Package ‘fdm2id’

June 12, 2023

Title Data Mining and R Programming for Beginners
Version 0.9.9
Description
Contains functions to simplify the use of data mining methods (classification, regression, clustering, etc.), for students and beginners in R programming. Various R packages are used and wrappers are built around the main functions, to standardize the use of data mining methods (input/output): it brings a certain loss of flexibility, but also a gain of simplicity. The package name came from the French “Fouille de Données en Master 2 Informatique Décisionnelle”.

Depends R (>= 3.5.0), arules, arulesViz, FactoMineR
Imports mclust, methods, nnet, pls
Suggests car, caret, class, cluster, datasets, e1071, fds, flexclust, fpc, glmnet, graphics, grDevices, ibr, irr, kohonen, leaps, MASS, mda, meanShiftR, questionr, randomForest, ROCR, rpart, rpart.plot, Rtsne, SnowballC, stats, text2vec, stopwords, utils, wordcloud, xgboost
Enhances NMF
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
NeedsCompilation no
Author Alexandre Blansché [aut, cre]
Maintainer Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>
Repository CRAN
Date/Publication 2023-06-12 13:10:02 UTC

R topics documented:

 accident2014 ... 5
 ADABOOST ... 6
 alcohol ... 7
APRIORI .. 7
apriori-class .. 8
augmentation .. 9
autompg ... 9
BAGGING ... 10
beetles ... 11
birth ... 11
boosting-class ... 12
boxclus ... 12
britpop .. 13
CA ... 13
CART .. 14
cartdepth .. 15
cartinfo ... 16
cartleafs ... 16
cartnodes .. 17
cartplot ... 18
CDA ... 18
cda-class .. 19
closegraphics .. 20
compare ... 20
compare.accuracy ... 21
compare.jaccard ... 22
compare.kappa ... 22
cookies .. 23
cookplot ... 24
correlated ... 25
cost.curves .. 25
credit .. 26
data.diag .. 27
data.gauss .. 28
data.parabol .. 29
data.target1 ... 30
data.target2 .. 31
data.twomoons .. 32
data.xor ... 33
data1 ... 34
data2 ... 34
data3 ... 35
dataset-class .. 35
dbs-class .. 36
DBSCAN ... 36
decathlon .. 37
distplot ... 38
EM .. 38	em-class ... 39
eucalyptus .. 40
R topics documented:

- evaluation
- evaluation.accuracy
- evaluation.adjR2
- evaluation.fmeasure
- evaluation.fowlkesmallows
- evaluation.goodness
- evaluation.jaccard
- evaluation.kappa
- evaluation.msep
- evaluation.precision
- evaluation.r2
- evaluation.recall
- exportgraphics
- exportgraphics.off
- factorial-class
- FEATURESELECTION
- filter.rules
- frequentwords
- general.rules
- getvocab
- GRADIENTBOOSTING
- HCA
- intern
- intern.dunn
- intern.interclass
- intern.intraclass
- ionosphere
- kaiser
- KERREG
- KMEANS
- kmeans.getk
- KNN
- knn-class
- LDA
- leverageplot
- LINREG
- linsep
- loadtext
- LR
- MCA
- MEANSHIFT
- meanshift-class
- MLP
- MLPREG
- model-class
- movies
- NB
- NMF
R topics documented:

- ozone .. 80
- params-class ... 81
- PCA .. 81
- performance .. 82
- plot.cda ... 84
- plot.factorial .. 85
- plot.som ... 86
- plotavsp ... 86
- plotcloud .. 87
- plotclus ... 88
- plotdata ... 89
- plotzipf ... 90
- POLYREG .. 91
- predict.apriori 92
- predict.boosting 93
- predict.cda .. 94
- predict.dbs ... 94
- predict.em ... 95
- predict.kmeans 96
- predict.knn .. 96
- predict.meanshift 97
- predict.model .. 98
- predict.selection 99
- predict.textmining 100
- print.apriori .. 101
- print.factorial 101
- pseudoF .. 102
- QDA .. 103
- query.docs .. 103
- query.words ... 104
- RANDOMFOREST 105
- reg1 .. 106
- reg2 .. 107
- regplot .. 107
- resplot .. 108
- roc.curves ... 108
- rotation ... 109
- runningtime ... 110
- scatterplot ... 110
- selectfeatures 111
- selection-class 112
- snore ... 113
- SOM .. 114
- SOM-class ... 115
- SPECTRAL ... 115
- spectral-class 116
- spine .. 116
- splitdata ... 117
Sample of car accident location in the UK during year 2014.

Description

Longitude and latitude of 500 car accident during year 2014 (source: www.data.gov.uk).

Usage

accident2014

Format

The dataset has 500 instances described by 2 variables (coordinates).

Source

https://www.data.gov.uk/
ADABOOST

Classification using AdaBoost

Description

Ensemble learning, through AdaBoost Algorithm.

Usage

ADABOOST(
 x,
 y,
 learningmethod,
 nsamples = 100,
 fuzzy = FALSE,
 tune = FALSE,
 seed = NULL,
 ...
)

Arguments

x The dataset (description/predictors), a matrix or data.frame.
y The target (class labels or numeric values), a factor or vector.
learningmethod The boosted method.
nsamples The number of samplings.
fuzzy Indicates whether or not fuzzy classification should be used or not.
tune If true, the function returns parameters instead of a classification model.
seed A specified seed for random number generation.
... Other specific parameters for the learning method.

Value

The classification model.

See Also

BAGGING, predict.boosting

Examples

Not run:
require (datasets)
data (iris)
ADABOOST (iris [, -5], iris [, 5], NB)

End(Not run)
alcohol

Alcohol dataset

Description

This dataset has been extracted from the WHO database and depict the alcool habits in the 27 european contries (in 2010).

Usage

alcohol

Format

The dataset has 27 instances described by 4 variables. The variables are the average amount of alcool of different types per year par inhabitent.

Source

https://www.who.int/

APRIORI

Classification using APRIORI

Description

This function builds a classification model using the association rules method APRIORI.

Usage

APRIORI(
 train,
 labels,
 supp = 0.05,
 conf = 0.8,
 prune = FALSE,
 tune = FALSE,
 ...
)

Arguments

- **train**
 - The training set (description), as a `data.frame`.

- **labels**
 - Class labels of the training set (vector or factor).

- **supp**
 - The minimal support of an item set (numeric value).

- **conf**
 - The minimal confidence of an item set (numeric value).

- **prune**
 - A logical indicating whether to prune redundant rules or not (default: `FALSE`).

- **tune**
 - If true, the function returns parameters instead of a classification model.

- **...**
 - Other parameters.

Value

The classification model, as an object of class `apriori`.

See Also

- `predict.apriori`, `apriori-class`, `apriori`

Examples

```r
require("datasets")
data(iris)
d = discretizeDF(iris,
default = list(method = "interval", breaks = 3, labels = c("small", "medium", "large")))
APRIORI(d [, -5], d [, 5], supp = .1, conf = .9, prune = TRUE)
```

apriori-class
APRIORI classification model

Description

This class contains the classification model obtained by the APRIORI association rules method.

Slots

- **rules**
 - The set of rules obtained by APRIORI.

- **transactions**
 - The training set as a transaction object.

- **train**
 - The training set (description). A matrix or `data.frame`.

- **labels**
 - Class labels of the training set. Either a `factor` or an integer `vector`.

- **supp**
 - The minimal support of an item set (numeric value).

- **conf**
 - The minimal confidence of an item set (numeric value).

See Also

- `APRIORI`, `predict.apriori`, `print.apriori`, `summary.apriori`, `apriori`
augmentation

Duplicate and add noise to a dataset

Description

This function is a data augmentation technique. It duplicates rows and add gaussian noise to the duplicates.

Usage

augmentation(dataset, target, n = 5, sigma = 0.1, seed = NULL)

Arguments

dataset The dataset to be split (data.frame or matrix).
target The column index of the target variable (class label or response variable).
n The scaling factor (as an integer value).
sigma The baseline variance for the noise generation.
seed A specified seed for random number generation.

Value

An augmented dataset.

Examples

require (datasets)
data (iris)
d = augmentation (iris, 5)
summary (iris)
summary (d)

autompg

Auto MPG dataset

Description

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University. The dataset was used in the 1983 American Statistical Association Exposition.

Usage

autompg
Format
The dataset has 392 instances described by 8 variables. The seven first variables are numeric variables. The last variable is qualitative (car origin).

Source
https://archive.ics.uci.edu/ml/datasets/auto+mpg

BAGGING
Classification using Bagging

Description
Ensemble learning, through Bagging Algorithm.

Usage
BAGGING(
x,
y,
learningmethod,
nsamples = 100,
bag.size = nrow(x),
seed = NULL,
...
)

Arguments
x The dataset (description/predictors), a matrix or data.frame.
y The target (class labels or numeric values), a factor or vector.
learningmethod The boosted method.
nsamples The number of samplings.
bag.size The size of the samples.
seed A specified seed for random number generation.
...

Value
The classification model.

See Also
ADABOOST, predict.boosting
beetles

Examples

```r
## Not run:
require (datasets)
data (iris)
BAGGING (iris [, -5], iris [, 5], NB)

## End(Not run)
```

beetles

Flea beetles dataset

Description

Data were collected on the genus of flea beetle *Chaetocnema*, which contains three species: *concinna*, *heikertingeri*, and *heptapotamica*. Measurements were made on the width and angle of the aedeagus of each beetle. The goal of the original study was to form a classification rule to distinguish the three species.

Usage

beetles

Format

The dataset has 74 instances described by 3 variables. The variables are as follows:

- **Width** The maximal width of aedeagus in the forpart (in microns).
- **Angle** The front angle of the aedeagus (1 unit = 7.5 degrees).
- **Shot.put** Species of flea beetle from the genus *Chaetocnema*.

Source

birth

Birth dataset

Description

Tutorial data set (vector).

Usage

birth

Format

The dataset is a names vector of nine values (birth years).
boosting-class

Boosting methods model

Description

This class contains the classification model obtained by the CDA method.

Slots

models List of models.
x The learning set.
y The target values.

See Also

ADABOOST, BAGGING, predict.boosting

boxclus

Clustering Box Plots

Description

Produce a box-and-whisker plot for clustering results.

Usage

boxclus(d, clusters, legendpos = "topleft", ...)

Arguments

d The dataset (matrix or data.frame).
clusters Cluster labels of the training set (vector or factor).
legendpos Position of the legend
... Other parameters.

See Also

boxplot

Examples

require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
boxclus (iris [, -5], km$cluster)
britpop

Population and location of 18 major british cities.

Description

Longitude and latitude and population of 18 major cities in the Great Britain.

Usage

britpop

Format

The dataset has 18 instances described by 3 variables.

CA

Correspondence Analysis (CA)

Description

Performs Correspondence Analysis (CA) including supplementary row and/or column points.

Usage

CA(
 d,
 ncp = 5,
 row.sup = NULL,
 col.sup = NULL,
 quanti.sup = NULL,
 quali.sup = NULL,
 row.w = NULL
)

Arguments

d
ncp
row.sup
col.sup
quanti.sup
quali.sup
row.w

A ddata frame or a table with n rows and p columns, i.e. a contingency table.
The number of dimensions kept in the results (by default 5).
A vector indicating the indexes of the supplementary rows.
A vector indicating the indexes of the supplementary columns.
A vector indicating the indexes of the supplementary continuous variables.
A vector indicating the indexes of the categorical supplementary variables.
An optional row weights (by default, a vector of 1 for uniform row weights); the weights are given only for the active individuals.
Value

The CA on the dataset.

See Also

CA, MCA, PCA, plot.factorial, factorial-class

Examples

data (children, package = "FactoMineR")
CA (children, row.sup = 15:18, col.sup = 6:8)

CART

Classification using CART

Description

This function builds a classification model using CART.

Usage

CART(
 train, labels, minsplit = 1, maxdepth = log2(length(labels)), cp = NULL, tune = FALSE, ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>train</td>
<td>The training set (description), as a data.frame.</td>
</tr>
<tr>
<td>labels</td>
<td>Class labels of the training set (vector or factor).</td>
</tr>
<tr>
<td>minsplit</td>
<td>The minimum leaf size during the learning.</td>
</tr>
<tr>
<td>maxdepth</td>
<td>Set the maximum depth of any node of the final tree, with the root node counted as depth 0.</td>
</tr>
<tr>
<td>cp</td>
<td>The complexity parameter of the tree. Cross-validation is used to determine optimal cp if NULL.</td>
</tr>
<tr>
<td>tune</td>
<td>If true, the function returns parameters instead of a classification model.</td>
</tr>
<tr>
<td>...</td>
<td>Other parameters.</td>
</tr>
</tbody>
</table>

Value

The classification model.
See Also

`cartdepth, cartinfo, cartleafs, cartnodes, cartplot, rpart`

Examples

```r
require (datasets)
data (iris)
CART (iris[, -5], iris[, 5])
```

```
---
cartdepth         Depth
---
```

Description

Return the dept of a decision tree.

Usage

```r
cartdepth(model)
```

Arguments

```r
model       The decision tree.
```

Value

The depth.

See Also

`CART, cartinfo, cartleafs, cartnodes, cartplot`

Examples

```r
require (datasets)
data (iris)
model = CART (iris[, -5], iris[, 5])
cartdepth (model)
```
cartinfo

Description
Return various information on a CART model.

Usage
cartinfo(model)

Arguments
model The decision tree.

Value
Various information organized into a vector.

See Also
CART, cartdepth, cartleafs, cartnodes, cartplot

Examples
require (datasets)
data (iris)
model = CART (iris [, -5], iris [, 5])
cartinfo (model)

cartleafs

Description
Return the number of leafs of a decision tree.

Usage
cartleafs(model)

Arguments
model The decision tree.
Value

The number of leafs.

See Also

CART, cartdepth, cartinfo, cartnodes, cartplot

Examples

require (datasets)
data (iris)
model = CART (iris [, -5], iris [, 5])
cartleafs (model)

cartnodes

<table>
<thead>
<tr>
<th>cartnodes</th>
<th>Number of Nodes</th>
</tr>
</thead>
</table>

Description

Return the number of nodes of a decision tree.

Usage

cartnodes(model)

Arguments

model The decision tree.

Value

The number of nodes.

See Also

CART, cartdepth, cartinfo, cartleafs, cartplot

Examples

require (datasets)
data (iris)
model = CART (iris [, -5], iris [, 5])
cartnodes (model)
cartplot

CART Plot

Description
Plot a decision tree obtained by CART.

Usage
cartplot(model, ...)

Arguments
- **model**: The decision tree.
- **...**: Other parameters.

See Also
- CART, cartdepth, cartinfo, cartleafs, cartnodes

Examples
```r
require (datasets)
data (iris)
model = CART (iris [, -5], iris [, 5])
cartplot (model)
```

CDA

Classification using Canonical Discriminant Analysis

Description
This function builds a classification model using Canonical Discriminant Analysis.

Usage
CDA(train, labels, tune = FALSE, ...)

Arguments
- **train**: The training set (description), as a data.frame.
- **labels**: Class labels of the training set (vector or factor).
- **tune**: If true, the function returns parameters instead of a classification model.
- **...**: Other parameters.
Value

The classification model, as an object of class glmnet.

