linreg, d$test.y)
```
Description

Evaluation predictions of a classification model according to recall. Works only for two classes problems.

Usage

evaluation.recall(predictions, targets, positive = levels(targets)[1], ...)

Arguments

- predictions: The predictions of a classification model (factor or vector).
- targets: Actual targets of the dataset (factor or vector).
- positive: The label of the positive class.
- ...: Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

evaluation.accuracy, evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.goodness, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation

Examples

```r
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.recall (pred.nb, d$test.y)
```
exportgraphics

Open a graphics device

Description

Starts the graphics device driver

Usage

```
exportgraphics(file, type = tail(strsplit(file, split = "\."))[1], 1), ...)  
```

Arguments

- `file` : A character string giving the name of the file.
- `type` : The type of graphics device.
- `...` : Other parameters.

See Also

`closegraphics`, `toggleexport`, `Devices`

Examples

```r
## Not run:
data(iris)
exportgraphics("export.pdf")
plotdata(iris[, -5], iris[, 5])
closegraphics()

## End(Not run)
```

exportgraphics.off

Toggle graphic exports

Description

Toggle graphic exports on and off
Usage

exportgraphics.off()
exportgraphics.on()
toggleexport(export = NULL)
toggleexport.off()
toggleexport.on()

Arguments

export If TRUE, exports are activated, if FALSE, exports are deactivated. If null, switches on and off.

See Also

closegraphics, exportgraphics

Examples

Not run:
data (iris)
toggleexport (FALSE)
exportgraphics("export.pdf")
plotdata (iris [, -5], iris [, 5])
closegraphics()
toggleexport (TRUE)
exportgraphics("export.pdf")
plotdata (iris [, -5], iris [, 5])
closegraphics()

End(Not run)

factorial-class Factorial analysis results

Description

This class contains the classification model obtained by the CDA method.

See Also

CA, MCA, PCA, plot.factorial
Classification with Feature selection

Description

Apply a classification method after a subset of features has been selected.

Usage

FEATURESELECTION(
 train,
 labels,
 algorithm = c("ranking", "forward", "backward", "exhaustive"),
 unieval = if (algorithm[1] == "ranking") c("fisher", "fstat", "relief",
 "inertiaratio") else NULL,
 uninb = NULL,
 unithreshold = NULL,
 multieval = if (algorithm[1] == "ranking") NULL else c("cfs", "fstat", "inertiaratio",
 "wrapper"),
 wrapmethod = NULL,
 mainmethod = wrapmethod,
 tune = FALSE,
 ...
)

Arguments

train The training set (description), as a data.frame.
labels Class labels of the training set (vector or factor).
algorithm The feature selection algorithm.
unieval The (univariate) evaluation criterion. uninb, unithreshold or multieval must be specified.
uninb The number of selected feature (univariate evaluation).
unithreshold The threshold for selecting feature (univariate evaluation).
multieval The (multivariate) evaluation criterion.
wrapmethod The classification method used for the wrapper evaluation.
mainmethod The final method used for data classification. If a wrapper evaluation is used, the same classification method should be used.
tune If true, the function returns parameters instead of a classification model.
...

See Also

selectfeatures, predict.selection, selection-class
Not run:
require (datasets)
data (iris)
FEATURESELECTION (iris [, -5], iris [, 5], uninb = 2, mainmethod = LDA)

End(Not run)

filter.rules

Filtering a set of rules

This function facilitate the selection of a subset from a set of rules.

Usage

```r
filter.rules(
  rules,
  pattern = NULL,
  left = pattern,
  right = pattern,
  removeMatches = FALSE
)
```

Arguments

- `pattern`: A pattern to match (antecedent and consequent): a character string.
- `left`: A pattern to match (antecedent only): a character string.
- `right`: A pattern to match (consequent only): a character string.
- `removeMatches`: A logical indicating whether to remove matching rules (TRUE) or to keep those (FALSE).

Value

The filtered set of rules.

See Also

- `apriori`, `subset`
Examples

```r
require("arules")
data("Adult")
r = apriori(Adult)
filter.rules(r, right = "marital-status=")
subset(r, subset = rhs %pin% "marital-status=")
```

<table>
<thead>
<tr>
<th>frequentwords</th>
<th>Frequent words</th>
</tr>
</thead>
</table>

Description

Most frequent words of the corpus.

Usage

```r
frequentwords(
  corpus,
  nb,
  mincount = 5,
  minphrasecount = NULL,
  ngram = 1,
  lang = "en",
  stopwords = lang
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>corpus</td>
<td>The corpus of documents (a vector of characters) or the vocabulary of the documents (result of function getvocab).</td>
</tr>
<tr>
<td>nb</td>
<td>The number of words to be returned.</td>
</tr>
<tr>
<td>mincount</td>
<td>Minimum word count to be considered as frequent.</td>
</tr>
<tr>
<td>minphrasecount</td>
<td>Minimum collocation of words count to be considered as frequent.</td>
</tr>
<tr>
<td>ngram</td>
<td>Maximum size of n-grams.</td>
</tr>
<tr>
<td>lang</td>
<td>The language of the documents (NULL if no stemming).</td>
</tr>
<tr>
<td>stopwords</td>
<td>Stopwords, or the language of the documents. NULL if stop words should not be removed.</td>
</tr>
</tbody>
</table>

Value

The most frequent words of the corpus.

See Also

getvocab
Examples

```r
## Not run:
text = loadtext("http://mattmahoney.net/dc/text8.zip")
frequentwords(text, 100)
vocab = getvocab(text)
frequentwords(vocab, 100)

## End(Not run)
```

general.rules

Remove redundancy in a set of rules

Description

This function remove every redundant rules, keeping only the most general ones.

Usage

```r
general.rules(r)
```

Arguments

- `r` A set of rules.

Value

A set of rules, without redundancy.

See Also

`apriori`

Examples

```r
require("arules")
data("Adult")
r = apriori(Adult)
inspect(general.rules(r))
```
getvocab

Extract words and phrases from a corpus

Description

Extract words and phrases from a corpus of documents.

Usage

```r
getvocab(
  corpus,
  mincount = 5,
  minphrasecount = NULL,
  ngram = 1,
  lang = "en",
  stopwords = lang,
  ...
)
```

Arguments

- **corpus**: The corpus of documents (a vector of characters).
- **mincount**: Minimum word count to be considered as frequent.
- **minphrasecount**: Minimum collocation of words count to be considered as frequent.
- **ngram**: Maximum size of n-grams.
- **lang**: The language of the documents (NULL if no stemming).
- **stopwords**: Stopwords, or the language of the documents. NULL if stop words should not be removed.
- **...**: Other parameters.

Value

The vocabulary used in the corpus of documents.

See Also

- `plotzipf`
- `stopwords`
- `create_vocabulary`

Examples

```r
# Not run:
text = loadtext("http://mattmahoney.net/dc/text8.zip")
vocab1 = getvocab(text) # With stemming
nrow(vocab1)
vocab2 = getvocab(text, lang = NULL) # Without stemming
nrow(vocab2)

# End(Not run)
```
Description

This function builds a classification model using Gradient Boosting

Usage

\[
\text{GRADIENTBOOSTING}(\text{train}, \text{labels}, \text{ntree} = 500, \text{learningrate} = 0.3, \text{tune} = \text{FALSE}, \ldots)
\]

Arguments

- \text{train} \quad \text{The training set (description), as a data.frame.}
- \text{labels} \quad \text{Class labels of the training set (vector or factor).}
- \text{ntree} \quad \text{The number of trees in the forest.}
- \text{learningrate} \quad \text{The learning rate (between 0 and 1).}
- \text{tune} \quad \text{If true, the function returns parameters instead of a classification model.}
- \ldots \quad \text{Other parameters.}

Value

The classification model.

See Also

\text{xgboost}

Examples

\[
\text{## Not run:}
\text{require (datasets)}
\text{data (iris)}
\text{GRADIENTBOOSTING (iris [, -5], iris [, 5])}
\]

\text{## End(Not run)}
HCA

Hierarchical Cluster Analysis method

Description

Run the HCA method for clustering.

Usage

```r
HCA(d, method = c("ward", "single"), k = NULL, ...)
```

Arguments

- `d`: The dataset (`matrix` or `data.frame`).
- `method`: Character string defining the clustering method.
- `k`: The number of cluster.
- `...`: Other parameters.

Value

The cluster hierarchy (`hca` object).

See Also

`agnes`

Examples

```r
require(datasets)
data(iris)
HCA(iris[, -5], method = "ward", k = 3)
```

intern

Clustering evaluation through internal criteria

Description

Evaluation a clustering algorithm according to internal criteria.

Usage

```r
intern(clus, d, eval = "intraclass", type = c("global", "cluster"))
```
intern.dunn

Clustering evaluation through Dunn’s index

Description

Evaluation a clustering algorithm according to Dunn’s index.

Usage

intern.dunn(clus, d, type = c("global"))

Arguments

clus The extracted clusters.

d The dataset.

type Indicates whether a "global" or a "cluster"-wise evaluation should be used.

Value

The evaluation of the clustering.

See Also

compare, stability, intern.dunn, intern.interclass, intern.intraclass

Examples

require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
intern (km$clus, iris [, -5])
intern (km$clus, iris [, -5], type = "cluster")
intern (km$clus, iris [, -5], eval = c("intraclass", "interclass"))
intern (km$clus, iris [, -5], eval = c("intraclass", "interclass"), type = "cluster")

Arguments

clus The extracted clusters.

d The dataset.

type Indicates whether a "global" or a "cluster"-wise evaluation should be used.

Value

The evaluation of the clustering.
See Also

`intern, intern.interclass, intern.intraclass`

Examples

```r
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
intern.dunn (km$clus, iris [, -5])
```

`intern.interclass`
Clustering evaluation through interclass inertia

Description

Evaluation a clustering algorithm according to interclass inertia.

Usage

```r
intern.interclass(clus, d, type = c("global", "cluster"))
```

Arguments

- `clus`
The extracted clusters.
- `d`
The dataset.
- `type`
Indicates whether a "global" or a "cluster"-wise evaluation should be used.

Value

The evaluation of the clustering.