See Also

plot.cda, predict.cda, cda-class

Examples

```r
require (datasets)
data (iris)
CDA (iris [, -5], iris [, 5])
```

cda-class Canonical Discriminant Analysis model

Description

This class contains the classification model obtained by the CDA method.

Slots

- **proj** The projection of the dataset into the canonical base. A data.frame.
- **transform** The transformation matrix between. A matrix.
- **centers** Coordinates of the class centers. A matrix.
- **within** The intr-class covariance matrix. A matrix.
- **eig** The eigen-values. A matrix.
- **dim** The number of dimensions of the canonical base (numeric value).
- **nb.classes** The number of clusters (numeric value).
- **train** The training set (description). A data.frame.
- **labels** Class labels of the training set. Either a factor or an integer vector.
- **model** The prediction model.

See Also

CDA, plot.cda, predict.cda
closegraphics
Close a graphics device

Description

Close the graphics device driver

Usage

```r
closegraphics()
```

See Also

`exportgraphics`, `toggleexport.dev.off`

Examples

```r
## Not run:
data (iris)
exportgraphics ("export.pdf")
plotdata (iris [, -5], iris [, 5])
closegraphics()
## End(Not run)
```

compare
Comparison of two sets of clusters

Description

Comparison of two sets of clusters

Usage

```r
compare(clus, gt, eval = "accuracy", comp = c("max", "pairwise", "cluster"))
```

Arguments

- `clus` - The extracted clusters.
- `gt` - The real clusters.
- `eval` - The evaluation criterion.
- `comp` - Indicates whether a "max" or a "pairwise" evaluation should be used, or the evaluation for each individual "cluster".
compare.accuracy

Value

A numeric value indicating how much the two sets of clusters are similar.

See Also

compare.accuracy, compare.jaccard, compare.kappa, intern, stability

Examples

require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
compare (km$cluster, iris [, 5])
Not run:
compare (km$cluster, iris [, 5], eval = c ("accuracy", "kappa"), comp = "pairwise")
End(Not run)

compare.accuracy Comparison of two sets of clusters, using accuracy

Description

Comparison of two sets of clusters, using accuracy

Usage

compare.accuracy(clus, gt, comp = c("max", "pairwise", "cluster"))

Arguments

clus The extracted clusters.
gt The real clusters.
comp Indicates whether a "max" or a "pairwise" evaluation should be used, or the evaluation for each individual "cluster".

Value

A numeric value indicating how much the two sets of clusters are similar.

See Also

compare.jaccard, compare.kappa, compare

Examples

require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
compare.accuracy (km$cluster, iris [, 5])
compare.jaccard

Comparison of two sets of clusters, using Jaccard index

Description

Comparison of two sets of clusters, using Jaccard index

Usage

```r
compare.jaccard(clus, gt, comp = c("max", "pairwise", "cluster"))
```

Arguments

- `clus`: The extracted clusters.
- `gt`: The real clusters.
- `comp`: Indicates whether a "max" or a "pairwise" evaluation should be used, or the evaluation for each individual "cluster".

Value

A numeric value indicating how much the two sets of clusters are similar.

See Also

`compare.accuracy`, `compare.kappa`, `compare`

Examples

```r
require(datasets)
data(iris)
km = KMEANS(iris[, -5], k = 3)
compare.jaccard(km$cluster, iris[, 5])
```

compare.kappa

Comparison of two sets of clusters, using kappa

Description

Comparison of two sets of clusters, using kappa

Usage

```r
compare.kappa(clus, gt, comp = c("max", "pairwise", "cluster"))
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clus</td>
<td>The extracted clusters.</td>
</tr>
<tr>
<td>gt</td>
<td>The real clusters.</td>
</tr>
<tr>
<td>comp</td>
<td>Indicates whether a "max" or a "pairwise" evaluation should be used, or the evaluation for each individual "cluster".</td>
</tr>
</tbody>
</table>

Value

A numeric value indicating how much the two sets of clusters are similar.

See Also

`compare.accuracy`, `compare.jaccard`, `compare`

Examples

```r
require (datasets)
data (iris)
km = KMEANS (iris [,-5], k = 3)
compare.kappa (km$cluster, iris [,5])
```

confusion

Confusion matrix

Description

Plot a confusion matrix.

Usage

```r
confusion(predictions, gt, norm = TRUE, graph = TRUE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictions</td>
<td>The prediction.</td>
</tr>
<tr>
<td>gt</td>
<td>The ground truth.</td>
</tr>
<tr>
<td>norm</td>
<td>Whether or not the confusion matrix is normalized</td>
</tr>
<tr>
<td>graph</td>
<td>Whether or not a graphic is displayed.</td>
</tr>
</tbody>
</table>

Value

The confusion matrix.

See Also

`evaluation`, `performance`, `splitdata`
Examples

```r
require("datasets")
data(iris)
d = splitdata(iris, 5)
model = NB(d$train.x, d$train.y)
pred = predict(model, d$test.x)
confusion(d$test.y, pred)
```

Description

This data set contains measurements from quantitative NIR spectroscopy. The example studied arises from an experiment done to test the feasibility of NIR spectroscopy to measure the composition of biscuit dough pieces (formed but unbaked biscuits). Two similar sample sets were made up, with the standard recipe varied to provide a large range for each of the four constituents under investigation: fat, sucrose, dry flour, and water. The calculated percentages of these four ingredients represent the 4 responses. There are 40 samples in the calibration or training set (with sample 23 being an outlier). There are a further 32 samples in the separate prediction or validation set (with example 21 considered as an outlier). An NIR reflectance spectrum is available for each dough piece. The spectral data consist of 700 points measured from 1100 to 2498 nanometers (nm) in steps of 2 nm.

Usage

```r
cookies
cookies.desc.train
cookies.desc.test
cookies.y.train
cookies.y.test
```

Format

The `cookies.desc.*` datasets contain the 700 columns that correspond to the NIR reflectance spectrum. The `cookies.y.*` datasets contain four columns that correspond to the four constituents fat, sucrose, dry flour, and water. The `cookies.*.train` contains 40 rows that correspond to the calibration data. The `cookies.*.test` contains 32 rows that correspond to the prediction data.

Source

See Also

`labp, labc, nirp, nirc`
cookplot

Plot the Cook's distance of a linear regression model

Description

Plot the Cook's distance of a linear regression model.

Usage

```
cookplot(model, index = NULL, labels = NULL)
```

Arguments

- `model` The model to be plotted.
- `index` The index of the variable used for the x-axis.
- `labels` The labels of the instances.

Examples

```
require (datasets)
data (trees)
model = LINREG (trees [, -3], trees [, 3])
cookplot (model)
```

correlated

Correlated variables

Description

Return the list of correlated variables.

Usage

```
correlated(d, threshold = 0.8)
```

Arguments

- `d` A data matrix.
- `threshold` The threshold on the (absolute) Pearson coefficient. If NULL, return the most correlated variables.

Value

The list of correlated variables (as a matrix of column names).
See Also

- cor

Examples

```r
data (iris)
correlated (iris)
```

cost.curves

Plot Cost Curves

This function plots Cost Curves of several classification predictions.

Usage

```r
cost.curves(predictions, gt, methods.names = NULL)
```

Arguments

- `predictions` The predictions of a classification model (factor or vector).
- `gt` Actual labels of the dataset (factor or vector).
- `methods.names` The name of the compared methods (vector).

Value

The evaluation of the predictions (numeric value).

See Also

- `roc.curves`
- `performance`

Examples

```r
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-" ) # Building a two classes dataset
model.nb = NB (d [, -5], d [, 5])
model.lda = LDA (d [, -5], d [, 5])
pred.nb = predict (model.nb, d [, -5])
pred.lda = predict (model.lda, d [, -5])
cost.curves (cbind (pred.nb, pred.lda), d [, 5], c ("NB", "LDA"))
```
credit

Credit dataset

Description
This is a fake dataset simulating a bank database about loan clients.

Usage
credit

Format
The dataset has 66 instances described by 11 qualitative variables.

data.diag

Square dataset

Description
Generate a random dataset shaped like a square divided by a custom function

Usage
data.diag(
 n = 200,
 min = 0,
 max = 1,
 f = function(x) x,
 levels = NULL,
 graph = TRUE,
 seed = NULL
)

Arguments
n Number of observations in the dataset.
min Minimum value on each variables.
max Maximum value on each variables.
f The function that separate the classes.
levels Name of each class.
graph A logical indicating whether or not a graphic should be plotted.
seed A specified seed for random number generation.
Value

A randomly generated dataset.

See Also

data.parabol, data.target1, data.target2, data.twomoons, data.xor

Examples

data.diag()

data.gauss

Gaussian mixture dataset

Description

Generate a random multidimensional gaussian mixture.

Usage

data.gauss(
 n = 1000,
 k = 2,
 prob = rep(1/k, k),
 mu = cbind(rep(0, k), seq(from = 0, by = 3, length.out = k)),
 cov = rep(list(matrix(c(6, 0.9, 0.9, 0.3), ncol = 2, nrow = 2)), k),
 levels = NULL,
 graph = TRUE,
 seed = NULL
)

Arguments

n Number of observations.
k The number of classes.
prob The a priori probability of each class.
mu The means of the gaussian distributions.
cov The covariance of the gaussian distributions.
levels Name of each class.
graph A logical indicating whether or not a graphic should be plotted.
seed A specified seed for random number generation.

Value

A randomly generated dataset.
data.parabol

See Also

data.diag, data.parabol, data.target2, data.twomoons, data.xor

Examples

data.gauss()

data.parabol
Parabol dataset

Description

Generate a random dataset shaped like a parabol and a gaussian distribution

Usage

data.parabol(
 n = c(500, 100),
 xlim = c(-3, 3),
 center = c(0, 4),
 coeff = 0.5,
 sigma = c(0.5, 0.5),
 levels = NULL,
 graph = TRUE,
 seed = NULL
)

Arguments

- **n**
 Number of observations in each class.

- **xlim**
 Minimum and maximum on the x axis.

- **center**
 Coordinates of the center of the gaussian distribution.

- **coeff**
 Coefficient of the parabol.

- **sigma**
 Variance in each class.

- **levels**
 Name of each class.

- **graph**
 A logical indicating whether or not a graphic should be plotted.

- **seed**
 A specified seed for random number generation.

Value

A randomly generated dataset.

See Also

data.diag, data.target1, data.target2, data.twomoons, data.xor
Examples
data.parabol()

data.target1 Target1 dataset

Description
Generate a random dataset shaped like a target.

Usage
data.target1(
 r = 1:3,
 n = 200,
 sigma = 0.1,
 levels = NULL,
 graph = TRUE,
 seed = NULL
)

Arguments

 r Radius of each class.
 n Number of observations in each class.
 sigma Variance in each class.
 levels Name of each class.
 graph A logical indicating whether or not a graphic should be plotted.
 seed A specified seed for random number generation.

Value
A randomly generated dataset.

See Also
data.diag, data.parabol, data.target2, data.twomoons, data.xor

Examples
data.target1()
data.target2

Target2 dataset

Description

Generate a random dataset shaped like a target.

Usage

```r
data.target2(
  minr = c(0, 2),
  maxr = minr + 1,
  initn = 1000,
  levels = NULL,
  graph = TRUE,
  seed = NULL
)
```

Arguments

- `minr`: Minimum radius of each class.
- `maxr`: Maximum radius of each class.
- `initn`: Number of observations at the beginning of the generation process.
- `levels`: Name of each class.
- `graph`: A logical indicating whether or not a graphic should be plotted.
- `seed`: A specified seed for random number generation.

Value

A randomly generated dataset.

See Also

- `data.diag`, `data.parabol`, `data.target1`, `data.twomoons`, `data.xor`

Examples

`data.target2()`
data.twomoons

Two moons dataset

Description

Generate a random dataset shaped like two moons.

Usage

```r
data.twomoons(
  r = 1,
  n = 200,
  sigma = 0.1,
  levels = NULL,
  graph = TRUE,
  seed = NULL
)
```

Arguments

- `r` Radius of each class.
- `n` Number of observations in each class.
- `sigma` Variance in each class.
- `levels` Name of each class.
- `graph` A logical indicating whether or not a graphic should be plotted.
- `seed` A specified seed for random number generation.

Value

A randomly generated dataset.

See Also

`data.diag`, `data.parabol`, `data.target1`, `data.target2`, `data.xor`

Examples

```r
data.twomoons()
```
Description

Generate "XOR" dataset.

Usage

```r
data.xor(
  n = 100,
  ndim = 2,
  sigma = 0.25,
  levels = NULL,
  graph = TRUE,
  seed = NULL
)
```

Arguments

- `n`: Number of observations in each cluster.
- `ndim`: The number of dimensions (2^ndim clusters are formed, grouped into two classes).
- `sigma`: The variance.
- `levels`: Name of each class.
- `graph`: A logical indicating whether or not a graphic should be plotted.
- `seed`: A specified seed for random number generation.

Value

A randomly generated dataset.

See Also

- `data.diag`
- `data.gauss`
- `data.parabol`
- `data.target2`
- `data.twomoons`

Examples

```r
data.xor()
```
data1 "data1" dataset

Description
Synthetic dataset.

Usage
data1

Format
240 observations described by 4 variables and grouped into 16 classes.

Author(s)
Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>

data2 "data2" dataset

Description
Synthetic dataset.

Usage
data2

Format
500 observations described by 10 variables and grouped into 3 classes.

Author(s)
Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>
data3

"data3" dataset

Description

Synthetic dataset.

Usage

data3

Format

300 observations described by 3 variables and grouped into 3 classes.

Author(s)

Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>

dataset-class

Training set and test set

Description

This class contains a dataset divided into four parts: the training set and test set, description and class labels.

Slots

- train.x the training set (description), as a data.frame or a matrix.
- train.y the training set (target), as a vector or a factor.
- test.x the training set (description), as a data.frame or a matrix.
- test.y the training set (target), as a vector or a factor.

See Also

splitdata
dbs-class
DBSCAN model

Description

This class contains the model obtained by the DBSCAN method.

Slots

- `cluster`: A vector of integers indicating the cluster to which each point is allocated.
- `eps`: Reachability distance (parameter).
- `MinPts`: Reachability minimum no. of points (parameter).
- `isseed`: A logical vector indicating whether a point is a seed (not border, not noise).
- `data`: The dataset that has been used to fit the map (as a matrix).

See Also

`DBSCAN`

DBSCAN
DBSCAN clustering method

Description

Run the DBSCAN algorithm for clustering.

Usage

```r
DBSCAN(d, minpts, epsilonDist, ...)
```

Arguments

- `d`: The dataset (matrix or data.frame).
- `minpts`: Reachability minimum no. of points.
- `epsilonDist`: Reachability distance.
- `...`: Other parameters.

Value

A clustering model obtained by DBSCAN.

See Also

`dbscan, dbs-class, distplot, predict.dbs`
decathlon

Examples

require (datasets)
data (iris)
DBSCAN (iris [, -5], minpts = 5, epsilonDist = 1)

Decathlon dataset

Description

The dataset contains results from two athletics competitions. The 2004 Olympic Games in Athens and the 2004 Decastar.

Usage

decathlon

Format

The dataset has 41 instances described by 13 variables. The variables are as follows:

100m In seconds.
Long.jump In meters.
Shot.put In meters.
High.jump In meters.
400m In seconds.
110m.h In seconds.
Discus.throw In meters.
Pole.vault In meters.
Javelin.throw In meters.
1500m In seconds.
Rank The rank at the competition.
Points The number of points obtained by the athlete.
Competition Olympics or Decastar.

Source

https://husson.github.io/data.html
distplot

Plot a k-distance graphic

Description

Plot the distance to the k’s nearest neighbours of each object in decreasing order. Mostly used to determine the eps parameter for the `dbscan` function.

Usage

```
distplot(k, d, h = -1)
```

Arguments

- `k`: The k parameter.
- `d`: The dataset (matrix or data.frame).
- `h`: The y-coordinate at which a horizontal line should be drawn.

See Also

`DBSCAN`, `dbscan`

Examples

```
require (datasets)
data (iris)
distplot (5, iris [, -5], h = .65)
```
Value

A clustering model obtained by EM.

See Also

em, mstep, mclustModelNames

Examples

```
require (datasets)
data (iris)
EM (iris [, -5], 3) # Default initialization
km = KMEANS (iris [, -5], k = 3)
EM (iris [, -5], km$cluster) # Initialization with another clustering method
```

em-class

Expectation-Maximization model

Description

This class contains the model obtained by the EM method.

Slots

- **modelName** A character string indicating the model. The help file for `mclustModelNames` describes the available models.
- **prior** Specification of a conjugate prior on the means and variances.
- **n** The number of observations in the dataset.
- **d** The number of variables in the dataset.
- **G** The number of components of the mixture.
- **z** A matrix whose \([i,k]\)th entry is the conditional probability of the \(i\)th observation belonging to the \(k\)th component of the mixture.
- **parameters** A names list giving the parameters of the model.
- **control** A list of control parameters for EM.
- **loglik** The log likelihood for the data in the mixture model.
- **cluster** A vector of integers (from 1:k) indicating the cluster to which each point is allocated.

See Also

EM, mclustModelNames
eucalyptus
Eucalyptus dataset

Description
Measuring the height of a tree is not an easy task. Is it possible to estimate the height as a function of the circumference of the trunk?

Usage
```
eucalyptus
```

Format
The dataset has 1429 instances (eucalyptus trees) with 2 measurements: the height and the circumference.

Source
http://www.cmap.polytechnique.fr/~lepennec/fr/teaching/

evaluation
Evaluation of classification or regression predictions

Description
Evaluation predictions of a classification or a regression model.

Usage
```
evaluation(
  predictions,
  gt,
  eval = ifelse(is.factor(gt), "accuracy", "r2"),
  ...
)
```

Arguments
- `predictions`: The predictions of a classification model (factor or vector).
- `gt`: The ground truth of the dataset (factor or vector).
- `eval`: The evaluation method.
- `...`: Other parameters.
evaluation.accuracy

Value

The evaluation of the predictions (numeric value).

See Also

calification.accuracy, evaluation.fmeasure, evaluation.fowlkesmallowed, evaluation.goodness, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation.recall, evaluation.msep, evaluation.r2, performance

Examples

```r
require (datasets)
data (iris)
d = splitdata (iris, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
# Default evaluation for classification
evaluation (pred.nb, d$test.y)
# Evaluation with two criteria
evaluation (pred.nb, d$test.y, eval = c ("accuracy", "kappa"))
data (trees)
d = splitdata (trees, 3)
model.linreg = LINREG (d$train.x, d$train.y)
pred.linreg = predict (model.linreg, d$test.x)
# Default evaluation for regression
evaluation (pred.linreg, d$test.y)
```

evaluation.accuracy Accuracy of classification predictions

Description

Evaluation predictions of a classification model according to accuracy.

Usage

evaluation.accuracy (predictions, gt, ...)

Arguments

- **predictions**: The predictions of a classification model (factor or vector).
- **gt**: The ground truth (factor or vector).
- **...**: Other parameters.

Value

The evaluation of the predictions (numeric value).
See Also

evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.goodness, evaluation.jaccard,
evaluation.kappa, evaluation.precision, evaluation.precision, evaluation.recall, evaluation

Examples

require (datasets)
data (iris)
d = splitdata (iris, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.accuracy (pred.nb, d$test.y)

evaluation.adjr2 Adjusted R2 evaluation of regression predictions

Description

Evaluation predictions of a regression model according to R2

Usage

evaluation.adjr2(predictions, gt, nrow = length(predictions), ncol, ...)

Arguments

predictions The predictions of a regression model (vector).
gt The ground truth (vector).
nrow Number of observations.
col Number of variables
... Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

evaluation.msep, evaluation

Examples

require (datasets)
data (trees)
d = splitdata (trees, 3)
model.linreg = LINREG (d$train.x, d$train.y)
pred.linreg = predict (model.linreg, d$test.x)
evaluation.r2 (pred.linreg, d$test.y)
evaluation.fmeasure

F-measure

Description
Evaluation predictions of a classification model according to the F-measure index.

Usage
```
evaluation.fmeasure(predictions, gt, beta = 1, positive = levels(gt)[1], ...)
```

Arguments
- `predictions` - The predictions of a classification model (factor or vector).
- `gt` - The ground truth (factor or vector).
- `beta` - The weight given to precision.
- `positive` - The label of the positive class.
- `...` - Other parameters.

Value
The evaluation of the predictions (numeric value).

See Also
- `evaluation.accuracy`, `evaluation.fowlkesmallows`, `evaluation.goodness`, `evaluation.jaccard`, `evaluation.kappa`, `evaluation.precision`, `evaluation.recall`, `evaluation`

Examples
```
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.fmeasure (pred.nb, d$test.y)
```
Fowlkes–Mallows index

Description

Evaluation predictions of a classification model according to the Fowlkes–Mallows index.

Usage

evaluation.fowlkesmallows(predictions, gt, positive = levels(gt)[1], ...)

Arguments

predictions The predictions of a classification model (factor or vector).
gt The ground truth (factor or vector).
positive The label of the positive class.
... Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

evaluation.accuracy, evaluation.fmeasure, evaluation.goodness, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation.precision, evaluation.recall, evaluation

Examples

```
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.fowlkesmallows (pred.nb, d$test.y)
```
evaluation.goodness \hspace{1cm} \textit{Goodness}

\begin{description}
\item[Description] Evaluation predictions of a classification model according to Goodness index.
\item[Usage]
\texttt{evaluation.goodness(predictions, gt, beta = 1, positive = levels(gt)[1], ...)}
\item[Arguments]
\begin{itemize}
\item \texttt{predictions} \hspace{1cm} The predictions of a classification model (factor or vector).
\item \texttt{gt} \hspace{1cm} The ground truth (factor or vector).
\item \texttt{beta} \hspace{1cm} The weight given to precision.
\item \texttt{positive} \hspace{1cm} The label of the positive class.
\item[... \hspace{1cm} Other parameters.]
\end{itemize}
\item[Value] The evaluation of the predictions (numeric value).
\item[See Also]
\texttt{evaluation.accuracy, evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation.recall, evaluation}
\item[Examples]
\begin{verbatim}
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", ":") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.goodness (pred.nb, d$test.y)
\end{verbatim}
\end{description}
Description

Evaluation predictions of a classification model according to Jaccard index.

Usage

evaluation.jaccard(predictions, gt, positive = levels(gt)[1], ...)

Arguments

- predictions: The predictions of a classification model (factor or vector).
- gt: The ground truth (factor or vector).
- positive: The label of the positive class.
- ...: Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

evaluation.accuracy, evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.goodness, evaluation.kappa, evaluation.precision, evaluation.recall, evaluation

Examples

```r
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "*", ") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.jaccard (pred.nb, d$test.y)
```
evaluation.kappa

Kappa evaluation of classification predictions

Description

Evaluation predictions of a classification model according to kappa.

Usage

```r
evaluation.kappa(predictions, gt, ...)
```

Arguments

- `predictions` The predictions of a classification model (`factor` or `vector`).
- `gt` The ground truth (`factor` or `vector`).
- `...` Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

- `evaluation.accuracy`
- `evaluation.fmeasure`
- `evaluation.fowlkesmallows`
- `evaluation.goodness`
- `evaluation.jaccard`
- `evaluation.precision`
- `evaluation.recall`
- `evaluation`

Examples

```r
require(datasets)
data(iris)
d = splitdata(iris, 5)
model.nb = NB(d$train.x, d$train.y)
pred.nb = predict(model.nb, d$test.x)
evaluation.kappa(pred.nb, d$test.y)
```

evaluation.msep

MSEP evaluation of regression predictions

Description

Evaluation predictions of a regression model according to MSEP.

Usage

```r
evaluation.msep(predictions, gt, ...)
```
evaluation.precision

Arguments

predictions The predictions of a regression model (vector).
gt The ground truth (vector).
... Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

evaluation.r2, evaluation

Examples

```r
require (datasets)
data (trees)
d = splitdata (trees, 3)
model.lin = LINREG (d$train.x, d$train.y)
pred.lin = predict (model.lin, d$test.x)
evaluation.msep (pred.lin, d$test.y)
```

Description

Evaluation predictions of a classification model according to precision. Works only for two classes problems.

Usage

evaluation.precision(predictions, gt, positive = levels(gt)[1], ...)

Arguments

predictions The predictions of a classification model (factor or vector).
gt The ground truth (factor or vector).
positive The label of the positive class.
... Other parameters.

Value

The evaluation of the predictions (numeric value).
See Also

evaluation.accuracy, evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.goodness,
evaluation.jaccard, evaluation.kappa, evaluation.recall, evaluation

tree

Examples

require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.precision (pred.nb, d$test.y)

evaluation.r2 R2 evaluation of regression predictions

Description

Evaluation predictions of a regression model according to R2

Usage

evaluation.r2(predictions, gt, ...)

Arguments

predictions The predictions of a regression model (vector).
gt The ground truth (vector).
... Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

evaluation.msep, evaluation

Examples

require (datasets)
data (trees)
d = splitdata (trees, 3)
model.linreg = LINREG (d$train.x, d$train.y)
pred.linreg = predict (model.linreg, d$test.x)
evaluation.r2 (pred.linreg, d$test.y)
evaluation.recall Recall of classification predictions

Description
Evaluation predictions of a classification model according to recall. Works only for two classes problems.

Usage

evaluation.recall(predictions, gt, positive = levels(gt)[1], ...)

Arguments

predictions The predictions of a classification model (factor or vector).
gt The ground truth (factor or vector).
positive The label of the positive class.
... Other parameters.

Value
The evaluation of the predictions (numeric value).

See Also

evaluation.accuracy, evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.goodness, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation

Examples

require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.recall (pred.nb, d$test.y)
exportgraphics

Open a graphics device

Description

Starts the graphics device driver

Usage

exportgraphics(file, type = tail(strsplit(file, split = ".")[[1]], 1), ...)

Arguments

file A character string giving the name of the file.

Type The type of graphics device.

... Other parameters.

See Also

closegraphics, toggleexport, Devices

Examples

Not run:
data (iris)
exportgraphics ("export.pdf")
plotdata (iris [, -5], iris [, 5])
closegraphics()

End(Not run)

exportgraphics.off

Toggle graphic exports

Description

Toggle graphic exports on and off
Usage

exportgraphics.off()

exportgraphics.on()

toggleexport(export = NULL)

toggleexport.off()

toggleexport.on()

Arguments

export If TRUE, exports are activated, if FALSE, exports are deactivated. If null, switches on and off.

See Also

closegraphics, exportgraphics

Examples

Not run:
data (iris)
toggleexport (FALSE)
exportgraphics ("export.pdf")
plotdata (iris [, -5], iris [, 5])
closegraphics()
toggleexport (TRUE)
exportgraphics ("export.pdf")
plotdata (iris [, -5], iris [, 5])
closegraphics()

End(Not run)

factorial-class Factorial analysis results

Description

This class contains the classification model obtained by the CDA method.

See Also

CA, MCA, PCA, plot.factorial
Description

Apply a classification method after a subset of features has been selected.

Usage

```
FEATURESELECTION(
  train,
  labels,
  algorithm = c("ranking", "forward", "backward", "exhaustive"),
  unieval = if (algorithm[1] == "ranking") c("fisher", "fstat", "relief", "inertiaratio")
    else NULL,
  uninb = NULL,
  unithreshold = NULL,
  multieval = if (algorithm[1] == "ranking") NULL else c("cfs", "fstat", "inertiaratio",
    "wrapper"),
  wrapmethod = NULL,
  mainmethod = wrapmethod,
  tune = FALSE,
  ...
)
```

Arguments

- `train`: The training set (description), as a `data.frame`.
- `labels`: Class labels of the training set (vector or factor).
- `algorithm`: The feature selection algorithm.
- `unieval`: The (univariate) evaluation criterion. `uninb`, `unithreshold` or `multieval` must be specified.
- `uninb`: The number of selected feature (univariate evaluation).
- `unithreshold`: The threshold for selecting feature (univariate evaluation).
- `multieval`: The (multivariate) evaluation criterion.
- `wrapmethod`: The classification method used for the wrapper evaluation.
- `mainmethod`: The final method used for data classification. If a wrapper evaluation is used, the same classification method should be used.
- `tune`: If true, the function returns parameters instead of a classification model.
- `...`: Other parameters.

See Also

`selectfeatures`, `predict.selection`, `selection-class`
Examples
Not run:
require (datasets)
data (iris)
FEATURESELECTION (iris [, -5], iris [, 5], uninb = 2, mainmethod = LDA)
End(Not run)

filter.rules

Filtering a set of rules

Description
This function facilitate the selection of a subset from a set of rules.

Usage

filter.rules(
 rules,
 pattern = NULL,
 left = pattern,
 right = pattern,
 removeMatches = FALSE
)

Arguments

rules A set of rules.
pattern A pattern to match (antecedent and consequent): a character string.
left A pattern to match (antecedent only): a character string.
right A pattern to match (consequent only): a character string.
removeMatches A logical indicating whether to remove matching rules (TRUE) or to keep those (FALSE).

Value
The filtered set of rules.

See Also

apriori, subset
Examples

```r
require("arules")
data("Adult")
r = apriori (Adult)
filter.rules (r, right = "marital-status=")
subset (r, subset = rhs %pin% "marital-status=")
```

frequentwords

Frequent words

Most frequent words of the corpus.

Usage

```r
frequentwords(
  corpus,
  nb,
  mincount = 5,
  minphrasetcnt = NULL,
  ngram = 1,
  lang = "en",
  stopwords = lang
)
```

Arguments

- **corpus**: The corpus of documents (a vector of characters) or the vocabulary of the documents (result of function `getvocab`).
- **nb**: The number of words to be returned.
- **mincount**: Minimum word count to be considered as frequent.
- **minphrasetcnt**: Minimum collocation of words count to be considered as frequent.
- **ngram**: Maximum size of n-grams.
- **lang**: The language of the documents (NULL if no stemming).
- **stopwords**: Stopwords, or the language of the documents. NULL if stop words should not be removed.