See Also

`intern, intern.dunn, intern.intraclass`

Examples

```r
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
intern.interclass (km$clus, iris [, -5])
```
intern.intraclass

Clustering evaluation through intraclass inertia

Description
Evaluation a clustering algorithm according to intraclass inertia.

Usage

```r
intern.intraclass(clus, d, type = c("global", "cluster"))
```

Arguments
- **clus** The extracted clusters.
- **d** The dataset.
- **type** Indicates whether a "global" or a "cluster"-wise evaluation should be used.

Value
The evaluation of the clustering.

See Also
- `intern`
- `intern.dunn`
- `intern.interclass`

Examples

```r
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
intron.intraclass (km$clus, iris [, -5])
```

ionosphere

Ionosphere dataset

Description
This is a dataset from the UCI repository. This radar data was collected by a system in Goose Bay, Labrador. This system consists of a phased array of 16 high-frequency antennas with a total transmitted power on the order of 6.4 kilowatts. See the paper for more details. The targets were free electrons in the ionosphere. "Good" radar returns are those showing evidence of some type of structure in the ionosphere. "Bad" returns are those that do not; their signals pass through the ionosphere. Received signals were processed using an autocorrelation function whose arguments are the time of a pulse and the pulse number. There were 17 pulse numbers for the Goose Bay system. Instances in this database are described by 2 attributes per pulse number, corresponding to the complex values returned by the function resulting from the complex electromagnetic signal. One attribute with constant value has been removed.
keiser

Usage

ionosphere

Format

The dataset has 351 instances described by 34. The last variable is the class.

Source

https://archive.ics.uci.edu/ml/datasets/ionosphere

keiser Keiser rule

Description

Apply the keiser rule to determine the appropriate number of PCA axes.

Usage

keiser(pca)

Arguments

pca The PCA result (object of class factorial-class).

See Also

PCA, factorial-class

Examples

require (datasets)
data (iris)
pca = PCA (iris, quali.sup = 5)
keiser (pca)
Description

This function builds a kernel regression model.

Usage

KERREG(x, y, bandwidth = 1, tune = FALSE, ...)

Arguments

x
Predictor matrix.
y
Response vector.
bandwidth
The bandwidth parameter.
tune
If true, the function returns parameters instead of a classification model.
...
Other parameters.

Value

The classification model, as an object of class model-class.

See Also

npregress

Examples

require (datasets)
data (trees)
KERREG (trees [, -3], trees [, 3])

Description

Run K-means for clustering.
Usage

KMEANS(
 d,
 k = 9,
 criterion = c("none", "pseudo-F"),
 graph = FALSE,
 nstart = 10,
 ...
)

Arguments

d The dataset (matrix or data.frame).
k The number of cluster.
criterion The criterion for cluster number selection. If none, k is used, if not the number of cluster is selected between 2 and k.
graph A logical indicating whether or not a graphic should be plotted (cluster number selection).
nstart Define how many random sets should be chosen.
... Other parameters.

Value

The clustering (kmeans object).

See Also

kmeans, predict.kmeans

Examples

require (datasets)
data (iris)
KMEANS (iris [, -5], k = 3)
KMEANS (iris [, -5], criterion = "pseudo-F") # With automatic detection of the number of clusters

kmeans.getk Estimation of the number of clusters for K-means

Description

Estimate the optimal number of cluster of the K-means clustering method.
Usage

kmeans.getk(
 d,
 max = 9,
 criterion = "pseudo-F",
 graph = TRUE,
 nstart = 10,
 seed = NULL
)

Arguments

d The dataset (matrix or data.frame).
max The maximum number of clusters. Values from 2 to max are evaluated.
criterion The criterion to be optimized. "pseudo-F" is the only criterion implemented in the current version.
graph A logical indicating whether or not a graphic should be plotted.
nstart The number of random sets chosen for kmeans initialization.
seed A specified seed for random number generation.

Value

The optimal number of cluster of the K-means clustering method according to the chosen criterion.

See Also

pseudoF, kmeans

Examples

require (datasets)
data (iris)
kmeans.getk (iris [, -5])

KNN

Classification using k-NN

Description

This function builds a classification model using Logistic Regression.

Usage

KNN(train, labels, k = 1:10, tune = FALSE, ...)

KNN
Arguments

- **train**: The training set (description), as a `data.frame`.
- **labels**: Class labels of the training set (vector or factor).
- **k**: The k parameter.
- **tune**: If true, the function returns parameters instead of a classification model.
- **...**: Other parameters.

Value

The classification model.

See Also

- `knn`

Examples

```r
require (datasets)
data (iris)
KNN (iris [, -5], iris [, 5])
```

knn-class

K Nearest Neighbours model

Description

This class contains the classification model obtained by the k-NN method.

Slots

- **train**: The training set (description). A `data.frame`.
- **labels**: Class labels of the training set. Either a `factor` or an integer `vector`.
- **k**: The k parameter.

See Also

- `KNN`, `predict.knn`
LDA

Classification using Linear Discriminant Analysis

Description
This function builds a classification model using Linear Discriminant Analysis.

Usage
LDA(train, labels, tune = FALSE, ...)

Arguments
- **train**: The training set (description), as a `data.frame`.
- **labels**: Class labels of the training set (vector or factor).
- **tune**: If true, the function returns parameters instead of a classification model.
- **...**: Other parameters.

Value
The classification model.

See Also
lda

Examples
```r
require (datasets)
data (iris)
LDA (iris [, -5], iris [, 5])
```

leverageplot

Plot the leverage points of a linear regression model

Description
Plot the leverage points of a linear regression model.

Usage
leverageplot(model, index = NULL)
Arguments

- **model**: The model to be plotted.
- **index**: The index of the variable used for the x-axis.

Examples

```r
require (datasets)
data (trees)
model = LINREG (trees [, -3], trees [, 3])
leverageplot (model)
```

LINREG

Linear Regression

Description

This function builds a linear regression model. Standard least square method, variable selection, factorial methods are available.

Usage

```r
LINREG(
  x,
  y,
  formula = ".",
  reg = c("linear", "subset", "ridge", "lasso", "elastic", "pcr", "plsr"),
  regeval = c("r2", "bic", "adjr2", "cp", "mse", "msep"),
  scale = TRUE,
  lambda = 10^seq(-5, 5, length.out = 101),
  alpha = 0.5,
  graph = TRUE,
  tune = FALSE,
  ...)
```

Arguments

- **x**: Predictor matrix.
- **y**: Response vector.
- **formula**: A symbolic description of the model to be fitted (as a character string).
- **reg**: The algorithm.
- **regeval**: The evaluation criterion for subset selection.
- **scale**: If true, PCR and PLS use scaled dataset.
- **lambda**: The lambda parameter of Ridge, Lasso and Elastic net regression.
- **alpha**: The elasticnet mixing parameter.
graph A logical indicating whether or not graphics should be plotted (ridge, LASSO
and elastic net).
tune If true, the function returns parameters instead of a classification model.
... Other parameters.

Value

The classification model, as an object of class model-class.

See Also

lm, regsubsets, mvr, glmnet

Examples

Not run:
require (datasets)
With one independent variable
data (cars)
LINREG (cars [, -2], cars [, 2])
With two independent variables
data (trees)
LINREG (trees [, -3], trees [, 3])
With non numeric variables
data (ToothGrowth)
LINREG (ToothGrowth [, -1], ToothGrowth [, 1], formula = "-1+supp+dose") # Different intercept
LINREG (ToothGrowth [, -1], ToothGrowth [, 1], formula = "dose:supp") # Different slope
LINREG (ToothGrowth [, -1], ToothGrowth [, 1], formula = "-1+supp+dose:supp") # Complete model
With multiple numeric variables
data (mtcars)
LINREG (mtcars [, -1], mtcars [, 1])
LINREG (mtcars [, -1], mtcars [, 1], reg = "subset", regeval = "adjr2")
LINREG (mtcars [, -1], mtcars [, 1], reg = "ridge")
LINREG (mtcars [, -1], mtcars [, 1], reg = "lasso")
LINREG (mtcars [, -1], mtcars [, 1], reg = "elastic")
LINREG (mtcars [, -1], mtcars [, 1], reg = "pca")
LINREG (mtcars [, -1], mtcars [, 1], reg = "pls")

End(Not run)

linsep Linsep dataset

Description

Synthetic dataset.

Usage

linsep
Format

Class A contains 50 observations and class B contains 500 observations. There are two numeric variables: X and Y.

Author(s)

Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>

loadtext

load a text file

Description

(Down) Load a text file (and extract it if it is in a zip file).

Usage

```
loadtext(file = file.choose(), dir = "~/", collapse = TRUE)
```

Arguments

- `file`: The path or URL of the text file.
- `dir`: The (temporary) directory, where the file is downloaded. The file is deleted at the end of this function.
- `collapse`: Indicates whether or not lines of each documents should collapse together or not.

Value

The text contained in the downloaded file.

See Also

`download.file`, `unzip`

Examples

```
## Not run:
text = loadtext("http://mattmahoney.net/dc/text8.zip")

## End(Not run)
```
LR

Classification using Logistic Regression

Description

This function builds a classification model using Logistic Regression.

Usage

\[
\text{LR}(\text{train, labels, tune = FALSE, ...})
\]

Arguments

- **train**: The training set (description), as a `data.frame`.
- **labels**: Class labels of the training set (`vector` or `factor`).
- **tune**: If true, the function returns parameters instead of a classification model.
- **...**: Other parameters.

Value

The classification model.

See Also

- `multinom`

Examples

```r
require(datasets)
data(iris)
LR(iris[, -5], iris[, 5])
```

MCA

Multiple Correspondence Analysis (MCA)

Description

Performs Multiple Correspondence Analysis (MCA) with supplementary individuals, supplementary quantitative variables and supplementary categorical variables. Performs also Specific Multiple Correspondence Analysis with supplementary categories and supplementary categorical variables. Missing values are treated as an additional level, categories which are rare can be ventilated.
MEANSHIFT

Usage

MCA(
 d,
 ncp = 5,
 ind.sup = NULL,
 quanti.sup = NULL,
 quali.sup = NULL,
 row.w = NULL
)

Arguments

d A data frame or a table with n rows and p columns, i.e. a contingency table.
ncp The number of dimensions kept in the results (by default 5).
ind.sup A vector indicating the indexes of the supplementary individuals.
quanti.sup A vector indicating the indexes of the quantitative supplementary variables.
quali.sup A vector indicating the indexes of the categorical supplementary variables.
row.w An optional row weights (by default, a vector of 1 for uniform row weights); the weights are given only for the active individuals.