Value

The most frequent words of the corpus.

See Also

- `getvocab`
Examples

```r
## Not run:
text = loadtext("http://mattmahoney.net/dc/text8.zip")
frequentwords(text, 100)
vocab = getvocab(text)
frequentwords(vocab, 100)

## End(Not run)
```

general.rules Remove redundancy in a set of rules

Description

This function remove every redundant rules, keeping only the most general ones.

Usage

general.rules(r)

Arguments

r A set of rules.

Value

A set of rules, without redundancy.

See Also

apriori

Examples

```r
require("arules")
data("Adult")
r = apriori(Adult)
inspect(general.rules(r))
```
getvocab

Extract words and phrases from a corpus

Description

Extract words and phrases from a corpus of documents.

Usage

getvocab(
corpus,
mincount = 5,
minphrasecount = NULL,
ngram = 1,
lang = "en",
stopwords = lang,
...
)

Arguments

corpus The corpus of documents (a vector of characters).
mincount Minimum word count to be considered as frequent.
minphrasecount Minimum collocation of words count to be considered as frequent.
ngram maximum size of n-grams.
lang The language of the documents (NULL if no stemming).
stopwords Stopwords, or the language of the documents. NULL if stop words should not be removed.
...
Other parameters.

Value

The vocabulary used in the corpus of documents.

See Also

plotzipf, stopwords, create_vocabulary

Examples

Not run:
text = loadtext("http://mattmahoney.net/dc/text8.zip")
vocab1 = getvocab(text) # With stemming
nrow(vocab1)
vocab2 = getvocab(text, lang = NULL) # Without stemming
nrow(vocab2)

End(Not run)
Classification using Gradient Boosting

Description
This function builds a classification model using Gradient Boosting.

Usage

GRADIENTBOOSTING(
 train,
 labels,
 ntree = 500,
 learningrate = 0.3,
 tune = FALSE,
 ...
)

Arguments

- `train`: The training set (description), as a `data.frame`.
- `labels`: Class labels of the training set (`vector` or `factor`).
- `ntree`: The number of trees in the forest.
- `learningrate`: The learning rate (between 0 and 1).
- `tune`: If true, the function returns parameters instead of a classification model.
- `...`: Other parameters.

Value
The classification model.

See Also
xgboost

Examples

```r
## Not run:
require(datasets)
data(iris)
GRADIENTBOOSTING(iris[, -5], iris[, 5])
## End(Not run)
```
HCA

Hierarchical Cluster Analysis method

Description

Run the HCA method for clustering.

Usage

HCA(d, method = c("ward", "single"), k = NULL, ...)

Arguments

- **d**: The dataset (matrix or data.frame).
- **method**: Character string defining the clustering method.
- **k**: The number of cluster.
- **...**: Other parameters.

Value

The cluster hierarchy (hca object).

See Also

agnes

Examples

```r
require (datasets)
data (iris)
HCA (iris [, -5], method = "ward", k = 3)
```

intern

Clustering evaluation through internal criteria

Description

Evaluation a clustering algorithm according to internal criteria.

Usage

```r
intern(clus, d, eval = "intraclass", type = c("global", "cluster"))
```
Arguments

clus The extracted clusters.
d The dataset.
eval The evaluation criteria.
type Indicates whether a "global" or a "cluster"-wise evaluation should be used.

Value

The evaluation of the clustering.

See Also

compare, stability, intern.dunn, intern.interclass, intern.intraclass

Examples

require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
intern (km$clus, iris [, -5])
intern (km$clus, iris [, -5], type = "cluster")
intern (km$clus, iris [, -5], eval = c ("intraclass", "interclass"))
intern (km$clus, iris [, -5], eval = c ("intraclass", "interclass"), type = "cluster")

intern.dunn Clustering evaluation through Dunn's index

Description

Evaluation a clustering algorithm according to Dunn's index.

Usage

intern.dunn(clus, d, type = c("global"))

Arguments

clus The extracted clusters.
d The dataset.
type Indicates whether a "global" or a "cluster"-wise evaluation should be used.

Value

The evaluation of the clustering.
intern.interclass

Clustering evaluation through interclass inertia

Description

Evaluation a clustering algorithm according to interclass inertia.

Usage

```r
intern.interclass(clus, d, type = c("global", "cluster"))
```

Arguments

- `clus`: The extracted clusters.
- `d`: The dataset.
- `type`: Indicates whether a "global" or a "cluster"-wise evaluation should be used.

Value

The evaluation of the clustering.

See Also

`intern, intern.dunn, intern.intraclass`

Examples

```r
require (datasets)
data (iris)
kmc = KMEANS (iris [, -5], k = 3)
intern.dunn (kmc$clus, iris [, -5])
```

```r
intern.interclass (kmc$clus, iris [, -5])
```
Intern.intraclass
Clustering evaluation through intraclass inertia

Description
Evaluation a clustering algorithm according to intraclass inertia.

Usage
```r
intern.intraclass(clus, d, type = c("global", "cluster"))
```

Arguments
- `clus` The extracted clusters.
- `d` The dataset.
- `type` Indicates whether a "global" or a "cluster"-wise evaluation should be used.

Value
The evaluation of the clustering.

See Also
- `intern`, `intern.dunn`, `intern.interclass`

Examples
```r
require(datasets)
data(iris)
km = KMEANS(iris[, -5], k = 3)
intern.intraclass(km$clus, iris[, -5])
```

Ionosphere
Ionosphere dataset

Description
This is a dataset from the UCI repository. This radar data was collected by a system in Goose Bay, Labrador. This system consists of a phased array of 16 high-frequency antennas with a total transmitted power on the order of 6.4 kilowatts. See the paper for more details. The targets were free electrons in the ionosphere. "Good" radar returns are those showing evidence of some type of structure in the ionosphere. "Bad" returns are those that do not; their signals pass through the ionosphere. Received signals were processed using an autocorrelation function whose arguments are the time of a pulse and the pulse number. There were 17 pulse numbers for the Goose Bay system. Instances in this database are described by 2 attributes per pulse number, corresponding to the complex values returned by the function resulting from the complex electromagnetic signal. One attribute with constant value has been removed.
Usage

ionosphere

Format

The dataset has 351 instances described by 34. The last variable is the class.

Source

https://archive.ics.uci.edu/ml/datasets/ionosphere

kaiser
Kaiser rule

Description

Apply the Kaiser rule to determine the appropriate number of PCA axes.

Usage

kaiser(pca)

Arguments

pca The PCA result (object of class factorial-class).

See Also

PCA, factorial-class

Examples

```
require (datasets)
data (iris)
pca = PCA (iris, quali.sup = 5)
kaiser (pca)
```
KERREG

Kernel Regression

Description

This function builds a kernel regression model.

Usage

```r
KERREG(x, y, bandwidth = 1, tune = FALSE, ...)
```

Arguments

- `x`: Predictor matrix.
- `y`: Response vector.
- `bandwidth`: The bandwidth parameter.
- `tune`: If true, the function returns parameters instead of a classification model.
- `...`: Other parameters.

Value

The classification model, as an object of class `model-class`.

See Also

`npregress`

Examples

```r
require(datasets)
data(trees)
KERREG(trees[, -3], trees[, 3])
```

KMEANS

K-means method

Description

Run K-means for clustering.
Usage

KMEANS(
 d,
 k = 9,
 criterion = c("none", "pseudo-F"),
 graph = FALSE,
 nstart = 10,
 ...
)

Arguments

 d The dataset (matrix or data.frame).
 k The number of cluster.
 criterion The criterion for cluster number selection. If none, k is used, if not the number of cluster is selected between 2 and k.
 graph A logical indicating whether or not a graphic should be plotted (cluster number selection).
 nstart Define how many random sets should be chosen.
 ... Other parameters.

Value

 The clustering (kmeans object).

See Also

 kmeans, predict.kmeans

Examples

 require (datasets)
 data (iris)
 KMEANS (iris [, -5], k = 3)
 KMEANS (iris [, -5], criterion = "pseudo-F") # With automatic detection of the number of clusters

kmeans.getk Estimation of the number of clusters for K-means

Description

 Estimate the optimal number of cluster of the K-means clustering method.
Usage

```r
kmeans.getk(
  d,
  max = 9,
  criterion = "pseudo-F",
  graph = TRUE,
  nstart = 10,
  seed = NULL
)
```

Arguments

- `d`: The dataset (matrix or data.frame).
- `max`: The maximum number of clusters. Values from 2 to max are evaluated.
- `criterion`: The criterion to be optimized. "pseudo-F" is the only criterion implemented in the current version.
- `graph`: A logical indicating whether or not a graphic should be plotted.
- `nstart`: The number of random sets chosen for `kmeans` initialization.
- `seed`: A specified seed for random number generation.

Value

The optimal number of cluster of the K-means clustering method according to the chosen criterion.

See Also

`pseudoF`, `kmeans`

Examples

```r
require (datasets)
data (iris)
kmeans.getk (iris [, -5])
```

KNN

Classification using k-NN

Description

This function builds a classification model using Logistic Regression.

Usage

```r
KNN(train, labels, k = 1:10, tune = FALSE, ...)
```
knn-class

Arguments

- **train**: The training set (description), as a *data.frame*.
- **labels**: Class labels of the training set (vector or factor).
- **k**: The k parameter.
- **tune**: If true, the function returns parameters instead of a classification model.
- **...**: Other parameters.

Value

The classification model.

See Also

- `knn`

Examples

```r
require(datasets)
data(iris)
KNN(iris[, -5], iris[, 5])
```

knn-class

K Nearest Neighbours model

Description

This class contains the classification model obtained by the k-NN method.

Slots

- **train**: The training set (description). A *data.frame*.
- **labels**: Class labels of the training set. Either a *factor* or an integer *vector*.
- **k**: The k parameter.

See Also

- `KNN`, `predict.knn`
LDA

Classification using Linear Discriminant Analysis

Description

This function builds a classification model using Linear Discriminant Analysis.

Usage

LDA(train, labels, tune = FALSE, ...)

Arguments

train
The training set (description), as a data.frame.

labels
Class labels of the training set (vector or factor).

tune
If true, the function returns parameters instead of a classification model.

...

Other parameters.

Value

The classification model.

See Also

lda

Examples

require (datasets)
data (iris)
LDA (iris [, -5], iris [, 5])

leverageplot
Plot the leverage points of a linear regression model

Description

Plot the leverage points of a linear regression model.

Usage

leverageplot(model, index = NULL, labels = NULL)
Arguments

model The model to be plotted.
index The index of the variable used for for the x-axis.
labels The labels of the instances.

Examples

```r
require (datasets)
data (trees)
model = LINREG (trees [, -3], trees [, 3])
leverageplot (model)
```

Description

This function builds a linear regression model. Standard least square method, variable selection, factorial methods are available.

Usage

```r
LINREG(
x, 
y, 
quali = c("none", "intercept", "slope", "both"), 
reg = c("linear", "subset", "ridge", "lasso", "elastic", "pcr", "plsifer"), 
regeval = c("r2", "bic", "adjr2", "cp", "mse", "scale = TRUE,
lambda = 10^seq(-5, 5, length.out = 101),
alpha = 0.5,
graph = TRUE,
tune = FALSE,
... )
```

Arguments

x Predictor matrix.
y Response vector.
quali Indicates how to use the qualitative variables.
reg The algorithm.
regeval The evaluation criterion for subset selection.
scale If true, PCR and PLS use scaled dataset.
lambda The lambda parameter of Ridge, Lasso and Elastic net regression.
alpha The elasticnet mixing parameter.

graph A logical indicating whether or not graphics should be plotted (ridge, LASSO and elastic net).

tune If true, the function returns parameters instead of a classification model.

... Other parameters.

Value

The classification model, as an object of class model-class.

See Also

lm, regsubsets, mvr, glmnet

Examples

Not run:
require (datasets)
With one independent variable
data (cars)
LINREG (cars [, -2], cars [, 2])
With two independent variables
data (trees)
LINREG (trees [, -3], trees [, 3])
With non numeric variables
data (ToothGrowth)
LINREG (ToothGrowth [, -1], ToothGrowth [, 1], quali = "intercept") # Different intercept
LINREG (ToothGrowth [, -1], ToothGrowth [, 1], quali = "slope") # Different slope
LINREG (ToothGrowth [, -1], ToothGrowth [, 1], quali = "both") # Complete model
With multiple numeric variables
data (mtcars)
LINREG (mtcars [, -1], mtcars [, 1])
LINREG (mtcars [, -1], mtcars [, 1], reg = "subset", regeval = "adjr2")
LINREG (mtcars [, -1], mtcars [, 1], reg = "ridge")
LINREG (mtcars [, -1], mtcars [, 1], reg = "lasso")
LINREG (mtcars [, -1], mtcars [, 1], reg = "elastic")
LINREG (mtcars [, -1], mtcars [, 1], reg = "pcr")
LINREG (mtcars [, -1], mtcars [, 1], reg = "plsr")

End(Not run)

linsep Linsep dataset

Description

Synthetic dataset.
loadtext

Usage

linsep

Format

Class A contains 50 observations and class B contains 500 observations. There are two numeric variables: X and Y.

Author(s)

Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>

loadtext
load a text file

Description

(Down)Load a text file (and extract it if it is in a zip file).

Usage

loadtext(
 file = file.choose(),
 dir = "~/",
 collapse = TRUE,
 sep = NULL,
 categories = NULL
)

Arguments

- **file**: The path or URL of the text file.
- **dir**: The (temporary) directory, where the file is downloaded. The file is deleted at the end of this function.
- **collapse**: Indicates whether or not lines of each documents should collapse together or not.
- **sep**: Separator between text fields.
- **categories**: Columns that should be considered as categorial data.

Value

The text contained in the downloaded file.

See Also

download.file, unzip
Examples

```r
## Not run:
text = loadtext("http://mattmahoney.net/dc/text8.zip")

## End(Not run)
```

Description

This function builds a classification model using Logistic Regression.

Usage

```r
LR(train, labels, tune = FALSE, ...)
```

Arguments

- `train`: The training set (description), as a `data.frame`.
- `labels`: Class labels of the training set (vector or factor).
- `tune`: If true, the function returns parameters instead of a classification model.
- `...`: Other parameters.

Value

The classification model.

See Also

`multinom`

Examples

```r
require(datasets)
data(iris)
LR(iris[, -5], iris[, 5])
```
Multiple Correspondence Analysis (MCA)

Description

Performs Multiple Correspondence Analysis (MCA) with supplementary individuals, supplementary quantitative variables and supplementary categorical variables. Performs also Specific Multiple Correspondence Analysis with supplementary categories and supplementary categorical variables. Missing values are treated as an additional level, categories which are rare can be ventilated.

Usage

```r
MCA(
  d,
  ncp = 5,
  ind.sup = NULL,
  quanti.sup = NULL,
  quali.sup = NULL,
  row.w = NULL
)
```

Arguments

- `d`: A data frame or a table with n rows and p columns, i.e. a contingency table.
- `ncp`: The number of dimensions kept in the results (by default 5).
- `ind.sup`: A vector indicating the indexes of the supplementary individuals.
- `quanti.sup`: A vector indicating the indexes of the quantitative supplementary variables.
- `quali.sup`: A vector indicating the indexes of the categorical supplementary variables.
- `row.w`: An optional row weights (by default, a vector of 1 for uniform row weights); the weights are given only for the active individuals.