Value

The MCA on the dataset.

See Also

MCA, CA, PCA, plot.factorial, factorial-class

Examples

data (tea, package = "FactoMineR")
MCA (tea, quanti.sup = 19, quali.sup = 20:36)

MEANSHIFT

MeanShift method

Description

Run MeanShift for clustering.
Usage

MEANSHIFT(
 d,
 kernel = "NORMAL",
 bandwidth = rep(1, ncol(d)),
 alpha = 0,
 iterations = 10,
 epsilon = 1e-08,
 epsilonCluster = 1e-04,
 ...
)

Arguments

d The dataset (matrix or data.frame).
kernel A string indicating the kernel associated with the kernel density estimate that the mean shift is optimizing over.
bandwidth Used in the kernel density estimate for steepest ascent classification.
alpha A scalar tuning parameter for normal kernels.
iterations The number of iterations to perform mean shift.
epsilon A scalar used to determine when to terminate the iteration of a individual query point.
epsilonCluster A scalar used to determine the minimum distance between distinct clusters.
... Other parameters.

Value

The clustering (meanshift object).

See Also

meanShift, predict.meanshift

Examples

Not run:
require (datasets)
data (iris)
MEANSHIFT (iris [, -5], bandwidth = .75)

End(Not run)
meanshift-class

Meanshift model

Description
This class contains the model obtained by the MEANSHIFT method.

Slots
cluster A vector of integers indicating the cluster to which each point is allocated.
value A vector or matrix containing the location of the classified local maxima in the support.
data The leaning set.
kernel A string indicating the kernel associated with the kernel density estimate that the meanshift is optimizing over.
bandwidth Used in the kernel density estimate for steepest ascent classification.
alpha A scalar tuning parameter for normal kernels.
iterations The number of iterations to perform mean shift.
epsilon A scalar used to determine when to terminate the iteration of a individual query point.
epsilonCluster A scalar used to determine the minimum distance between distinct clusters.

See Also
MEANSHIFT

MLP
Classification using Multilayer Perceptron

Description
This function builds a classification model using Multilayer Perceptron.

Usage
MLP(
 train,
 labels,
 size = ifelse(is.vector(train), 2:(1 + nlevels(labels)), 2:(ncol(train) + nlevels(labels))),
 decay = 10^(-3:-1),
 methodparameters = NULL,
 tune = FALSE,
 ...
)

)
Arguments

train The training set (description), as a data.frame.
labels Class labels of the training set (vector or factor).
size The size of the hidden layer (if a vector, cross-over validation is used to chose the best size).
decay The decay (between 0 and 1) of the backpropagation algorithm (if a vector, cross-over validation is used to chose the best size).
methodparameters Object containing the parameters. If given, it replaces size and decay.
tune If true, the function returns paramters instead of a classification model.
... Other parameters.

Value
The classification model.

See Also
nnet

Examples

Not run:
require (datasets)
data (iris)
MLP (iris [, -5], iris [, 5], size = 4, decay = .1)

End(Not run)
Arguments

- **x**
 Predictor matrix.
- **y**
 Response vector.
- **size**
 The size of the hidden layer (if a vector, cross-over validation is used to chose the best size).
- **decay**
 The decay (between 0 and 1) of the backpropagation algorithm (if a vector, cross-over validation is used to chose the best size).
- **params**
 Object containing the parameters. If given, it replaces size and decay.
- **tune**
 If true, the function returns parameters instead of a classification model.
- **...**
 Other parameters.

Value

The classification model, as an object of class `model-class`.

See Also

`nnet`

Examples

```r
## Not run:
require (datasets)
data (trees)
MLPREG (trees [, -3], trees [, 3])
## End(Not run)
```

```
```

model-class

Generic classification or regression model

Description

This is a wrapper class containing the classification model obtained by any classification or regression method.

Slots

- **model**
 The wrapped model.
- **method**
 The name of the method.

See Also

`predict.model, predict`
movies

Movies dataset

Description
Extract from the movie lens dataset. Missing values have been imputed.

Usage
movies

Format
A set of 49 movies, rated by 55 users.

Source
https://grouplens.org/datasets/movielens/

NB
Classification using Naive Bayes

Description
This function builds a classification model using Naive Bayes.

Usage
NB(train, labels, tune = FALSE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>train</td>
<td>The training set (description), as a data.frame.</td>
</tr>
<tr>
<td>labels</td>
<td>Class labels of the training set (vector or factor).</td>
</tr>
<tr>
<td>tune</td>
<td>If true, the function returns parameters instead of a classification model.</td>
</tr>
<tr>
<td>...</td>
<td>Other parameters.</td>
</tr>
</tbody>
</table>

Value
The classification model.

See Also

naiveBayes
NMF

Non-negative Matrix Factorization

Examples

```r
require (datasets)
data (iris)
NMF (iris [, -5], iris [, 5])
```

Description

Return the NMF decomposition.

Usage

```r
NMF(x, rank = 2, nstart = 10, ...)
```

Arguments

- `x`: A numeric dataset (data.frame or matrix).
- `rank`: Specification of the factorization rank.
- `nstart`: How many random sets should be chosen?
- `...`: Other parameters.

See Also

`nmf`

Examples

```r
## Not run:
require (datasets)
data (iris)
NMF (iris [, -5])
## End(Not run)
```
ozone

Ozone dataset

Description
This dataset contains measurements on ozone level.

Usage
ozone

Format
Each instance is described by the maximum level of ozone measured during the day. Temperature, clouds, and wind are also recorded.

Source
https://r-stat-sc-donnees.github.io/ozone.txt

params-class

Learning Parameters

Description
This class contains main parameters for various learning methods.

Slots
- decay The decay parameter.
- hidden The number of hidden nodes.
- epsilon The epsilon parameter.
- gamma The gamma parameter.
- cost The cost parameter.

See Also
MLP, MLREG, SVM, SVR
Principal Component Analysis (PCA)

Description

Performs Principal Component Analysis (PCA) with supplementary individuals, supplementary quantitative variables and supplementary categorical variables. Missing values are replaced by the column mean.

Usage

PCA(
 d,
 scale.unit = TRUE,
 ncp = 5,
 ind.sup = NULL,
 quanti.sup = NULL,
 quali.sup = NULL,
 row.w = NULL,
 col.w = NULL
)

Arguments

d A data frame with n rows (individuals) and p columns (numeric variables).

scale.unit A boolean, if TRUE (value set by default) then data are scaled to unit variance.

ncp The number of dimensions kept in the results (by default 5).

ind.sup A vector indicating the indexes of the supplementary individuals.

quanti.sup A vector indicating the indexes of the quantitative supplementary variables.

quali.sup A vector indicating the indexes of the categorical supplementary variables.

row.w An optional row weights (by default, a vector of 1 for uniform row weights); the weights are given only for the active individuals.

col.w An optional column weights (by default, uniform column weights); the weights are given only for the active variables.

Value

The PCA on the dataset.

See Also

PCA, CA, MCA, plot.factorial, keiser, factorial-class
Examples

```r
require (datasets)
data (iris)
PCA (iris, quali.sup = 5)
```

Description

Estimate the performance of classification or regression methods using bootstrap or crossvalidation (accuracy, ROC curves, confusion matrices, ...)

Usage

```r
performance (methods, train.x, train.y, test.x = NULL, test.y = NULL, size = round(0.7 * nrow(train.x)), type = c("evaluation", "confusion", "roc", "cost", "scatter"), protocol = c("bootstrap", "crossvalidation", "loocv", "holdout", "train"), eval = ifelse(is.factor(train.y), "accuracy", "r2"), nruns = 10, nfolds = 10, new = TRUE, lty = 1, seed = NULL, methodparameters = NULL, names = NULL, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>methods</td>
<td>The classification or regression methods to be evaluated.</td>
</tr>
<tr>
<td>train.x</td>
<td>The dataset (description/predictors), a matrix or data.frame.</td>
</tr>
<tr>
<td>train.y</td>
<td>The target (class labels or numeric values), a factor or vector.</td>
</tr>
<tr>
<td>test.x</td>
<td>The test dataset (description/predictors), a matrix or data.frame.</td>
</tr>
<tr>
<td>test.y</td>
<td>The (test) target (class labels or numeric values), a factor or vector.</td>
</tr>
<tr>
<td>size</td>
<td>The size of the training set (holdout estimation).</td>
</tr>
<tr>
<td>type</td>
<td>The type of evaluation (confusion matrix, ROC curve, ...)</td>
</tr>
<tr>
<td>protocol</td>
<td>The evaluation protocol (crossvalidation, bootstrap, ...)</td>
</tr>
</tbody>
</table>
The evaluation functions.

nruns
The number of bootstrap runs.

nfolds
The number of folds (crossvalidation estimation).

new
A logical value indicating whether a new plot should be created or not (cost curves or ROC curves).

lty
The line type (and color) specified as an integer (cost curves or ROC curves).

seed
A specified seed for random number generation (useful for testing different methods with the same bootstrap samplings).

methodparameters
Method parameters (if null tuning is done by cross-validation).

names
Method names.

...
Other specific parameters for the learning method.

Value
The evaluation of the predictions (numeric value).

See Also

confusion, *evaluation*, *cost.curves*, *roc.curves*

Examples

```r
## Not run:
require("datasets")
data (iris)
# One method, one evaluation criterion, bootstrap estimation
performance (NB, iris [, -5], iris [, 5], seed = 0)
# One method, two evaluation criteria, train set estimation
performance (NB, iris [, -5], iris [, 5], eval = c("accuracy", "kappa"),
protocol = "train", seed = 0)
# Three methods, ROC curves, LOOCV estimation
performance (c (NB, LDA, LR), linsep [, -3], linsep [, 3], type = "roc",
protocol = "loocv", seed = 0)
# List of methods in a variable, confusion matrix, holdout estimation
classif = c (NB, LDA, LR)
performance (classif, iris [, -5], iris [, 5], type = "confusion",
protocol = "holdout", seed = 0, names = c ("NB", "LDA", "LR"))
# List of strings (method names), scatterplot evaluation, crossvalidation estimation
classif = c ("NB", "LDA", "LR")
performance (classif, iris [, -5], iris [, 5], type = "scatter",
protocol = "crossvalidation", seed = 0)

## End(Not run)
```
plot.cda

Plot function for cda-class

Description

Plot the learning set (and test set) on the canonical axes obtained by Canonical Discriminant Analysis (function CDA).

Usage

S3 method for class 'cda'
plot(x, newdata = NULL, axes = 1:2, ...)

Arguments

x The classification model (object of class cda-class).
newdata The test set (matrix or data.frame).
axes The canonical axes to be printed (numeric vector).
... Other parameters.

See Also

CDA, predict.cda, cda-class

Examples

require (datasets)
data (iris)
model = CDA (iris [, -5], iris [, 5])
plot (model)

plot.factorial

Plot function for factorial-class

Description

Plot PCA, CA or MCA.

Usage

S3 method for class 'factorial'
plot(x, type = c("ind", "cor", "eig"), axes = c(1, 2), ...)

Arguments

- **x**: The PCA, CA or MCA result (object of class \texttt{factorial-class}).
- **type**: The graph to plot.
- **axes**: The factorial axes to be printed (numeric vector).
- **...**: Other parameters.

See Also

\texttt{CA}, \texttt{MCA}, \texttt{PCA}, \texttt{plot.CA}, \texttt{plot.MCA}, \texttt{plot.PCA}, \texttt{factorial-class}

Examples

```r
require (datasets)
data (iris)
pca = PCA (iris, quali.sup = 5)
plot (pca)
plot (pca, type = "cor")
plot (pca, type = "eig")
```

plot.som \hspace{1cm} \textit{Plot function for som-class}

Description

Plot Kohonen’s self-organizing maps.

Usage

```r
## S3 method for class 'som'
plot(x, type = c("scatter", "mapping"), col = NULL, labels = FALSE, ...)
```

Arguments

- **x**: The Kohonen’s map (object of class \texttt{som-class}).
- **type**: The type of plot.
- **col**: Color of the data points
- **labels**: A vector of character strings to be printed instead of points in the plot.
- **...**: Other parameters.

See Also

\texttt{SOM}, \texttt{som-class}
Examples

```r
require (datasets)
data (iris)
som = SOM (iris [, -5], xdim = 5, ydim = 5, post = "ward", k = 3)
plot (som) # Scatter plot (default)
plot (som, type = "mapping") # Kohonen map
```

plotcloud

Plot word cloud

Description

Plot a word cloud based on the word frequencies in the documents.

Usage

```r
plotcloud(corpus, k = NULL, stopwords = "en", ...)
```

Arguments

- `corpus`: The corpus of documents (a vector of characters) or the vocabulary of the documents (result of function `getvocab`).
- `k`: A categorial variable (vector or factor).
- `stopwords`: Stopwords, or the language of the documents. NULL if stop words should not be removed.
- `...`: Other parameters.

See Also

- `plotzipf`, `getvocab`, `wordcloud`

Examples

```r
## Not run:
text = loadtext("http://mattmahoney.net/dc/text8.zip")
plotcloud (text)
vocab = getvocab (text, mincount = 1, lang = NULL, stopwords = "en")
plotcloud (vocab)

## End(Not run)
```
plotclus

Generic Plot Method for Clustering

Description

Plot a clustering according to various parameters

Usage

\[
\text{plotclus}(
 \text{clustering},
 d = \text{NULL},
 \text{type} = \text{c("scatter", "boxplot", "tree", "height", "mapping", "words")},
 \text{centers} = \text{FALSE},
 k = \text{NULL},
 \text{tailsize} = 9,
 \ldots
)\
\]

Arguments

- **clustering**: The clustering to be plotted.
- **d**: The dataset (matrix or data.frame), mandatory for some of the graphics.
- **type**: The type of plot.
- **centers**: Indicates whether or not cluster centers should be plotted (used only in scatter plots).
- **k**: Number of clusters (used only for hierarchical methods). If not specified an "optimal" value is determined.
- **tailsize**: Number of clusters showned (used only for height plots).
- **...**: Other parameters.

See Also

treeplot, scatterplot, plot.som, boxclus

Examples

```r
## Not run:
require(datasets)
data(iris)
ward = HCA(iris[, -5], method = "ward", k = 3)
plotclus(ward, iris[, -5], type = "scatter") # Scatter plot
plotclus(ward, iris[, -5], type = "boxplot") # Boxplot
plotclus(ward, iris[, -5], type = "tree") # Dendrogram
plotclus(ward, iris[, -5], type = "height") # Distances between merging clusters
som = SOM(iris[, -5], xdim = 5, ydim = 5, post = "ward", k = 3)
```
plotclus (som, iris[, -5], type = "scatter") # Scatter plot for SOM
plotclus (som, iris[, -5], type = "mapping") # Kohonen map

End(Not run)

plotdata Advanced plot function

Description
Plot a dataset.

Usage
plotdata(
 d,
 k = NULL,
 type = c("pairs", "scatter", "parallel", "boxplot", "histogram", "barplot", "pie",
 "heatmap", "heatmapc", "pca", "cda", "svd", "nmf", "tsne", "som", "words"),
 legendpos = "topleft",
 alpha = 200,
 asp = 1,
 labels = FALSE,
 ...
)

Arguments
d A numeric dataset (data.frame or matrix).
k A categorial variable (vector or factor).
type The type of graphic to be plotted.
legendpos Position of the legend
alpha Color opacity (0-255).
asp Aspect ratio (default: 1).
labels Indicates whether or not labels (row names) should be showned on the (scatter) plot.
... Other parameters.

Examples
require (datasets)
data (iris)
Without classification
plotdata (iris[, -5]) # Défault (pairs)
With classification
plotdata (iris[, -5], iris[, 5]) # Défault (pairs)
plotdata (iris, 5) # Column number
plotdata (iris) # Automatic detection of the classification (if only one factor column)
plotdata (iris, type = "scatter") # Scatter plot (PCA axis)
plotdata (iris, type = "parallel") # Parallel coordinates
plotdata (iris, type = "boxplot") # Boxplot
plotdata (iris, type = "histogram") # Histograms
plotdata (iris, type = "heatmap") # Heatmap
plotdata (iris, type = "heatmapc") # Heatmap (and hierarchical clustering)
plotdata (iris, type = "pca") # Scatter plot (PCA axis)
plotdata (iris, type = "cda") # Scatter plot (CDA axis)
plotdata (iris, type = "svd") # Scatter plot (SVD axis)
plotdata (iris, type = "som") # Kohonen map
With only one variable
plotdata (iris [, 1], iris [, 5]) # Default (data vs. index)
plotdata (iris [, 1], iris [, 5], type = "scatter") # Scatter plot (data vs. index)
plotdata (iris [, 1], iris [, 5], type = "boxplot") # Boxplot
With two variables
plotdata (iris [, 3:4], iris [, 5]) # Default (scatter plot)
plotdata (iris [, 3:4], iris [, 5], type = "scatter") # Scatter plot
data (titanic)
plotdata (titanic, type = "barplot") # Barplots
plotdata (titanic, type = "pie") # Pie charts

plotzipf

Plot rank versus frequency

Description

Plot the frequency of words in a document against the ranks of those words. It also plots the Zipf law.

Usage

```r
plotzipf(corpus)
```

Arguments

- `corpus` The corpus of documents (a vector of characters) or the vocabulary of the documents (result of function `getvocab`).

See Also

`plotcloud, getvocab`

Examples

```r
## Not run:
text = loadtext("http://mattmahoney.net/dc/text8.zip")
plotzipf(text)
vocab = getvocab(text, mincount = 1, lang = NULL)
plotzipf(vocab)
```
Description

This function builds a polynomial regression model.

Usage

POLYREG(x, y, degree = 2, tune = FALSE, ...)

Arguments

x Predictor matrix.
y Response vector.
degree The polynom degree.
tune If true, the function returns parameters instead of a classification model.
... Other parameters.

Value

The classification model, as an object of class model-class.

See Also

polyreg

Examples

Not run:
require (datasets)
data (trees)
POLYREG (trees [, -3], trees [, 3])
End(Not run)
Description

This function predicts values based upon a model trained by `apriori.classif`. Observations that do not match any of the rules are labelled as "unmatched".

Usage

```r
## S3 method for class 'apriori'
predict(object, test, unmatched = "Unknown", ...)
```

Arguments

- `object` The classification model (of class `apriori`, created by `apriori.classif`).
- `test` The test set (a `data.frame`)
- `unmatched` The class label given to the unmatched observations (a character string).
- `...` Other parameters.

Value

A vector of predicted values (factor).

See Also

`APRIORI`, `apriori-class`, `apriori`

Examples

```r
require ("datasets")
data (iris)
d = discretizeDF (iris,  
default = list (method = "interval", breaks = 3, labels = c ("small", "medium", "large")))
model = APRIORI (d [, -5], d [, 5], supp = .1, conf = .9, prune = TRUE)
predict (model, d [, -5])
```
predict.boosting
Model predictions

Description

This function predicts values based upon a model trained by a boosting method.

Usage

```r
## S3 method for class 'boosting'
predict(object, test, fuzzy = FALSE, ...)
```

Arguments

- `object`: The classification model (of class `boosting-class`, created by `ADABOOST` or `BAGGING`).
- `test`: The test set (a `data.frame`).
- `fuzzy`: A boolean indicating whether fuzzy classification is used or not.
- `...`: Other parameters.

Value

A vector of predicted values (factor).

See Also

`ADABOOST`, `BAGGING`, `boosting-class`

Examples

```r
## Not run:
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = BAGGING (d$train.x, d$train.y, NB)
predict (model, d$test.x)
model = ADABOOST (d$train.x, d$train.y, NB)
predict (model, d$test.x)
## End(Not run)
```
predict.cda

Model predictions

Description

This function predicts values based upon a model trained by CDA.

Usage