Value

The MCA on the dataset.

See Also

`MCA`, `CA`, `PCA`, `plot.factorial`, `factorial-class`

Examples

```r
data (tea, package = "FactoMineR")
MCA (tea, quanti.sup = 19, quali.sup = 20:36)
```
MEANSHIFT

MeanShift method

Description

Run MeanShift for clustering.

Usage

MEANSHIFT(
 d,
 mskernel = "NORMAL",
 bandwidth = rep(1, ncol(d)),
 alpha = 0,
 iterations = 10,
 epsilon = 1e-08,
 epsilonCluster = 1e-04,
 ...
)

Arguments

d The dataset (matrix or data.frame).
mskernel A string indicating the kernel associated with the kernel density estimate that the mean shift is optimizing over.
bandwidth Used in the kernel density estimate for steepest ascent classification.
alpha A scalar tuning parameter for normal kernels.
iterations The number of iterations to perform mean shift.
epsilon A scalar used to determine when to terminate the iteration of a individual query point.
epsilonCluster A scalar used to determine the minimum distance between distinct clusters.
... Other parameters.

Value

The clustering (meanshift object).

See Also

meanShift, predict.meanshift
Examples

```r
## Not run:
require (datasets)
data (iris)
MEANSHIFT (iris [, -5], bandwidth = .75)
## End(Not run)
```

meanshift-class

MeanShift model

This class contains the model obtained by the MEANSHIFT method.

Slots

- `cluster`: A vector of integers indicating the cluster to which each point is allocated.
- `value`: A vector or matrix containing the location of the classified local maxima in the support.
- `data`: The leaning set.
- `kernel`: A string indicating the kernel associated with the kernel density estimate that the mean shift is optimizing over.
- `bandwidth`: Used in the kernel density estimate for steepest ascent classification.
- `alpha`: A scalar tuning parameter for normal kernels.
- `iterations`: The number of iterations to perform mean shift.
- `epsilon`: A scalar used to determine when to terminate the iteration of a individual query point.
- `epsilonCluster`: A scalar used to determine the minimum distance between distinct clusters.

See Also

- `MEANSHIFT`

MLP

Classification using Multilayer Perceptron

This function builds a classification model using Multilayer Perceptron.
Usage

MLP(
 train,
 labels,
 hidden = ifelse(is.vector(train), 2:(1 + nlevels(labels)), 2:(ncol(train) + nlevels(labels))),
 decay = 10^(-3:-1),
 methodparameters = NULL,
 tune = FALSE,
 ...
)

Arguments

train The training set (description), as a data.frame.
labels Class labels of the training set (vector or factor).
hidden The size of the hidden layer (if a vector, cross-over validation is used to chose the best size).
decay The decay (between 0 and 1) of the backpropagation algorithm (if a vector, cross-over validation is used to chose the best size).
methodparameters Object containing the parameters. If given, it replaces size and decay.
tune If true, the function returns parameters instead of a classification model.
... Other parameters.

Value

The classification model.

See Also

mnet

Examples

Not run:
require (datasets)
data (iris)
MLP (iris [, -5], iris [, 5], hidden = 4, decay = .1)

End(Not run)
MLPREG

Multi-Layer Perceptron Regression

Description
This function builds a regression model using MLP.

Usage
MLPREG(
 x,
 y,
 size = 2:(ifelse(is.vector(x), 2, ncol(x))),
 decay = 10^(-3:-1),
 params = NULL,
 tune = FALSE,
 ...
)

Arguments
x Predictor matrix.
y Response vector.
size The size of the hidden layer (if a vector, cross-over validation is used to chose the best size).
decay The decay (between 0 and 1) of the backpropagation algorithm (if a vector, cross-over validation is used to chose the best size).
params Object containing the parameters. If given, it replaces size and decay.
tune If true, the function returns parameters instead of a classification model.
...

Value
The classification model, as an object of class model-class.

See Also
nnet

Examples
```r
## Not run:
require (datasets)
data (trees)
MLPREG (trees [, -3], trees [, 3])

## End(Not run)
```
model-class

Generic classification or regression model

Description

This is a wrapper class containing the classification model obtained by any classification or regression method.

Slots

- `model` The wrapped model.
- `method` The name of the method.

See Also

`predict.model`, `predict`

movies

Movies dataset

Description

Extract from the movie lens dataset. Missing values have been imputed.

Usage

`movies`

Format

A set of 49 movies, rated by 55 users.

Source

https://grouplens.org/datasets/movielens/
NB

Classification using Naive Bayes

Description

This function builds a classification model using Naive Bayes.

Usage

NB(train, labels, tune = FALSE, ...)

Arguments

train The training set (description), as a data.frame.
labels Class labels of the training set (vector or factor).
tune If true, the function returns parameters instead of a classification model.
... Other parameters.

Value

The classification model.

See Also

naiveBayes

Examples

require (datasets)
data (iris)
NB (iris [, -5], iris [, 5])

NMF

Non-negative Matrix Factorization

Description

Return the NMF decomposition.

Usage

NMF(x, rank = 2, nstart = 10, ...)

ozone

Arguments

x A numeric dataset (data.frame or matrix).
rank Specification of the factorization rank.
nstart How many random sets should be chosen?
... Other parameters.

See Also

nmf

Examples

Not run:
install.packages("BiocManager")
BiocManager::install("Biobase")
install.packages("NMF")
require(datasets)
data(iris)
NMF(iris[, -5])

End(Not run)

ozone

Ozone dataset

Description

This dataset contains measurements on ozone level.

Usage

ozone

Format

Each instance is described by the maximum level of ozone measured during the day. Temperature, clouds, and wind are also recorded.

Source

https://r-stat-sc-donnees.github.io/ozone.txt
Description

This class contains main parameters for various learning methods.

Slots

decay The decay parameter.
hidden The number of hidden nodes.
epsilon The epsilon parameter.
gamma The gamma parameter.
cost The cost parameter.

See Also

MLP, MLR, SVM, SVR

PCA Principal Component Analysis (PCA)

Description

Performs Principal Component Analysis (PCA) with supplementary individuals, supplementary quantitative variables and supplementary categorical variables. Missing values are replaced by the column mean.

Usage

```r
PCA(
  d,
  scale.unit = TRUE,
  ncp = ncol(d) - length(quanti.sup) - length(quali.sup),
  ind.sup = NULL,
  quanti.sup = NULL,
  quali.sup = NULL,
  row.w = NULL,
  col.w = NULL
)
```
Arguments

d A data frame with n rows (individuals) and p columns (numeric variables).
data.frame

scale.unit A boolean, if TRUE (value set by default) then data are scaled to unit variance.
norm.factor

ncp The number of dimensions kept in the results (by default 5).

ind.sup A vector indicating the indexes of the supplementary individuals.

quanti.sup A vector indicating the indexes of the quantitative supplementary variables.

quali.sup A vector indicating the indexes of the categorical supplementary variables.

row.w An optional row weights (by default, a vector of 1 for uniform row weights); the
 weights are given only for the active individuals.

col.w An optional column weights (by default, uniform column weights); the weights
 are given only for the active variables.

Value

The PCA on the dataset.

See Also

PCA, CA, MCA, plot.factorial, kaiser, factorial-class

Examples

require (datasets)
data (iris)
PCA (iris, quali.sup = 5)

performance Performance estimation

Description

Estimate the performance of classification or regression methods using bootstrap or crossvalidation
(accuracy, ROC curves, confusion matrices, ...)

Usage

performance(
 methods,
 train.x,
 train.y,
 test.x = NULL,
 test.y = NULL,
 train.size = round(0.7 * nrow(train.x)),
 type = c("evaluation", "confusion", "roc", "cost", "scatter", "avsp"),
 protocol = c("bootstrap", "crossvalidation", "loocv", "holdout", "train"),

performance

```
eval = ifelse(is.factor(train.y), "accuracy", "r2"),
nruns = 10,
nfolds = 10,
new = TRUE,
lty = 1,
seed = NULL,
methodparameters = NULL,
names = NULL,
...)
``` 

Arguments

- **methods**
 The classification or regression methods to be evaluated.

- **train.x**
 The dataset (description/predictors), a matrix or data.frame.

- **train.y**
 The target (class labels or numeric values), a factor or vector.

- **test.x**
 The test dataset (description/predictors), a matrix or data.frame.

- **test.y**
 The (test) target (class labels or numeric values), a factor or vector.

- **train.size**
 The size of the training set (holdout estimation).

- **type**
 The type of evaluation (confusion matrix, ROC curve, ...)

- **protocol**
 The evaluation protocol (crossvalidation, bootstrap, ...)

- **eval**
 The evaluation functions.

- **nruns**
 The number of bootstrap runs.

- **nfolds**
 The number of folds (crossvalidation estimation).

- **new**
 A logical value indicating whether a new plot should be created or not (cost curves or ROC curves).

- **lty**
 The line type (and color) specified as an integer (cost curves or ROC curves).

- **seed**
 A specified seed for random number generation (useful for testing different method with the same bootstrap samplings).

- **methodparameters**
 Method parameters (if null tuning is done by cross-validation).

- **names**
 Method names.

- **...**
 Other specific parameters for the leaning method.

Value

The evaluation of the predictions (numeric value).

See Also

confusion, evaluation, cost.curves, roc.curves
Examples

Not run:
```r
require("datasets")
data(iris)
# One method, one evaluation criterion, bootstrap estimation
performance(NB, iris[, -5], iris[, 5], seed = 0)
# One method, two evaluation criteria, train set estimation
performance(NB, iris[, -5], iris[, 5], eval = c("accuracy", "kappa"),
protocol = "train", seed = 0)
# Three methods, ROC curves, LOOCV estimation
performance(c(NB, LDA, LR), linsep[, -3], linsep[, 3], type = "roc",
protocol = "loocv", seed = 0)
# List of methods in a variable, confusion matrix, hodout estimation
classif = c(NB, LDA, LR)
performance(classif, iris[, -5], iris[, 5], type = "confusion",
protocol = "holdout", seed = 0, names = c("NB", "LDA", "LR"))
# List of strings (method names), scatterplot evaluation, crossvalidation estimation
classif = c("NB", "LDA", "LR")
performance(classif, iris[, -5], iris[, 5], type = "scatter",
protocol = "crossvalidation", seed = 0)
# Actual vs. predicted
data(trees)
performance(LINREG, trees[, -3], trees[, 3], type = "avsp")
```
End(Not run)

plot.cda

Plot function for cda-class

Description

Plot the learning set (and test set) on the canonical axes obtained by Canonical Discriminant Analysis (function CDA).

Usage

```r
## S3 method for class 'cda'
plot(x, newdata = NULL, axes = 1:2, ...)
```

Arguments

- `x`
The classification model (object of class cda-class).
- `newdata`
The test set (matrix or data.frame).
- `axes`
The canonical axes to be printed (numeric vector).
- `...`
Other parameters.

See Also

CDA, predict.cda, cda-class
Examples

```r
require (datasets)
data (iris)
model = CDA (iris [, -5], iris [, 5])
plot (model)
```

plot.factorial

Plot function for factorial-class

Description

Plot PCA, CA or MCA.

Usage

```r
## S3 method for class 'factorial'
plot(x, type = c("ind", "cor", "eig"), axes = c(1, 2), ...)  
```

Arguments

- `x` The PCA, CA or MCA result (object of class factorial-class).
- `type` The graph to plot.
- `axes` The factorial axes to be printed (numeric vector).
- `...` Other parameters.

See Also

`CA`, `MCA`, `PCA`, `plot.CA`, `plot.MCA`, `plot.PCA`, `factorial-class`

Examples

```r
require (datasets)
data (iris)
pca = PCA (iris, quali.sup = 5)
plot (pca)
plot (pca, type = "cor")
plot (pca, type = "eig")
```
plot.som
Plot function for som-class

Description

Plot Kohonen’s self-organizing maps.

Usage

```
## S3 method for class 'som'
plot(x, type = c("scatter", "mapping"), col = NULL, labels = FALSE, ...)
```

Arguments

- `x`
 The Kohonen’s map (object of class `som-class`).
- `type`
 The type of plot.
- `col`
 Color of the data points
- `labels`
 A vector of character strings to be printed instead of points in the plot.
- `...`
 Other parameters.

See Also

`SOM`, `som-class`

Examples

```r
require (datasets)
data (iris)
som = SOM (iris[, -5], xdim = 5, ydim = 5, post = "ward", k = 3)
plot (som) # Scatter plot (default)
plot (som, type = "mapping") # Kohonen map
```

plotavsp
Plot actual vs. predictions

Description

Plot actual vs. predictions of a regression model.

Usage

```
plotavsp(predictions, gt)
```

Examples

```r
require (datasets)
data (iris)
predictions = predict (lm (Sepal.Length ~ ., data = iris))
plotavsp (predictions, gt)
```
Arguments

- predictions: The predictions of a classification model (vector).
- gt: The ground truth of the dataset (vector).

See Also

confusion, evaluation.accuracy, evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.goodness, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation.recall, evaluation.msep, evaluation.r2, performance

Examples

```r
require(datasets)
data(trees)
model = LINREG(trees[, -3], trees[, 3])
pred = predict(model, trees[, -3])
plotavsp(pred, trees[, 3])
```

plotcloud

Plot word cloud

Description

Plot a word cloud based on the word frequencies in the documents.

Usage

`plotcloud(corpus, k = NULL, stopwords = "en", ...)`

Arguments

- corpus: The corpus of documents (a vector of characters) or the vocabulary of the documents (result of function getvocab).
- k: A categorial variable (vector or factor).
- stopwords: Stopwords, or the language of the documents. NULL if stop words should not be removed.
- ...: Other parameters.

See Also

plotzipf, getvocab, wordcloud
Examples

Not run:
```r
text = loadtext("http://mattmahoney.net/dc/text8.zip")
plotcloud(text)
vocab = getvocab(text, mincount = 1, lang = NULL, stopwords = "en")
plotcloud(vocab)
```
End(Not run)

plotclus

Generic Plot Method for Clustering

Description

Plot a clustering according to various parameters

Usage

```r
plotclus(
  clustering,
  d = NULL,
  type = c("scatter", "boxplot", "tree", "height", "mapping", "words"),
  centers = FALSE,
  k = NULL,
  tailsize = 9,
  ...
)
```

Arguments

- `clustering`: The clustering to be plotted.
- `d`: The dataset (matrix or data.frame), mandatory for some of the graphics.
- `type`: The type of plot.
- `centers`: Indicates whether or not cluster centers should be plotted (used only in scatter plots).
- `k`: Number of clusters (used only for hierarchical methods). If not specified an "optimal" value is determined.
- `tailsize`: Number of clusters showned (used only for height plots).
- `...`: Other parameters.