```r
## S3 method for class 'cda'
predict(object, test, fuzzy = FALSE, ...)
```

Arguments

- `object`: The classification model (of class `cda-class`, created by CDA).
- `test`: The test set (a data.frame)
- `fuzzy`: A boolean indicating whether fuzzy classification is used or not.
- `...`: Other parameters.

Value

A vector of predicted values (factor).

See Also

CDA, plot.cda, cda-class

Examples

```r
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = CDA (d$train.x, d$train.y)
predict (model, d$test.x)
```

predict.dbs

Predict function for DBSCAN

Description

Return the closest DBSCAN cluster for a new dataset.

Usage

```r
## S3 method for class 'dbs'
predict(object, newdata, ...)
```
Arguments

object The classification model (of class `dbs-class`, created by `DBSCAN`).
newdata A new dataset (a `data.frame`), with same variables as the learning dataset.
...

See Also

`DBSCAN`

Examples

```r
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = DBSCAN (d$train.x, minpts = 5, eps = 0.65)
predict (model, d$test.x)
```

`predict.em`
Predict function for EM

Description

Return the closest EM cluster for a new dataset.

Usage

```r
## S3 method for class 'em'
predict(object, newdata, ...)
```

Arguments

object The classification model (of class `em-class`, created by `EM`).
newdata A new dataset (a `data.frame`), with same variables as the learning dataset.
...

See Also

`EM`

Examples

```r
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = EM (d$train.x, 3)
predict (model, d$test.x)
```
predict.kmeans

Predict function for K-means

Description

Return the closest K-means cluster for a new dataset.

Usage

```
## S3 method for class 'kmeans'
predict(object, newdata, ...)
```

Arguments

- **object**: The classification model (created by `KMEANS`).
- **newdata**: A new dataset (a data.frame), with same variables as the learning dataset.
- **...**: Other parameters.

See Also

`KMEANS`

Examples

```
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = KMEANS (d$train.x, k = 3)
predict (model, d$test.x)
```

predict.knn

Model predictions

Description

This function predicts values based upon a model trained by `KNN`.

Usage

```
## S3 method for class 'knn'
predict(object, test, fuzzy = FALSE, ...)
```
predict.meanshift

Arguments

object The classification model (of class knn).
test The test set (a data.frame).
fuzzy A boolean indicating whether fuzzy classification is used or not.
... Other parameters.

Value

A vector of predicted values (factor).

See Also

KNN, knn-class

Examples

require (datasets)
data (iris)
d = splitdata (iris, 5)
model = KNN (d$train.x, d$train.y)
predict (model, d$test.x)
Examples

Not run:
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = MEANSHIFT (d$train.x, bandwidth = .75)
predict (model, d$test.x)

End(Not run)

Description

This function predicts values based upon a model trained by any classification or regression model.

Usage

S3 method for class 'model'
predict(object, test, fuzzy = FALSE, ...)

Arguments

- **object**: The classification model (of class cda-class, created by CDA).
- **test**: The test set (a data.frame).
- **fuzzy**: A boolean indicating whether fuzzy classification is used or not.
- **...**: Other parameters.

Value

A vector of predicted values (factor).

See Also

model-class

Examples

require (datasets)
data (iris)
d = splitdata (iris, 5)
model = LDA (d$train.x, d$train.y)
predict (model, d$test.x)
predict.selection

Model predictions

Description

This function predicts values based upon a model trained by any classification or regression model.

Usage

```r
## S3 method for class 'selection'
predict(object, test, fuzzy = FALSE, ...)
```

Arguments

- `object`: The classification model (of class `cda-class`, created by `CDA`).
- `test`: The test set (a `data.frame`).
- `fuzzy`: A boolean indicating whether fuzzy classification is used or not.
- `...`: Other parameters.

Value

A vector of predicted values (factor).

See Also

`FEATURESELECTION`, `selection-class`

Examples

```r
## Not run:
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = FEATURESELECTION (d$train.x, d$train.y, uninb = 2, mainmethod = LDA)
predict (model, d$test.x)
## End(Not run)
```
predict.textmining

Model predictions

Description

This function predicts values based upon a model trained for text mining.

Usage

```r
## S3 method for class 'textmining'
predict(object, test, fuzzy = FALSE, ...)
```

Arguments

- `object`: The classification model (of class `textmining-class`, created by `TEXTMINING`).
- `test`: The test set (a `data.frame`).
- `fuzzy`: A boolean indicating whether fuzzy classification is used or not.
- `...`: Other parameters.

Value

A vector of predicted values (factor).

See Also

`TEXTMINING`, `textmining-class`

Examples

```r
## Not run:
require (text2vec)
data ("movie_review")
d = movie_review [, 2:3]
d [, 1] = factor (d [, 1])
d = splitdata (d, 1)
model = TEXTMINING (d$train.x, NB, labels = d$train.y, mincount = 50)
pred = predict (model, d$test.x)
evaluation (pred, d$test.y)

## End(Not run)
```
print.apriori

Print a classification model obtained by APRIORI

Description

Print the set of rules in the classification model.

Usage

```r
## S3 method for class 'apriori'
print(x, ...)
```

Arguments

- `x`: The model to be printed.
- `...`: Other parameters.

See Also

APRIORI, predict.apriori, summary.apriori, apriori-class, apriori

Examples

```r
require("datasets")
data(iris)
d = discretizeDF(iris,
default = list(method = "interval", breaks = 3, labels = c("small", "medium", "large")))
model = APRIORI(d[, -5], d[, 5], supp = .1, conf = .9, prune = TRUE)
print(model)
```

print.factorial

Plot function for factorial-class

Description

Print PCA, CA or MCA.

Usage

```r
## S3 method for class 'factorial'
print(x, ...)
```

Arguments

- `x`: The PCA, CA or MCA result (object of class factorial-class).
- `...`: Other parameters.
See Also

CA, MCA, PCA, print.CA, print.MCA, print.PCA, factorial-class

Examples

```r
require (datasets)
data (iris)
pca = PCA (iris, quali.sup = 5)
print (pca)
```

Description

Compute the pseudo-F of a clustering result obtained by the \(K\)-means method.

Usage

```r
pseudoF (clustering)
```

Arguments

- `clustering` The clustering result (obtained by the function `kmeans`).

Value

The pseudo-F of the clustering result.

See Also

`kmeans.getk, KMEANS, kmeans`

Examples

```r
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
pseudoF (km)
```
QDA

Classification using Quadratic Discriminant Analysis

Description

This function builds a classification model using Quadratic Discriminant Analysis.

Usage

QDA(train, labels, tune = FALSE, ...)

Arguments

- train: The training set (description), as a data.frame.
- labels: Class labels of the training set (vector or factor).
- tune: If true, the function returns parameters instead of a classification model.
- ...: Other parameters.

Value

The classification model.

See Also

qda

Examples

require (datasets)
data (iris)
QDA (iris[, -5], iris[, 5])

query.docs

Document query

Description

Search for documents similar to the query.

Usage

query.docs(docvectors, query, vectorizer, nres = 5)
query.words

Arguments

 docvectors The vectorized documents.
 query The query (vectorized or raw text).
 vectorizer The vectorizer that has been used to vectorize the documents.
 nres The number of results.

Value

The indices of the documents the most similar to the query.

See Also

vectorize.docs, sim2

Examples

Not run:
require (text2vec)
data (movie_review)
vectorizer = vectorize.docs (corpus = movie_review$review,
 minphrasecount = 50, returndata = FALSE)
docs = vectorize.docs (corpus = movie_review$review, vectorizer = vectorizer)
query.docs (docs, movie_review$review [1], vectorizer)
query.docs (docs, docs [1,], vectorizer)
End(Not run)

query.words Word query

Description

Search for words similar to the query.

Usage

query.words(wordvectors, origin, sub = NULL, add = NULL, nres = 5, lang = "en")

Arguments

 wordvectors The vectorized words
 origin The query (character).
 sub Words to be substrated to the origin.
 add Words to be Added to the origin.
 nres The number of results.
 lang The language of the words (NULL if no stemming).
Value

The Words the most similar to the query.

See Also

vectorize.words, sim2

Examples

Not run:
```r
text = loadtext("http://mattmahoney.net/dc/text8.zip")
words = vectorize.words(text, minphrasecount = 50)
query.words(words, origin = "paris", sub = "france", add = "germany")
query.words(words, origin = "berlin", sub = "germany", add = "france")
query.words(words, origin = "new_zealand")
## End(Not run)
```

RANDOMFOREST Classification using Random Forest

Description

This function builds a classification model using Random Forest

Usage

```r
RANDOMFOREST(
  train,
  labels,
  ntree = 500,
  nvar = if (!is.null(labels) && is.factor(labels)) max(floor(ncol(train)/3), 1) else
    floor(sqrt(ncol(train))),
  tune = FALSE,
  ...
)
```

Arguments

- `train` The training set (description), as a data.frame.
- `labels` Class labels of the training set (vector or factor).
- `ntree` The number of trees in the forest.
- `nvar` Number of variables randomly sampled as candidates at each split.
- `tune` If true, the function returns parameters instead of a classification model.
- `...` Other parameters.
Value

The classification model.

See Also

randomForest

Examples

```r
## Not run:
require (datasets)
data (iris)
RANDOMFOREST (iris [, -5], iris [, 5])
```

End(Not run)

reg1
reg1 dataset

Description

Artificial dataset for simple regression tasks.

Usage

```r
reg1
reg1.train
reg1.test
```

Format

50 instances and 3 variables. X, a numeric, K, a factor, and Y, a numeric (the target variable).

Author(s)

Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>
reg2 dataset

Description

Artificial dataset for simple regression tasks.

Usage

```
reg2
reg2.train
reg2.test
```

Format

50 instances and 2 variables. X and Y (the target variable) are both numeric variables.

Author(s)

Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>

regplot

Plot function for a regression model

Description

Plot a regression model on a 2-D plot. The predictor x should be one-dimensional.

Usage

```
regplot(model, x, y, margin = 0.1, ...)
```

Arguments

- **model**: The model to be plotted.
- **x**: The predictor vector.
- **y**: The response vector.
- **margin**: A margin parameter.
- **...**: Other graphical parameters

Examples

```
require(datasets)
data(cars)
model <- POLYREG(cars[, -2], cars[, 2])
regplot(model, cars[, -2], cars[, 2])
```
resplot

Plot the studentized residuals of a linear regression model

Description
Plot the studentized residuals of a linear regression model.

Usage
resplot(model, index = NULL)

Arguments
- model: The model to be plotted.
- index: The index of the variable used for the x-axis.

Examples
require (datasets)
data (trees)
model = LINREG (trees [, -3], trees [, 3])
resplot (model) # Ordered by index
resplot (model, index = 0) # Ordered by variable "Volume" (dependant variable)
resplot (model, index = 1) # Ordered by variable "Girth" (independant variable)
resplot (model, index = 2) # Ordered by variable "Height" (independant variable)

roc.curves

Plot ROC Curves

Description
This function plots ROC Curves of several classification predictions.

Usage
roc.curves(methods.names, predictions, labels)

Arguments
- methods.names: The name of the compared methods (vector).
- predictions: The predictions of a classification model (factor or vector).
- labels: Actual labels of the dataset (factor or vector).

Value
The evaluation of the predictions (numeric value).
See Also

cost.curves, performance

Examples

require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
model.nb = NB (d [, -5], d [, 5])
model.lda = LDA (d [, -5], d [, 5])
pred.nb = predict (model.nb, d [, -5])
pred.lda = predict (model.lda, d [, -5])
roc.curves (c ("NB", "LDA"), cbind (pred.nb, pred.lda), d [, 5])

rotation

Rotation

Description

Rotation on two variables of a numeric dataset

Usage

rotation (d, angle, axis = 1:2, range = 2 * pi)

Arguments

d The dataset.
angle The angle of the rotation.
axis The axis.
range The range of the angle (360, 2*pi, 100, ...)

Examples

d = data.parabol()
d [, -3] = rotation (d [, -3], 45, range = 360)
plotdata (d [, -3], d [, 3])
runningtime

Running time

Description

Return the running time of a function

Usage

Running time(FUN, ...)

Arguments

- **FUN** The function to be evaluated.
- **...** The parameters to be passed to function **FUN**.

Value

The running time of function **FUN**.

See Also

difftime

Examples

```r
sqrt (x = 1:100)
runningtime (sqrt, x = 1:100)
```

scatterplot

Clustering Scatter Plots

Description

Produce a scatter plot for clustering results. If the dataset has more than two dimensions, the scatter plot will show the two first PCA axes.

Usage

```r
scatterplot(
  d,
  clusters,
  centers = NULL,
  labels = FALSE,
  ellipses = FALSE,
  legend = c("auto1", "auto2"),
  ...
)
```
selectfeatures

Feature selection for classification

Description

Select a subset of features for a classification task.

Usage

selectfeatures(
 train,
 labels,
 algorithm = c("ranking", "forward", "backward", "exhaustive"),
 unieval = if (algorithm[1] == "ranking") c("fisher", "fstat", "relief",
 "inertiaratio") else NULL,
 uninb = NULL,
 unithreshold = NULL,
 multieval = if (algorithm[1] == "ranking") NULL else c("mrmr", "cfs", "fstat",
 "inertiaratio", "wrapper"),
 wrapmethod = NULL,
 keep = FALSE,
 ...
)
Arguments

- **train**: The training set (description), as a `data.frame`.
- **labels**: Class labels of the training set (`vector` or `factor`).
- **algorithm**: The feature selection algorithm.
- **unieval**: The (univariate) evaluation criterion. `uninb`, `unithreshold` or `multieval` must be specified.
- **uninb**: The number of selected feature (univariate evaluation).
- **unithreshold**: The threshold for selecting feature (univariate evaluation).
- **multieval**: The (multivariate) evaluation criterion.
- **wrapmethod**: The classification method used for the wrapper evaluation.
- **keep**: If true, the dataset is kept in the returned result.
- **...**: Other parameters.

See Also

`FEATURESELECTION`, `selection-class`

Examples

```r
## Not run:
require (datasets)
data (iris)
selectfeatures (iris[, -5], iris[, 5], algorithm = "forward", multieval = "fstat")
selectfeatures (iris[, -5], iris[, 5], algorithm = "ranking", uninb = 2)
selectfeatures (iris[, -5], iris[, 5], algorithm = "ranking",
               multieval = "wrapper", wrapmethod = LDA)
## End(Not run)
```

selection-class

Feature selection

Description

This class contains the result of feature selection algorithms.

Slots

- **selection**: A vector of integers indicating the selected features.
- **unieval**: The evaluation of the features (univariate).
- **multieval**: The evaluation of the selected features (multivariate).
- **algorithm**: The algorithm used to select features.
- **univariate**: The evaluation criterion (univariate).
nbfeatures The number of features to be kept.
threshold The threshold to decide whether a feature is kept or not..
multivariate The evaluation criterion (multivariate).
dataset The dataset described by the selected features only.
model The classification model.

See Also

FEATURESELECTION, predict.selection, selectfeatures

snore
Snore dataset

Description

This dataset has been used in a study on snoring in Angers hospital.

Usage

snore

Format

The dataset has 100 instances described by 7 variables. The variables are as follows:

- **Age** In years.
- **Weights** In kg.
- **Height** In cm.
- **Alcool** Number of glass of alcool per day.
- **Sex** M for male or F for female.
- **Snore** Snoring diagnosis (Y or N).
- **Tobacco** Y or N.

Source

SOM

Self-Organizing Maps clustering method

Description

Run the SOM algorithm for clustering.

Usage

SOM(
 d,
 xdim = floor(sqrt(nrow(d))),
 ydim = floor(sqrt(nrow(d))),
 rlen = 10000,
 post = c("none", "single", "ward"),
 k = NULL,
 ...
)

Arguments

 d The dataset (matrix or data.frame).
 xdim, ydim The dimensions of the grid.
 rlen The number of iterations.
 post The post-treatment method: "none" (None), "single" (Single link) or "ward" (Ward clustering).
 k The number of cluster (only used if post is different from "none").
 ... Other parameters.

Value

The fitted Kohonen’s map as an object of class som.

See Also

 plot.som, som-class, som

Examples

require (datasets)
data (iris)
SOM (iris [, -5], xdim = 5, ydim = 5, post = "ward", k = 3)
som-class

Self-Organizing Maps model

Description

This class contains the model obtained by the SOM method.

Slots

som An object of class kohonen representing the fitted map.
nodes A vector of integer indicating the cluster to which each node is allocated.
cluster A vector of integer indicating the cluster to which each observation is allocated.
data The dataset that has been used to fit the map (as a matrix).

See Also

plot.som, SOM, som

SPECTRAL

Spectral clustering method

Description

Run a Spectral clustering algorithm.

Usage

SPECTRAL(d, k, sigma = 1, graph = TRUE, ...)

Arguments

d The dataset (matrix or data.frame).
k The number of clusters.
sigma Width of the gaussian used to build the affinity matrix.
graph A logical indicating whether or not a graphic should be plotted (projection on the spectral space of the affinity matrix).
...
Other parameters.

See Also

spectral-class
Examples

```r
## Not run:
require (datasets)
data (iris)
SPECTRAL (iris [, -5], k = 3)

## End(Not run)
```

spectral-class

Spectral clustering model

Description

This class contains the model obtained by Spectral clustering.

Slots

- `cluster` A vector of integer indicating the cluster to which each observation is allocated.
- `proj` The projection of the dataset in the spectral space.
- `centers` The cluster centers (on the spectral space).

See Also

[SPECTRAL](#)

spine

Spine dataset

Description

The data have been organized in two different but related classification tasks. The first task consists in classifying patients as belonging to one out of three categories: Normal, Disk Hernia or Spondylolisthesis. For the second task, the categories Disk Hernia and Spondylolisthesis were merged into a single category labelled as ‘abnormal’. Thus, the second task consists in classifying patients as belonging to one out of two categories: Normal or Abnormal.

Usage

```r
spine
spine.train
spine.test
```
splitdata

Format

The dataset has 310 instances described by 8 variables. Variables V1 to V6 are biomechanical attributes derived from the shape and orientation of the pelvis and lumbar spine. The variable Classif2 is the classification into two classes AB and NO. The variable Classif3 is the classification into 3 classes DH, SL and NO. spine.train contains 217 instances and spine.test contains 93.

Source

http://archive.ics.uci.edu/ml/datasets/vertebral+column

splitdata

Splits a dataset into training set and test set

Description

This function splits a dataset into training set and test set. Return an object of class **dataset-class**.

Usage

```r
splitdata(dataset, target, size = round(0.7 * nrow(dataset)), seed = NULL)
```

Arguments

- `dataset`: The dataset to be split (data.frame or matrix).
- `target`: The column index of the target variable (class label or response variable).
- `size`: The size of the training set (as an integer value).
- `seed`: A specified seed for random number generation.

Value

An object of class **dataset-class**.

See Also

dataset-class

Examples

```r
require (datasets)
data (iris)
d = splitdata (iris, 5)
str (d)
```
stability

Clustering evaluation through stability

Description

Evaluation a clustering algorithm according to stability, through a bootstrap procedure.

Usage

stability(
 clusteringmethods,
 d,
 originals = NULL,
 eval = "jaccard",
 comp = c("cluster", "global"),
 nsampling = 10,
 seed = NULL,
 names = NULL,
 graph = FALSE,
 ...
)

Arguments

clusteringmethods
 The clustering methods to be evaluated.

d
 The dataset.

originals
 The original clustering.

eval
 The evaluation criteria.

comp
 The comparison method.

nsampling
 The number of bootstrap runs.

seed
 A specified seed for random number generation (useful for testing different
 method with the same bootstrap samplings).

names
 Method names.

graph
 Indicates wether or not a graphic is potted for each sample.

...
 Parameters to be passed to the clustering algorithms.

Value

The evaluation of the clustering algorithm(s) (numeric values).

See Also

compare, intern
Examples