See Also

`treeplot, scatterplot, plot.som, boxclus`
Examples

```r
## Not run:
require (datasets)
data (iris)
ward = HCA (iris [, -5], method = "ward", k = 3)
plotclus (ward, iris [, -5], type = "scatter") # Scatter plot
plotclus (ward, iris [, -5], type = "boxplot") # Boxplot
plotclus (ward, iris [, -5], type = "tree") # Dendrogram
plotclus (ward, iris [, -5], type = "height") # Distances between merging clusters
som = SOM (iris [, -5], xdim = 5, ydim = 5, post = "ward", k = 3)
plotclus (som, iris [, -5], type = "scatter") # Scatter plot for SOM
plotclus (som, iris [, -5], type = "mapping") # Kohonen map

## End(Not run)
```

plotdata

Advanced plot function

Description

Plot a dataset.

Usage

```r
plotdata(
d, k = NULL,
type = c("pairs", "scatter", "parallel", "boxplot", "histogram", "barplot", "pie",
"heatmap", "heatmapc", "pca", "cda", "svd", "nmf", "tsne", "som", "words"),
legendpos = "topleft",
alpha = 200,
asp = 1,
labels = FALSE,
...)
```

Arguments

- **d**: A numeric dataset (data.frame or matrix).
- **k**: A categorial variable (vector or factor).
- **type**: The type of graphic to be plotted.
- **legendpos**: Position of the legend.
- **alpha**: Color opacity (0-255).
- **asp**: Aspect ratio (default: 1).
- **labels**: Indicates whether or not labels (row names) should be showned on the (scatter) plot.
- **...**: Other parameters.
Examples

require (datasets)
data (iris)
Without classification
plotdata (iris [, -5]) # Défault (pairs)
With classification
plotdata (iris [, -5], iris [, 5]) # Défault (pairs)
plotdata (iris [, 5]) # Column number
plotdata (iris) # Automatic detection of the classification (if only one factor column)
plotdata (iris, type = "scatter") # Scatter plot (PCA axis)
plotdata (iris, type = "parallel") # Parallel coordinates
plotdata (iris, type = "boxplot") # Boxplot
plotdata (iris, type = "histogram") # Histograms
plotdata (iris, type = "heatmap") # Heatmap
plotdata (iris, type = "heatmapc") # Heatmap (and hierarchcal clustering)
plotdata (iris, type = "pca") # Scatter plot (PCA axis)
plotdata (iris, type = "cda") # Scatter plot (CDA axis)
plotdata (iris, type = "svd") # Scatter plot (SVD axis)
plotdata (iris, type = "som") # Kohonen map
With only one variable
plotdata (iris [, 1], iris [, 5]) # Défault (data vs. index)
plotdata (iris [, 1], iris [, 5], type = "scatter") # Scatter plot (data vs. index)
plotdata (iris [, 1], iris [, 5], type = "boxplot") # Boxplot
With two variables
plotdata (iris [, 3:4], iris [, 5]) # Défault (scatter plot)
plotdata (iris [, 3:4], iris [, 5], type = "scatter") # Scatter plot
data (titanic)
plotdata (titanic, type = "barplot") # Barplots
plotdata (titanic, type = "pie") # Pie charts

plotzipf (corpus)

Description

Plot the frequency of words in a document agains the ranks of those words. It also plot the Zipf law.

Usage

plotzipf(corpus)

Arguments

corpus The corpus of documents (a vector of characters) or the vocabulary of the documents (result of function getvocab).

See Also

plotcloud, getvocab
Examples

```r
## Not run:
text = loadtext("http://mattmahoney.net/dc/text8.zip")
plotzipf(text)
vocab = getvocab(text, mincount = 1, lang = NULL)
plotzipf(vocab)

## End(Not run)
```

Description

This function builds a polynomial regression model.

Usage

```r
POLYREG(x, y, degree = 2, tune = FALSE, ...)
```

Arguments

- `x`: Predictor matrix.
- `y`: Response vector.
- `degree`: The polynom degree.
- `tune`: If true, the function returns paramters instead of a classification model.
- `...`: Other parameters.

Value

The classification model, as an object of class `model-class`.

See Also

`polyreg`

Examples

```r
## Not run:
require(datasets)
data(trees)
POLYREG(trees[, -3], trees[, 3])

## End(Not run)
```
predict.apriori
Model predictions

Description

This function predicts values based upon a model trained by `apriori.classif`. Observations that do not match any of the rules are labelled as "unmatched".

Usage

```r
## S3 method for class 'apriori'
predict(object, test, unmatched = "Unknown", ...)
```

Arguments

- `object`: The classification model (of class `apriori`, created by `apriori.classif`).
- `test`: The test set (a `data.frame`).
- `unmatched`: The class label given to the unmatched observations (a character string).
- `...`: Other parameters.

Value

A vector of predicted values (`factor`).

See Also

`APRIORI`, `apriori-class`, `apriori`

Examples

```r
require("datasets")
data(iris)
d = discretizeDF(iris,
default = list(method = "interval", breaks = 3, labels = c("small", "medium", "large")))
model = APRIORI(d[,-5], d[, 5], supp = .1, conf = .9, prune = TRUE)
predict(model, d[, -5])
```
predict.boosting

Model predictions

Description

This function predicts values based upon a model trained by a boosting method.

Usage

S3 method for class 'boosting'
predict(object, test, fuzzy = FALSE, ...)

Arguments

object The classification model (of class `boosting-class`, created by `ADABOOST` or `BAGGING`).
test The test set (a `data.frame`)
fuzzy A boolean indicating whether fuzzy classification is used or not.
... Other parameters.

Value

A vector of predicted values (factor).

See Also

`ADABOOST`, `BAGGING`, `boosting-class`

Examples

Not run:
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = BAGGING (d$train.x, d$train.y, NB)
predict (model, d$test.x)
model = ADABOOST (d$train.x, d$train.y, NB)
predict (model, d$test.x)

End(Not run)
predict.cda

Model predictions

Description
This function predicts values based upon a model trained by \texttt{CDA}.

Usage
\begin{verbatim}
S3 method for class 'cda'
predict(object, test, fuzzy = FALSE, ...)
\end{verbatim}

Arguments
\begin{itemize}
 \item \texttt{object} The classification model (of class \texttt{cda-class}, created by \texttt{CDA}).
 \item \texttt{test} The test set (a \texttt{data.frame})
 \item \texttt{fuzzy} A boolean indicating whether fuzzy classification is used or not.
 \item ... Other parameters.
\end{itemize}

Value
A vector of predicted values (factor).

See Also
\texttt{CDA, plot.cda, cda-class}

Examples
\begin{verbatim}
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = CDA (d$train.x, d$train.y)
predict (model, d$test.x)
\end{verbatim}

predict.dbs

Predict function for DBSCAN

Description
Return the closest DBSCAN cluster for a new dataset.

Usage
\begin{verbatim}
S3 method for class 'dbs'
predict(object, newdata, ...)
\end{verbatim}
predict.em

Arguments

- **object**: The classification model (of class `dbs-class`, created by `DBSCAN`).
- **newdata**: A new dataset (a `data.frame`), with same variables as the learning dataset.
- **...**: Other parameters.

See Also

`DBSCAN`

Examples

```r
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = DBSCAN (d$train.x, minpts = 5, eps = 0.65)
predict (model, d$test.x)
```

Description

Return the closest EM cluster for a new dataset.

Usage

```r
## S3 method for class 'em'
predict(object, newdata, ...)
```

Arguments

- **object**: The classification model (of class `em-class`, created by `EM`).
- **newdata**: A new dataset (a `data.frame`), with same variables as the learning dataset.
- **...**: Other parameters.

See Also

`EM`

Examples

```r
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = EM (d$train.x, 3)
predict (model, d$test.x)
```
predict.kmeans

Predict function for K-means

Description

Return the closest K-means cluster for a new dataset.

Usage

```r
## S3 method for class 'kmeans'
predict(object, newdata, ...)
```

Arguments

- `object`: The classification model (created by `KMEANS`).
- `newdata`: A new dataset (a `data.frame`), with same variables as the learning dataset.
- `...`: Other parameters.

See Also

`KMEANS`

Examples

```r
require(datasets)
data(iris)
d = splitdata(iris, 5)
model = KMEANS(d$train.x, k = 3)
predict(model, d$test.x)
```

predict.knn

Model predictions

Description

This function predicts values based upon a model trained by `KNN`.

Usage

```r
## S3 method for class 'knn'
predict(object, test, fuzzy = FALSE, ...)
```
predict.meanshift

Arguments

- object: The classification model (of class knn).
- test: The test set (a data.frame).
- fuzzy: A boolean indicating whether fuzzy classification is used or not.
- ...: Other parameters.

Value

A vector of predicted values (factor).

See Also

KNN, knn-class

Examples

```r
require(datasets)
data(iris)
d = splitdata(iris, 5)
model = KNN(d$train.x, d$train.y)
predict(model, d$test.x)
```

predict.meanshift Predict function for MeanShift

Description

Return the closest MeanShift cluster for a new dataset.

Usage

```r
## S3 method for class 'meanshift'
predict(object, newdata, ...)
```

Arguments

- object: The classification model (created by MEANSHIFT).
- newdata: A new dataset (a data.frame), with same variables as the learning dataset.
- ...: Other parameters.

See Also

MEANSHIFT
predict.model

Examples

Not run:
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = MEANSHIFT (d$train.x, bandwidth = .75)
predict (model, d$test.x)

End(Not run)

predict.model

Model predictions

Description

This function predicts values based upon a model trained by any classification or regression model.

Usage

S3 method for class 'model'
predict(object, test, fuzzy = FALSE, ...)

Arguments

object
The classification model (of class cda-class, created by CDA).
test
The test set (a data.frame).
fuzzy
A boolean indicating whether fuzzy classification is used or not.
...
Other parameters.

Value

A vector of predicted values (factor).

See Also

model-class

Examples

require (datasets)
data (iris)
d = splitdata (iris, 5)
model = LDA (d$train.x, d$train.y)
predict (model, d$test.x)
predict.selection Model predictions

Description

This function predicts values based upon a model trained by any classification or regression model.

Usage

S3 method for class 'selection'
predict(object, test, fuzzy = FALSE, ...)

Arguments

- `object`: The classification model (of class `cda-class`, created by `CDA`).
- `test`: The test set (a `data.frame`).
- `fuzzy`: A boolean indicating whether fuzzy classification is used or not.
- `...`: Other parameters.

Value

A vector of predicted values (`factor`).

See Also

`FEATURESELECTION`, `selection-class`

Examples

Not run:
require (datasets)
data (iris)
d = splitdata (iris, 5)
model = FEATURESELECTION (d$train.x, d$train.y, uninb = 2, mainmethod = LDA)
predict (model, d$test.x)
End(Not run)
predict.textmining Model predictions

Description

This function predicts values based upon a model trained for text mining.

Usage

```r
## S3 method for class 'textmining'
predict(object, test, fuzzy = FALSE, ...)
```

Arguments

- `object` The classification model (of class `textmining-class`, created by `TEXTMINING`).
- `test` The test set (a `data.frame`).
- `fuzzy` A boolean indicating whether fuzzy classification is used or not.
- `...` Other parameters.

Value

A vector of predicted values (factor).

See Also

`TEXTMINING`, `textmining-class`

Examples

```r
## Not run:
require (text2vec)
data ("movie_review")
d = movie_review [, 2:3]
d [, 1] = factor (d [, 1])
d = splitdata (d, 1)
model = TEXTMINING (d$train.x, NB, labels = d$train.y, mincount = 50)
pred = predict (model, d$test.x)
evaluation (pred, d$test.y)

## End(Not run)
```
print.apriori

Print a classification model obtained by APRIORI

Description

Print the set of rules in the classification model.

Usage

```r
## S3 method for class 'apriori'
print(x, ...)
```

Arguments

- `x`: The model to be printed.
- `...`: Other parameters.

See Also

APRIORI, predict.apriori, summary.apriori, apriori-class, apriori

Examples

```r
require("datasets")
data(iris)
d = discretizeDF(iris,
  default = list(method = "interval", breaks = 3, labels = c("small", "medium", "large")))
model = APRIORI(d[, -5], d[, 5], supp = .1, conf = .9, prune = TRUE)
print(model)
```

print.factorial

Plot function for factorial-class

Description

Print PCA, CA or MCA.

Usage

```r
## S3 method for class 'factorial'
print(x, ...)
```

Arguments

- `x`: The PCA, CA or MCA result (object of class factorial-class).
- `...`: Other parameters.
See Also

CA, MCA, PCA, print.CA, print.MCA, print.PCA, factorial-class

Examples

```r
require (datasets)
data (iris)
pca = PCA (iris, quali.sup = 5)
print (pca)
```

Description

Compute the pseudo-F of a clustering result obtained by the K-means method.

Usage

```r
pseudoF(clustering)
```

Arguments

- `clustering`: The clustering result (obtained by the function `kmeans`).

Value

The pseudo-F of the clustering result.

See Also

`kmeans.getk`, `KMEANS`, `kmeans`

Examples

```r
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
pseudoF (km)
```
QDA

Classification using Quadratic Discriminant Analysis

Description

This function builds a classification model using Quadratic Discriminant Analysis.

Usage

```r
QDA(train, labels, tune = FALSE, ...)
```

Arguments

- `train` The training set (description), as a `data.frame`.
- `labels` Class labels of the training set (vector or factor).
- `tune` If true, the function returns parameters instead of a classification model.
- `...` Other parameters.

Value

The classification model.

See Also

`qda`

Examples

```r
require (datasets)
data (iris)
QDA (iris [, -5], iris [, 5])
```

query.docs

Document query

Description

Search for documents similar to the query.

Usage

```r
query.docs(docvectors, query, vectorizer, nres = 5)
```
query.words

Arguments

- **docvectors**: The vectorized documents.
- **query**: The query (vectorized or raw text).
- **vectorizer**: The vectorizer that has been used to vectorize the documents.
- **nres**: The number of results.

Value

The indices of the documents the most similar to the query.

See Also

`vectorize.docs`, `sim2`

Examples

```r
## Not run:
require (text2vec)
data (movie_review)
vectorizer = vectorize.docs (corpus = movie_review$review,
                           minphrasecount = 50, returndata = FALSE)
docs = vectorize.docs (corpus = movie_review$review, vectorizer = vectorizer)
query.docs (docs, movie_review$review [1], vectorizer)
query.docs (docs, docs [1, ], vectorizer)
## End(Not run)
```

query.words

<table>
<thead>
<tr>
<th>Word query</th>
</tr>
</thead>
</table>

Description

Search for words similar to the query.

Usage

```r
query.words(wordvectors, origin, sub = NULL, add = NULL, nres = 5, lang = "en")
```

Arguments

- **wordvectors**: The vectorized words
- **origin**: The query (character).
- **sub**: Words to be substrated to the origin.
- **add**: Words to be Added to the origin.
- **nres**: The number of results.
- **lang**: The language of the words (NULL if no stemming).
Value

The Words the most similar to the query.

See Also

`vectorize.words`, `sim2`

Examples

```r
## Not run:
text = loadtext("http://mattmahoney.net/dc/text8.zip")
words = vectorize.words(text, minphrasenumber = 50)
query.words(words, origin = "paris", sub = "france", add = "germany")
query.words(words, origin = "berlin", sub = "germany", add = "france")
query.words(words, origin = "new_zealand")
## End(Not run)
```

RANDOMFOREST
Classification using Random Forest

Description

This function builds a classification model using Random Forest.