```r
## Not run:
require (datasets)
data (iris)
stability (KMEANS, iris [, -5], seed = 0, k = 3)
stability (KMEANS, iris [, -5], seed = 0, k = 3, eval = c("jaccard", "accuracy"), comp = "global")
stability (KMEANS, iris [, -5], seed = 0, k = 3, eval = c("jaccard", "accuracy"), comp = "cluster")
stability (c (KMEANS, HCA), iris [, -5], seed = 0, k = 3)
stability (c (KMEANS, HCA), iris [, -5], seed = 0, k = 3, eval = c("jaccard", "accuracy"), comp = "global")
stability (c (KMEANS, HCA), iris [, -5], seed = 0, k = 3, comp = "cluster")
stability (KMEANS, iris [, -5], originals = KMEANS (iris [, -5], k = 3)$cluster, seed = 0, k = 3)
stability (KMEANS, iris [, -5], originals = KMEANS (iris [, -5], k = 3), seed = 0, k = 3)

## End(Not run)
```

STUMP

Classification using one-level decision tree

Description

This function builds a classification model using CART with maxdepth = 1.

Usage

```
STUMP(train, labels, randomvar = TRUE, tune = FALSE, ...)
```

Arguments

- `train`: The training set (description), as a `data.frame`.
- `labels`: Class labels of the training set (vector or factor).
- `randomvar`: If true, the model uses a random variable.
- `tune`: If true, the function returns parameters instead of a classification model.
- `...`: Other parameters.

Value

The classification model.

See Also

- `CART`
summary.apriori

Examples

require (datasets)
data (iris)
STUMP (iris [, -5], iris [, 5])

summary.apriori

Print summary of a classification model obtained by APRIORI

Description

Print summary of the set of rules in the classification model obtained by APRIORI.

Usage

S3 method for class 'apriori'
summary(object, ...)

Arguments

object
The model to be printed.

...
Other parameters.

See Also

APRIORI, predict.apriori, print.apriori, apriori-class, apriori

Examples

require ("datasets")
data (iris)
d = discretizeDF (iris,
default = list (method = "interval", breaks = 3, labels = c ("small", "medium", "large")))
model = APRIORI (d [, -5], d [, 5], supp = .1, conf = .9, prune = TRUE)
summary (model)

SVD

Singular Value Decomposition

Description

Return the SVD decomposition.

Usage

SVD(x, ndim = min(nrow(x), ncol(x)), ...)

SVD

Singular Value Decomposition

Description

Return the SVD decomposition.

Usage

SVD(x, ndim = min(nrow(x), ncol(x)), ...)

SVD
Arguments

- `x`: A numeric dataset (data.frame or matrix).
- `ndim`: The number of dimensions.
- `...`: Other parameters.

See Also

- `svd`

Examples

```r
require(datasets)
data(iris)
SVD(iris[, -5])
```

SVM

Classification using Support Vector Machine

Description

This function builds a classification model using Support Vector Machine.

Usage

```r
SVM(
  train,
  labels,
  gamma = 2^(-3:3),
  cost = 2^(-3:3),
  kernel = c("radial", "linear"),
  methodparameters = NULL,
  tune = FALSE,
  ...
)
```

Arguments

- `train`: The training set (description), as a data.frame.
- `labels`: Class labels of the training set (vector or factor).
- `gamma`: The gamma parameter (if a vector, cross-over validation is used to chose the best size).
- `cost`: The cost parameter (if a vector, cross-over validation is used to chose the best size).
- `kernel`: The kernel type.
SVMl

Classification using Support Vector Machine with a linear kernel

Description

This function builds a classification model using Support Vector Machine with a linear kernel.

Usage

```r
SVMl(
    train,
    labels,
    cost = 2^(-3:3),
    methodparameters = NULL,
    tune = FALSE,
    ...
)
```

Arguments

- **train**
 - The training set (description), as a `data.frame`.
- **labels**
 - Class labels of the training set (vector or factor).
- **cost**
 - The cost parameter (if a vector, cross-over validation is used to chose the best size).

Value

The classification model.

See Also

`svm`, `SVMl`, `SVMr`

Examples

```r
## Not run:  
require (datasets)  
data (iris)  
SVM (iris [, -5], iris [, 5], kernel = "linear", cost = 1)  
SVM (iris [, -5], iris [, 5], kernel = "radial", gamma = 1, cost = 1)  
## End(Not run)
```
SVMr method parameters
Object containing the parameters. If given, it replaces gamma and cost.
tune If true, the function returns parameters instead of a classification model.
... Other arguments.

Value
The classification model.

See Also
svm, SVM

Examples

```r
## Not run:
require (datasets)
data (iris)
SVMr (iris [, -5], iris [, 5], cost = 1)
## End(Not run)
```

SVMr Classification using Support Vector Machine with a radial kernel

Description
This function builds a classification model using Support Vector Machine with a radial kernel.

Usage

```r
SVMr(
    train,
    labels,
    gamma = 2^(-3:3),
    cost = 2^(-3:3),
    methodparameters = NULL,
    tune = FALSE,
    ...
)
```

Arguments

- **train** The training set (description), as a `data.frame`.
- **labels** Class labels of the training set (vector or factor).
- **gamma** The gamma parameter (if a vector, cross-over validation is used to chose the best size).
SVR

Regression using Support Vector Machine

Description

This function builds a regression model using Support Vector Machine.

Usage

```r
SVR(
  x,
  y,
  gamma = 2^(-3:3),
  cost = 2^(-3:3),
  kernel = c("radial", "linear"),
  epsilon = c(0.1, 0.5, 1),
  params = NULL,
  tune = FALSE,
  ...
)`
```
Arguments

x Predictor matrix.
y Response vector.
gamma The gamma parameter (if a vector, cross-over validation is used to chose the best size).
cost The cost parameter (if a vector, cross-over validation is used to chose the best size).
kernel The kernel type.
epsilon The epsilon parameter (if a vector, cross-over validation is used to chose the best size).
params Object containing the parameters. If given, it replaces epsilon, gamma and cost.
tune If true, the function returns parameters instead of a classification model.
... Other arguments.

Value

The classification model.

See Also

svm, SVRl, SVRr

Examples

Not run:
require (datasets)
data (trees)
SVR (trees [, -3], trees [, 3], kernel = "linear", cost = 1)
SVR (trees [, -3], trees [, 3], kernel = "radial", gamma = 1, cost = 1)

End(Not run)

SVRl Regression using Support Vector Machine with a linear kernel

Description

This function builds a regression model using Support Vector Machine with a linear kernel.
Usage

SVRL1(
 x,
 y,
 cost = 2^(-3:3),
 epsilon = c(0.1, 0.5, 1),
 params = NULL,
 tune = FALSE,
 ...
)

Arguments

x Predictor matrix.
y Response vector.
cost The cost parameter (if a vector, cross-over validation is used to chose the best size).
epsilon The epsilon parameter (if a vector, cross-over validation is used to chose the best size).
params Object containing the parameters. If given, it replaces epsilon, gamma and cost.
tune If true, the function returns parameters instead of a classification model.
...
Other arguments.

Value

The classification model.

See Also

svm, SVR

Examples

Not run:
require (datasets)
data (trees)
SVRL1 (trees [, -3], trees [, 3], cost = 1)

End(Not run)
SVRr

Regression using Support Vector Machine with a radial kernel

Description

This function builds a regression model using Support Vector Machine with a radial kernel.

Usage

SVRr(
x, y, gamma = 2^(-3:3), cost = 2^(-3:3), epsilon = c(0.1, 0.5, 1), params = NULL, tune = FALSE, ...
)

Arguments

x Predictor matrix.
y Response vector.
gamma The gamma parameter (if a vector, cross-over validation is used to chose the best size).
cost The cost parameter (if a vector, cross-over validation is used to chose the best size).
epsilon The epsilon parameter (if a vector, cross-over validation is used to chose the best size).
params Object containing the parameters. If given, it replaces epsilon, gamma and cost.
tune If true, the function returns parameters instead of a classification model.
... Other arguments.

Value

The classification model.

See Also

svm, SVR
temperature

Examples

Not run:
require (datasets)
data (trees)
SVRr (trees [, -3], trees [, 3], gamma = 1, cost = 1)
End(Not run)

temperature Temperature dataset

Description

The data contains temperature measurement and geographic coordinates of 35 european cities.

Usage

temperature

Format

The dataset has 35 instances described by 17 variables. Average temperature of the 12 month. Mean and amplitude of the temperature. Latitude and longitude of the city. Localisation in Europe.

TEXTMINING Text mining

Description

Apply data mining function on vectorized text.

Usage

TEXTMINING(corpus, miningmethod, vector = c("docs", "words"), ...)

Arguments

corpus The corpus.
miningmethod The data mining method.
vector Indicates the type of vectorization, documents (TF-IDF) or words (GloVe).
... Parameters passed to the vectorisation and to the data mining method.

Value

The result of the data mining method.
See Also

predict.textmining, textmining-class, vectorize.docs, vectorize.words

Examples

```r
## Not run:
require (text2vec)
data ("movie_review")
d = movie_review [, 2:3]
d [, 1] = factor (d [, 1])
d = splitdata (d, 1)
model = TEXTMINING (d$train.x, NB, labels = d$train.y, mincount = 50)
pred = predict (model, d$test.x)
evaluation (pred, d$test.y)
text = loadtext ("http://mattmahoney.net/dc/text8.zip")
clusters = TEXTMINING (text, HCA, vector = "words", k = 9, maxwords = 100)
plotclus (clusters$res, text, type = "tree", labels = TRUE)
## End(Not run)
```

textmining-class

Text mining object

description

Object used for text mining.

slots

vectorizer The vectorizer.

vectors The vectorized dataset.

res The result of the text mining method.

see also

TEXTMINING, vectorize.docs
titanic

Titanic dataset

Description
This dataset from the British Board of Trade depict the fate of the passengers and crew during the RMS Titanic disaster.

Usage
titanic

Format
The dataset has 2201 instances described by 4 variables. The variables are as follows:

Category 1st, 2nd, 3rd Class or Crew.
Age Adult or Child.
Sex Female or Male.
Fate Casualty or Survivor.

Source

See Also
Titanic

treeplot Dendrogram Plots

Description
Draws a dendrogram.

Usage
treeplot(clustering, labels = FALSE, k = NULL, ...)

Arguments
clusterung The dendrogram to be plotted (result of hclust, agnes or HCA).
labels Indicates whether or not labels (row names) should be showned on the plot.
k Number of clusters. If not specified an "optimal" value is determined.
... Other parameters.
See Also
dendrogram, HCA, hclust, agnes

Examples
require (datasets)
data (iris)
hca = HCA (iris [, -5], method = "ward", k = 3)
treeplot (hca)

TSNE

t-distributed Stochastic Neighbor Embedding

Description
Return the t-SNE dimensionality reduction.

Usage
TSNE(x, perplexity = 30, nstart = 10, ...)

Arguments
x A numeric dataset (data.frame or matrix).
perplexity Specification of the perplexity.
nstart How many random sets should be chosen?
... Other parameters.

See Also
Rtsne

Examples
require (datasets)
data (iris)
TSNE (iris [, -5])
universite

Description

The dataset presents a French university demographics.

Usage

universite

Format

The dataset has 10 instances (university departments) described by 12 variables. The first six variables are the number of female and male students studying for bachelor degree (Licence), master degree (Master) and doctorate (Doctorat). The six last variables are obtained by combining the first ones.

Source

https://husson.github.io/data.html

vectorize.docs

Description

Vectorize a corpus of documents.

Usage

vectorize.docs(
 vectorizer = NULL,
 corpus = NULL,
 lang = "en",
 stopwords = lang,
 ngram = 1,
 mincount = 10,
 minphrasecount = NULL,
 transform = c("tfidf", "lsa", "l1", "none"),
 latentdim = 50,
 returndata = TRUE,
 ...
)
)
vectorize.docs

Arguments

vectorizer The document vectorizer.
corpus The corpus of documents (a vector of characters).
lang The language of the documents (NULL if no stemming).
stopwords Stopwords, or the language of the documents. NULL if stop words should not be removed.
ngram maximum size of n-grams.
mincount Minimum word count to be considered as frequent.
minphrasecount Minimum collocation of words count to be considered as frequent.
transform Transformation (TF-IDF, LSA, L1 normalization, or nothing).
latentdim Number of latent dimensions if LSA transformation is performed.
returndata If true, the vectorized documents are returned. If false, a "vectorizer" is returned.
... Other parameters.

Value

The vectorized documents.

See Also

query.docs, stopwords, vectorizers

Examples

```r
## Not run:
require (text2vec)
data ("movie_review")
# Clustering
docs = vectorize.docs (corpus = movie_review$review, transform = "tfidf")
km = KMEANS (docs [sample (nrow (docs), 100), ], k = 10)
# Classification
d = movie_review [, 2:3]
d [, 1] = factor (d [, 1])
d = splitdata (d, 1)
vectorizer = vectorize.docs (corpus = d$train.x,
                          returndata = FALSE, mincount = 50)
train = vectorize.docs (corpus = d$train.x, vectorizer = vectorizer)
test = vectorize.docs (corpus = d$test.x, vectorizer = vectorizer)
model = NB (as.matrix (train), d$train.y)
pred = predict (model, as.matrix (test))
evaluation (pred, d$test.y)

## End(Not run)
```
vectorize.words Word vectorization

Description
Vectorize words from a corpus of documents.

Usage
vectorize.words(
corpus = NULL,
ndim = 50,
maxwords = NULL,
mincount = 5,
minphrasecount = NULL,
window = 5,
maxcooc = 10,
maxiter = 10,
epsilon = 0.01,
lang = "en",
stopwords = lang,
...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>corpus</td>
<td>The corpus of documents (a vector of characters).</td>
</tr>
<tr>
<td>ndim</td>
<td>The number of dimensions of the vector space.</td>
</tr>
<tr>
<td>maxwords</td>
<td>The maximum number of words.</td>
</tr>
<tr>
<td>mincount</td>
<td>Minimum word count to be considered as frequent.</td>
</tr>
<tr>
<td>minphrasecount</td>
<td>Minimum collocation of words count to be considered as frequent.</td>
</tr>
<tr>
<td>window</td>
<td>Window for term-co-occurrence matrix construction.</td>
</tr>
<tr>
<td>maxcooc</td>
<td>Maximum number of co-occurrences to use in the weighting function.</td>
</tr>
<tr>
<td>maxiter</td>
<td>The maximum number of iteration to fit the GloVe model.</td>
</tr>
<tr>
<td>epsilon</td>
<td>Defines early stopping strategy when fit the GloVe model.</td>
</tr>
<tr>
<td>lang</td>
<td>The language of the documents (NULL if no stemming).</td>
</tr>
<tr>
<td>stopwords</td>
<td>Stopwords, or the language of the documents. NULL if stop words should not be removed.</td>
</tr>
<tr>
<td>...</td>
<td>Other parameters.</td>
</tr>
</tbody>
</table>

Value

The vectorized words.
vectorizer-class

Description

This class contains a vectorization model for textual documents.

Slots

- `vectorizer` The vectorizer.
- `transform` The transformation to be applied after vectorization (normalization, TF-IDF).
- `phrases` The phrase detection method.
- `tfidf` The TF-IDF transformation.
- `lsa` The LSA transformation.
- `tokens` The token from the original document.

See Also

vectorize.docs, query.docs
Vowels dataset

Description

Excerpt of the Letter Recognition Data Set (UCI repository).

Usage

vowels
vowels.train
vowels.test

Format

The dataset has 4664 instances described by 17 variables. The first variable is the classification into 6 classes (letter A, E, I, O, U and Y). vowels.train contains 233 instances and vowels.test contains 4431.

Source

Wheat dataset

Description

The data contains kernels belonging to three different varieties of wheat: Kama, Rosa and Canadian, 70 elements each, randomly selected. High quality visualization of the internal kernel structure was detected using a soft X-ray technique. The images were recorded on 13x18 cm X-ray KODAK plates. Source: Institute of Agrophysics of the Polish Academy of Sciences in Lublin.

Usage

wheat

Format

The dataset has 210 instances described by 8 variables: area, perimeter, compactness, length, width, asymmetry coefficient, groove length and variety.

Source

https://archive.ics.uci.edu/ml/datasets/seeds
wine

Wine dataset

Description
These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

Usage

wine

Format
There are 178 observations and 14 variables. The first variable is the class label (1, 2, 3).

Source

https://archive.ics.uci.edu/ml/datasets/wine

zoo

Zoo dataset

Description
Animal description based on various features.

Usage

zoo

Format
The dataset has 101 instances described by 17 qualitative variables.

Source

https://archive.ics.uci.edu/ml/datasets/zoo
Index

accident2014, 5
ADABOOST, 6, 10, 11, 90
agnes, 57, 127, 128
alcohol, 7
APRIORI, 7, 8, 89, 98, 117
apriori, 8, 52, 54, 89, 98, 117
apriori-class, 8
autompg, 9
BAGGING, 6, 9, 11, 90
beetles, 10
birth, 11
boosting-class, 11
boxclus, 12, 85
boxplot, 12
britpop, 12
CART, 14, 15–18, 116
cartdepth, 14, 15, 16–18
cartinfo, 14, 15, 15, 16–18
cartleafs, 14–16, 16, 17, 18
cartnodes, 14–16, 17, 18
cartplot, 14–17, 17
CDA, 19, 20, 82, 91, 95, 96
cda-class, 19
closegraphics, 20, 49, 50
compare, 21, 22, 23, 58, 115
compare.accuracy, 21, 21, 22, 23
compare.jaccard, 21, 22, 22, 23
compare.kappa, 21, 22, 23
confusion, 24, 40, 81
cookies, 25
cookplot, 26
cost.curves, 26, 81, 106
create_vocabulary, 55
credit, 27
data.diag, 27, 29–32
data.gauss, 28
data.parabol, 28, 29, 29, 31, 32
data.square (data.diag), 27
data.target1, 28, 30, 30, 32
data.target2, 28–31, 31, 32
data.twomoons, 28–32, 32
data1, 33
data2, 33
data3, 34
dataset-class, 34
dbs-class, 35
DBSCAN, 35, 35, 37, 92
dbscan, 35, 37
decathlon, 36
dendrogram, 128
dev.off, 20
Devices, 49
difftime, 107
distplot, 25, 37
download.file, 69
EM, 37, 38, 92
e, 38
em-class, 38
eucalyptus, 39
evaluation, 24, 39, 41–48, 81
evaluation.accuracy, 40, 40, 41–46, 48
evaluation.fmeasure, 40, 41, 41–42–46, 48
evaluation.fowlkesmallows, 40, 41, 42, 43–46, 48
evaluation.goodness, 40–42, 43, 44–46, 48
evaluation.jaccard, 40–43, 44, 45, 46, 48
evaluation.kappa, 40–45, 45, 46, 48
evaluation.msep, 40, 45, 47
evaluation.precision, 40–45, 46, 48
evaluation.r2, 40, 46, 47
evaluation.recall, 40–46, 48
exportgraphics, 20, 49, 50
exportgraphics.off, 49
exportgraphics.on (exportgraphics.off), 49
qda, 100
query.docs, 100, 130, 132
query.words, 101, 132
RANDOMFOREST, 102
randomForest, 103
reg1, 103
reg2, 104
regplot, 104
regsubsets, 68
resplot, 105
roc.curves, 27, 81, 105
rotation, 106
rpart, 14
Rtsne, 128
runningtime, 107
scatterplot, 85, 107
selectfeatures, 51, 108, 110
selection-class, 109
sim2, 101, 102
snore, 110
SOM, 83, 111, 112
som, 111, 112
som-class, 112
SPECTRAL, 112, 113
spectral-class, 113
spine, 113
splitdata, 24, 34, 114
stability, 21, 58, 115
stopwords, 55, 130, 132
STUMP, 116
subset, 52
summary.apriori, 8, 98, 117
SVD, 117
svd, 118
SVM, 78, 118, 120, 121
svm, 119–124
SVMl, 119, 119
SVMr, 119, 120
SVR, 78, 121, 123, 124
SVRl, 122, 122
SVRr, 122, 124
temperature, 125
TEXTMINING, 97, 125, 126
textmining-class, 126
Titanic, 127
titanic, 127
toggleexport, 20, 49
toggleexport(exportgraphics.off), 49
treeplot, 85, 127
TSNE, 128
universite, 129
unzip, 69
vectorize.docs, 101, 126, 129, 132
vectorize.words, 102, 126, 131
vectorizer-class, 132
vectorizers, 130, 132
vowels, 133
wheat, 133
wine, 134
wordcloud, 84
xgboost, 56
zoo, 134