Usage

```r
RANDOMFOREST(
  train,
  labels,
  ntree = 500,
  nvar = if (!is.null(labels) & is.factor(labels)) max(floor(ncol(train)/3), 1) else
    floor(sqrt(ncol(train))),
  tune = FALSE,
  ...)
```

Arguments

- **train**: The training set (description), as a `data.frame`.
- **labels**: Class labels of the training set (vector or factor).
- **ntree**: The number of trees in the forest.
- **nvar**: Number of variables randomly sampled as candidates at each split.
- **tune**: If true, the function returns parameters instead of a classification model.
- **...**: Other parameters.
Value

The classification model.

See Also

randomForest

Examples

```r
## Not run:
require (datasets)
data (iris)
RANDOMFOREST (iris [, -5], iris [, 5])
## End(Not run)
```

reg1

reg1 dataset

Description

Artificial dataset for simple regression tasks.

Usage

```r
reg1
reg1.train
reg1.test
```

Format

50 instances and 3 variables. X, a numeric, K, a factor, and Y, a numeric (the target variable).

Author(s)

Alexandre Blansché <alexandre.blanche@univ-lorraine.fr>
reg2

reg2 dataset

Description

Artificial dataset for simple regression tasks.

Usage

```r
reg2
reg2.train
reg2.test
```

Format

- 50 instances and 2 variables. \(X \) and \(Y \) (the target variable) are both numeric variables.

Author(s)

Alexandre Blansché <alexandre.blansche@univ-lorraine.fr>

regplot

Plot function for a regression model

Description

Plot a regression model on a 2-D plot. The predictor \(x \) should be one-dimensional.

Usage

```r
regplot(model, x, y, margin = 0.1, ...)
```

Arguments

- `model`: The model to be plotted.
- `x`: The predictor vector.
- `y`: The response vector.
- `margin`: A margin parameter.
- `...`: Other graphical parameters

Examples

```r
require (datasets)
data (cars)
model = POLYREG (cars [, -2], cars [, 2])
regplot (model, cars [, -2], cars [, 2])
```
resplot

Plot the studentized residuals of a linear regression model

Description

Plot the studentized residuals of a linear regression model.

Usage

resplot(model, index = NULL, labels = NULL)

Arguments

model The model to be plotted.
index The index of the variable used for the x-axis.
labels The labels of the instances.

Examples

require (datasets)
data (trees)
model = LINREG (trees [, -3], trees [, 3])
resplot (model) # Ordered by index
resplot (model, index = 0) # Ordered by variable "Volume" (dependant variable)
resplot (model, index = 1) # Ordered by variable "Girth" (independant variable)
resplot (model, index = 2) # Ordered by variable "Height" (independant variable)

roc.curves

Plot ROC Curves

Description

This function plots ROC Curves of several classification predictions.

Usage

roc.curves(predictions, gt, methods.names = NULL)

Arguments

predictions The predictions of a classification model (factor or vector).
gt Actual labels of the dataset (factor or vector).
methods.names The name of the compared methods (vector).
Value

The evaluation of the predictions (numeric value).

See Also

cost.curves, performance

Examples

```r
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
model.nb = NB (d [, -5], d [, 5])
model.lda = LDA (d [, -5], d [, 5])
pred.nb = predict (model.nb, d [, -5])
pred.lda = predict (model.lda, d [, -5])
roc.curves (cbind (pred.nb, pred.lda), d [, 5], c ("NB", "LDA"))
```

Description

Rotation on two variables of a numeric dataset

Usage

```r
rotation(d, angle, axis = 1:2, range = 2 * pi)
```

Arguments

- `d`: The dataset.
- `angle`: The angle of the rotation.
- `axis`: The axis.
- `range`: The range of the angle (360, 2*pi, 100, ...)

Value

A rotated data matrix.

Examples

```r
d = data.parabol ()
d [, -3] = rotation (d [, -3], 45, range = 360)
plotdata (d [, -3], d [, 3])
```
runningtime | Running time

Description
Return the running time of a function

Usage
runningtime(FUN, ...)

Arguments
FUN
The function to be evaluated.
...
The parameters to be passes to function FUN.

Value
The running time of function FUN.

See Also
difftime

Examples
sqrt (x = 1:100)
runningtime (sqrt, x = 1:100)

scatterplot | Clustering Scatter Plots

Description
Produce a scatter plot for clustering results. If the dataset has more than two dimensions, the scatter plot will show the two first PCA axes.

Usage
scatterplot(
 d,
 clusters,
 centers = NULL,
 labels = FALSE,
 ellipses = FALSE,
 legend = c("auto1", "auto2"),
 ...
)

selectfeatures

Arguments

d The dataset (matrix or data.frame).
clusters Cluster labels of the training set (vector or factor).
centers Coordinates of the cluster centers.
labels Indicates whether or not labels (row names) should be showned on the plot.
elipses Indicates whether or not ellipses should be drawed around clusters.
legend Indicates where the legend is placed on the graphics.
... Other parameters.

Examples

```r
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
scatterplot (iris [, -5], km$cluster)
```

Description

Select a subset of features for a classification task.

Usage

```r
selectfeatures(
  train,
  labels,
  algorithm = c("ranking", "forward", "backward", "exhaustive"),
  unieval = if (algorithm[1] == "ranking") c("fisher", "fstat", "relief", "inertiaratio")
    else NULL,
  uninb = NULL,
  unithreshold = NULL,
  multieval = if (algorithm[1] == "ranking") NULL else c("mrmr", "cfs", "fstat",
    "inertiaratio", "wrapper"),
  wrapmethod = NULL,
  keep = FALSE,
  ...
)
```
Arguments

- **train**: The training set (description), as a data.frame.
- **labels**: Class labels of the training set (vector or factor).
- **algorithm**: The feature selection algorithm.
- **unieval**: The (univariate) evaluation criterion. uninb, unithreshold or multieval must be specified.
- **uninb**: The number of selected feature (univariate evaluation).
- **unithreshold**: The threshold for selecting feature (univariate evaluation).
- **multieval**: The (multivariate) evaluation criterion.
- **wrapmethod**: The classification method used for the wrapper evaluation.
- **keep**: If true, the dataset is kept in the returned result.
- **...**: Other parameters.

See Also

- FEATURESELECTION, selection-class

Examples

```r
## Not run:
require (datasets)
data (iris)
selectfeatures (iris [, -5], iris [, 5], algorithm = "forward", multieval = "fstat")
selectfeatures (iris [, -5], iris [, 5], algorithm = "ranking", uninb = 2)
selectfeatures (iris [, -5], iris [, 5], algorithm = "ranking",
               multieval = "wrapper", wrapmethod = LDA)
## End(Not run)
```

selection-class

Feature selection

Description

This class contains the result of feature selection algorithms.

Slots

- **selection**: A vector of integers indicating the selected features.
- **unieval**: The evaluation of the features (univariate).
- **multieval**: The evaluation of the selected features (multivariate).
- **algorithm**: The algorithm used to select features.
- **univariate**: The evaluation criterion (univariate).
nbfeatures The number of features to be kept.
threshold The threshold to decide whether a feature is kept or not..
multivariate The evaluation criterion (multivariate).
dataset The dataset described by the selected features only.
model The classification model.

See Also

FEATURESELECTION, predict.selection, selectfeatures

snore Snore dataset

Description

This dataset has been used in a study on snoring in Angers hospital.

Usage

snore

Format

The dataset has 100 instances described by 7 variables. The variables are as follows:

Age In years.
Weights In kg.
Height In cm.
Alcool Number of glass of alcool per day.
Sex M for male or F for female.
Snore Snoring diagnosis (Y or N).
Tobacco Y or N.

Source

SOM

Self-Organizing Maps clustering method

Description

Run the SOM algorithm for clustering.

Usage

```r
SOM(
  d,
  xdim = floor(sqrt(nrow(d))),
  ydim = floor(sqrt(nrow(d))),
  rlen = 10000,
  post = c("none", "single", "ward"),
  k = NULL,
  ...
)
```

Arguments

- `d` The dataset (matrix or data.frame).
- `xdim`, `ydim` The dimensions of the grid.
- `rlen` The number of iterations.
- `post` The post-treatment method: "none" (None), "single" (Single link) or "ward" (Ward clustering).
- `k` The number of cluster (only used if post is different from "none").
- `...` Other parameters.

Value

The fitted Kohonen’s map as an object of class `som`.

See Also

`plot.som`, `som-class`, `som`

Examples

```r
require (datasets)
data (iris)
SOM (iris [, -5], xdim = 5, ydim = 5, post = "ward", k = 3)
```
som-class

Self-Organizing Maps model

Description

This class contains the model obtained by the SOM method.

Slots

som An object of class kohonen representing the fitted map.
nodes A vector of integer indicating the cluster to which each node is allocated.
cluster A vector of integer indicating the cluster to which each observation is allocated.
data The dataset that has been used to fit the map (as a matrix).

See Also

plot.som, SOM, som

SPECTRAL

Spectral clustering method

Description

Run a Spectral clustering algorithm.

Usage

SPECTRAL(d, k, sigma = 1, graph = TRUE, ...)

Arguments

d The dataset (matrix or data.frame).
k The number of cluster.
sigma Width of the gaussian used to build the affinity matrix.
graph A logical indicating whether or not a graphic should be plotted (projection on the spectral space of the affinity matrix).
... Other parameters.

See Also

spectral-class
Not run:

```r
require (datasets)
data (iris)
SPECTRAL (iris [, -5], k = 3)
```

End(Not run)

spectral-class
Spectral clustering model

Description

This class contains the model obtained by Spectral clustering.

Slots

- **cluster** A vector of integer indicating the cluster to which each observation is allocated.
- **proj** The projection of the dataset in the spectral space.
- **centers** The cluster centers (on the spectral space).

See Also

[SPECTRAL](#)

spine
Spine dataset

Description

The data have been organized in two different but related classification tasks. The first task consists in classifying patients as belonging to one out of three categories: Normal, Disk Hernia or Spondylolisthesis. For the second task, the categories Disk Hernia and Spondylolisthesis were merged into a single category labelled as ‘abnormal’. Thus, the second task consists in classifying patients as belonging to one out of two categories: Normal or Abnormal.

Usage

```r
spine
spine.train
spine.test
```
The dataset has 310 instances described by 8 variables. Variables V1 to V6 are biomechanical attributes derived from the shape and orientation of the pelvis and lumbar spine. The variable Classif2 is the classification into two classes AB and NO. The variable Classif3 is the classification into 3 classes DH, SL and NO. spine.train contains 217 instances and spine.test contains 93.

Source

http://archive.ics.uci.edu/ml/datasets/vertebral+column

splitdata

Splits a dataset into training set and test set

Description

This function splits a dataset into training set and test set. Return an object of class dataset-class.

Usage

splitdata(dataset, target, size = round(0.7 * nrow(dataset)), seed = NULL)

Arguments

dataset The dataset to be split (data.frame or matrix).
target The column index of the target variable (class label or response variable).
size The size of the training set (as an integer value).
seed A specified seed for random number generation.

Value

An object of class dataset-class.

See Also

dataset-class

Examples

require (datasets)
data (iris)
d = splitdata (iris, 5)
str (d)
stability \hspace{1cm} \textit{Clustering evaluation through stability}

Description

Evaluation a clustering algorithm according to stability, through a bootstrap procedure.

Usage

\begin{verbatim}
stability(
 clusteringmethods,
 d,
 originals = NULL,
 eval = "jaccard",
 type = c("cluster", "global"),
 nsampling = 10,
 seed = NULL,
 names = NULL,
 graph = FALSE,
 ...
)
\end{verbatim}

Arguments

- \texttt{clusteringmethods} The clustering methods to be evaluated.
- \texttt{d} The dataset.
- \texttt{originals} The original clustering.
- \texttt{eval} The evaluation criteria.
- \texttt{type} The comparison method.
- \texttt{nsampling} The number of bootstrap runs.
- \texttt{seed} A specified seed for random number generation (useful for testing different method with the same bootstap samplings).
- \texttt{names} Method names.
- \texttt{graph} Indicates wether or not a graphic is potted for each sample.
- \texttt{...} Parameters to be passed to the clustering algorithms.

Value

The evaluation of the clustering algorithm(s) (numeric values).

See Also

\texttt{compare, intern}
Examples

```r
## Not run:
require (datasets)
data (iris)
stability (KMEANS, iris [, -5], seed = 0, k = 3)
stability (KMEANS, iris [, -5], seed = 0, k = 3, eval = c ("jaccard", "accuracy"), type = "global")
stability (KMEANS, iris [, -5], seed = 0, k = 3, type = "cluster")
stability (c (KMEANS, HCA), iris [, -5], seed = 0, k = 3)
stability (c (KMEANS, HCA), iris [, -5], seed = 0, k = 3, eval = c ("jaccard", "accuracy"), type = "global")
stability (c (KMEANS, HCA), iris [, -5], seed = 0, k = 3, type = "cluster")
stability (KMEANS, iris [, -5], originals = KMEANS (iris [, -5], k = 3)$cluster, seed = 0, k = 3)
stability (KMEANS, iris [, -5], originals = KMEANS (iris [, -5], k = 3), seed = 0, k = 3)

## End(Not run)
```

STUMP

Classification using one-level decision tree

Description

This function builds a classification model using CART with maxdepth = 1.

Usage

```r
STUMP(train, labels, randomvar = TRUE, tune = FALSE, ...)
```

Arguments

- `train` The training set (description), as a `data.frame`.
- `labels` Class labels of the training set (vector or factor).
- `randomvar` If true, the model uses a random variable.
- `tune` If true, the function returns parameters instead of a classification model.
- `...` Other parameters.

Value

The classification model.

See Also

CART
Examples

```r
require (datasets)
data (iris)
STUMP (iris [, -5], iris [, 5])
```

```r
summary.apriori

print summary of a classification model obtained by APRIORI

Description

Print summary of the set of rules in the classification model obtained by APRIORI.

Usage

```r
S3 method for class 'apriori'
summary(object, ...)
```

Arguments

- `object` The model to be printed.
- `...` Other parameters.

See Also

`APRIORI, predict.apriori, print.apriori, apriori-class, apriori`

Examples

```r
require ("datasets")
data (iris)
d = discretizeDF (iris,
 default = list (method = "interval", breaks = 3, labels = c ("small", "medium", "large")))
model = APRIORI (d [, -5], d [, 5], supp = .1, conf = .9, prune = TRUE)
summary (model)
```

SVD

*Singular Value Decomposition*

Description

Return the SVD decomposition.

Usage

```r
SVD(x, ndim = min(nrow(x), ncol(x)), ...)
```
Arguments

- 
x: A numeric dataset (data.frame or matrix).
- \( \text{ndim} \): The number of dimensions.
- \( \ldots \): Other parameters.

See Also

- \texttt{svd}

Examples

```r
require(datasets)
data(iris)
SVD(iris[, -5])
```

---

**SVM**  
*Classification using Support Vector Machine*

**Description**

This function builds a classification model using Support Vector Machine.

**Usage**

```r
SVM(
 train,
 labels,
 gamma = 2^{(-3:3)},
 cost = 2^{(-3:3)},
 kernel = c(\text{"radial","linear"}),
 methodparameters = NULL,
 tune = FALSE,
 \ldots
)
```

**Arguments**

- 
  - \texttt{train}: The training set (description), as a \texttt{data.frame}.
  - \texttt{labels}: Class labels of the training set (vector or factor).
  - \texttt{gamma}: The gamma parameter (if a vector, cross-over validation is used to chose the best size).
  - \texttt{cost}: The cost parameter (if a vector, cross-over validation is used to chose the best size).
  - \texttt{kernel}: The kernel type.
SVM1

Classification using Support Vector Machine with a linear kernel

Description

This function builds a classification model using Support Vector Machine with a linear kernel.

Usage

SVM1(
  train,
  labels,
  cost = 2^(-3:3),
  methodparameters = NULL,
  tune = FALSE,
  ...
)

Arguments

train The training set (description), as a data.frame.
labels Class labels of the training set (vector or factor).
cost The cost parameter (if a vector, cross-over validation is used to chose the best size).
SVMr

methodparameters

Object containing the parameters. If given, it replaces gamma and cost.

tune

If true, the function returns parameters instead of a classification model.

...

Other arguments.

Value

The classification model.

See Also

svm, SVM

Examples

## Not run:
require (datasets)
data (iris)
SVMr (iris [, -5], iris [, 5], cost = 1)

## End(Not run)

---

SVMr  Classification using Support Vector Machine with a radial kernel

Description

This function builds a classification model using Support Vector Machine with a radial kernel.

Usage

SVMr(
  train,
  labels,
  gamma = 2^(-3:3),
  cost = 2^(-3:3),
  methodparameters = NULL,
  tune = FALSE,
  ...
)

Arguments

train  The training set (description), as a data.frame.
labels Class labels of the training set (vector or factor).
gamma The gamma parameter (if a vector, cross-over validation is used to chose the best size).
cost  The cost parameter (if a vector, cross-over validation is used to chose the best size).

methodparameters  Object containing the parameters. If given, it replaces gamma and cost.

tune  If true, the function returns parameters instead of a classification model.

Value

The classification model.

See Also

svm, SVM

Examples

## Not run:
require (datasets)
data (iris)
SVMr (iris [, -5], iris [, 5], gamma = 1, cost = 1)

## End(Not run)

SVR  Regression using Support Vector Machine

Description

This function builds a regression model using Support Vector Machine.

Usage

SVR(
  x,
  y,
  gamma = 2^(-3:3),
  cost = 2^(-3:3),
  kernel = c("radial", "linear"),
  epsilon = c(0.1, 0.5, 1),
  params = NULL,
  tune = FALSE,
  ...
)

### Arguments

- **x**: Predictor matrix.
- **y**: Response vector.
- **gamma**: The gamma parameter (if a vector, cross-over validation is used to chose the best size).
- **cost**: The cost parameter (if a vector, cross-over validation is used to chose the best size).
- **kernel**: The kernel type.
- **epsilon**: The epsilon parameter (if a vector, cross-over validation is used to chose the best size).
- **params**: Object containing the parameters. If given, it replaces epsilon, gamma and cost.
- **tune**: If true, the function returns parameters instead of a classification model.
- **...**: Other arguments.

### Value

The classification model.

### See Also

`svm, SVR1, SVRr`

### Examples

```r
Not run:
require (datasets)
data (trees)
SVR (trees [, -3], trees [, 3], kernel = "linear", cost = 1)
SVR (trees [, -3], trees [, 3], kernel = "radial", gamma = 1, cost = 1)
End(Not run)
```

---

**SVR1**

*Regression using Support Vector Machine with a linear kernel*

### Description

This function builds a regression model using Support Vector Machine with a linear kernel.
Usage

SVR1(
  x,
  y,
  cost = 2^(-3:3),
  epsilon = c(0.1, 0.5, 1),
  params = NULL,
  tune = FALSE,
  ...
)

Arguments

x         Predictor matrix.
y         Response vector.
cost      The cost parameter (if a vector, cross-over validation is used to chose the best size).
epsilon   The epsilon parameter (if a vector, cross-over validation is used to chose the best size).
params    Object containing the parameters. If given, it replaces epsilon, gamma and cost.
tune      If true, the function returns paramters instead of a classification model.
...       Other arguments.

Value

The classification model.

See Also

svm, SVR

Examples

## Not run:
require (datasets)
data (trees)
SVR1 (trees [, -3], trees [, 3], cost = 1)
## End(Not run)
**SVRr**

*Regression using Support Vector Machine with a radial kernel*

**Description**

This function builds a regression model using Support Vector Machine with a radial kernel.

**Usage**

```r
SVRr(
 x,
 y,
 gamma = 2^(-3:3),
 cost = 2^(-3:3),
 epsilon = c(0.1, 0.5, 1),
 params = NULL,
 tune = FALSE,
 ...
)
```

**Arguments**

- `x` Predictor matrix.
- `y` Response vector.
- `gamma` The gamma parameter (if a vector, cross-over validation is used to chose the best size).
- `cost` The cost parameter (if a vector, cross-over validation is used to chose the best size).
- `epsilon` The epsilon parameter (if a vector, cross-over validation is used to chose the best size).
- `params` Object containing the parameters. If given, it replaces epsilon, gamma and cost.
- `tune` If true, the function returns parameters instead of a classification model.
- `...` Other arguments.

**Value**

The classification model.

**See Also**

`svm`, `SVR`
Examples

## Not run:
require (datasets)
data (trees)
SVRr (trees [, -3], trees [, 3], gamma = 1, cost = 1)

## End(Not run)

---

**temperature**  
*Temperature dataset*

### Description

The data contains temperature measurement and geographic coordinates of 35 European cities.

### Usage

```r
temperature
```

### Format

The dataset has 35 instances described by 17 variables. Average temperature of the 12 months. Mean and amplitude of the temperature. Latitude and longitude of the city. Localisation in Europe.

---

**TEXTMINING**  
*Text mining*

### Description

Apply data mining function on vectorized text.

### Usage

```r
TEXTMINING(corpus, miningmethod, vector = c("docs", "words"), ...)
```

### Arguments

- `corpus`  
The corpus.
- `miningmethod`  
The data mining method.
- `vector`  
Indicates the type of vectorization, documents (TF-IDF) or words (GloVe).
- `...`  
Parameters passed to the vectorisation and to the data mining method.

### Value

The result of the data mining method.
textmining-class

See Also

predict.textmining, textmining-class, vectorize.docs, vectorize.words

Examples

```r
Not run:
require (text2vec)
data ("movie_review")
d = movie_review [, 2:3]
d [, 1] = factor (d [, 1])
d = splitdata (d, 1)
model = TEXTMINING (d$train.x, NB, labels = d$train.y, mincount = 50)
pred = predict (model, d$test.x)
evaluation (pred, d$test.y)
text = loadtext ("http://mattmahoney.net/dc/text8.zip")
clusters = TEXTMINING (text, HCA, vector = "words", k = 9, maxwords = 100)
plotclus (clusters$res, text, type = "tree", labels = TRUE)

End(Not run)
```

-------

textmining-class  Text mining object

Description

Object used for text mining.

Slots

- `vectorizer` The vectorizer.
- `vectors` The vectorized dataset.
- `res` The result of the text mining method.

See Also

TEXTMINING, vectorize.docs
titanic

Titanic dataset

Description
This dataset from the British Board of Trade depict the fate of the passengers and crew during the RMS Titanic disaster.

Usage
titanic

Format
The dataset has 2201 instances described by 4 variables. The variables are as follows:
Category 1st, 2nd, 3rd Class or Crew.
Age Adult or Child.
Sex Female or Male.
Fate Casualty or Survivor.

Source

See Also
Titanic

treeplot

Dendrogram Plots

Description
Draws a dendrogram.

Usage

```
treeplot(
 clustering,
 labels = FALSE,
 k = NULL,
 split = TRUE,
 horiz = FALSE,
 ...
)
```
Arguments

clustering  The dendrogram to be plotted (result of hclust, agnes or HCA).
labels     Indicates whether or not labels (row names) should be showned on the plot.
k          Number of clusters. If not specified an "optimal" value is determined.
split      Indicates whether or not the clusters should be highlighted in the graphics.
horiz      Indicates if the dendrogram should be drawn horizontally or not.
            Other parameters.

See Also

dendrogram, HCA, hclust, agnes

Examples

require (datasets)
data (iris)
hca = HCA (iris [, -5], method = "ward", k = 3)
treeplot (hca)

TSNE  

_t-distributed Stochastic Neighbor Embedding_

Description

Return the t-SNE dimensionality reduction.

Usage

TSNE(x, perplexity = 30, nstart = 10, ...)

Arguments

x          A numeric dataset (data.frame or matrix).
perplexity Specification of the perplexity.
nstart     How many random sets should be chosen?
            Other parameters.

See Also

Rtsne

Examples

require (datasets)
data (iris)
TSNE (iris [, -5])
undersite  

**University dataset**

**Description**

The dataset presents a french university demographics.

**Usage**

undersite

**Format**

The dataset has 10 instances (university departments) described by 12 variables. The first six variables are the number of female and male student studying for bachelor degree (Licence), master degree (Master) and doctorate (Doctorat). The six last variables are obtained by combining the first ones.

**Source**

https://husson.github.io/data.html

---

**vectorize.docs**

**Document vectorization**

**Description**

Vectorize a corpus of documents.

**Usage**

```r
vectorize.docs(
 vectorizer = NULL,
 corpus = NULL,
 lang = "en",
 stopwords = lang,
 ngram = 1,
 mincount = 10,
 minphrasecount = NULL,
 transform = c("tfidf", "lsa", "l1", "none"),
 latentdim = 50,
 returndata = TRUE,
 ...
)
```
vectorize.docs

Arguments

- **vectorizer**: The document vectorizer.
- **corpus**: The corpus of documents (a vector of characters).
- **lang**: The language of the documents (NULL if no stemming).
- **stopwords**: Stopwords, or the language of the documents. NULL if stop words should not be removed.
- **ngram**: Maximum size of n-grams.
- **mincount**: Minimum word count to be considered as frequent.
- **minphrasecount**: Minimum collocation of words count to be considered as frequent.
- **transform**: Transformation (TF-IDF, LSA, L1 normalization, or nothing).
- **latentdim**: Number of latent dimensions if LSA transformation is performed.
- **returndata**: If true, the vectorized documents are returned. If false, a "vectorizer" is returned.
- **...**: Other parameters.

Value

The vectorized documents.

See Also

- `query.docs`
- `stopwords`
- `vectorizers`

Examples

```r
Not run:
require (text2vec)
data ("movie_review")
Clustering
docs = vectorize.docs (corpus = movie_review$review, transform = "tfidf")
km = KMEANS (docs [sample (nrow (docs), 100),], k = 10)
Classification
d = movie_review [, 2:3]
d [, 1] = factor (d [, 1])
d = splitdata (d, 1)
vectorizer = vectorize.docs (corpus = d$train.x,
 returndata = FALSE, mincount = 50)
train = vectorize.docs (corpus = d$train.x, vectorizer = vectorizer)
test = vectorize.docs (corpus = d$test.x, vectorizer = vectorizer)
model = NB (as.matrix (train), d$train.y)
pred = predict (model, as.matrix (test))
evaluation (pred, d$test.y)
End(Not run)
```
vectorize.words  Word vectorization

Description
Vectorize words from a corpus of documents.

Usage
vectorize.words(
corpus = NULL,
ndim = 50,
maxwords = NULL,
mincount = 5,
minphrasecount = NULL,
window = 5,
maxcooc = 10,
maxiter = 10,
epsilon = 0.01,
lang = "en",
stopwords = lang,
...
)

Arguments
corpus The corpus of documents (a vector of characters).
ndim The number of dimensions of the vector space.
maxwords The maximum number of words.
mincount Minimum word count to be considered as frequent.
minphrasecount Minimum collocation of words count to be considered as frequent.
window Window for term-co-occurrence matrix construction.
maxcooc Maximum number of co-occurrences to use in the weighting function.
maxiter The maximum number of iteration to fit the GloVe model.
epsilon Defines early stopping strategy when fit the GloVe model.
lang The language of the documents (NULL if no stemming).
stopwords Stopwords, or the language of the documents. NULL if stop words should not be removed.
...
... Other parameters.

Value
The vectorized words.
See Also

`query.words`, `stopwords`, `vectorizers`

Examples

```r
Not run:

text = loadtext("http://mattmahoney.net/dc/text8.zip")
words = vectorize.words(text, minphrasecount = 50)
query.words(words, origin = "paris", sub = "france", add = "germany")
query.words(words, origin = "berlin", sub = "germany", add = "france")
query.words(words, origin = "new_zeland")

End(Not run)
```

---

**vectorizer-class**

*Document vectorization object*

**Description**

This class contains a vectorization model for textual documents.

**Slots**

- vectorizer: The vectorizer.
- transform: The transformation to be applied after vectorization (normalization, TF-IDF).
- phrases: The phrase detection method.
- tfidf: The TF-IDF transformation.
- lsa: The LSA transformation.
- tokens: The token from the original document.

**See Also**

`vectorize.docs`, `query.docs`
vowels  

**Vowels dataset**

**Description**
Excerpt of the Letter Recognition Data Set (UCI repository).

**Usage**
- vowels
- vowels.train
- vowels.test

**Format**
The dataset has 4664 instances described by 17 variables. The first variable is the classification into 6 classes (letter A, E, I, O, U and Y). vowels.train contains 233 instances and vowels.test contains 4431.

**Source**

wheat  

**Wheat dataset**

**Description**
The data contains kernels belonging to three different varieties of wheat: Kama, Rosa and Canadian, 70 elements each, randomly selected. High quality visualization of the internal kernel structure was detected using a soft X-ray technique. The images were recorded on 13x18 cm X-ray KODAK plates. Source: Institute of Agrophysics of the Polish Academy of Sciences in Lublin.

**Usage**
- wheat

**Format**
The dataset has 210 instances described by 8 variables: area, perimeter, compactness, length, width, asymmetry coefficient, groove length and variety.

**Source**
https://archive.ics.uci.edu/ml/datasets/seeds
**Wine dataset**

**Description**
These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

**Usage**

```plaintext
wine
```

**Format**
There are 178 observations and 14 variables. The first variable is the class label (1, 2, 3).

**Source**


---

**Zoo dataset**

**Description**
Animal description based on various features.

**Usage**

```plaintext
zoo
```

**Format**
The dataset has 101 instances described by 17 qualitative variables.

**Source**

Index

accident2014, 5
ADABOOST, 6, 10, 12, 93
agnes, 59, 131
alcohol, 7
APRIORI, 7, 8, 92, 101, 120
apriori, 8, 54, 56, 92, 101, 120
apriori-class, 8
augmentation, 9
autompg, 9
BAGGING, 6, 10, 12, 93
beetles, 11
birth, 11
boosting-class, 12
boxclus, 12, 88
boxplot, 12
britpop, 13
CA, 13, 14, 52, 73, 82, 85, 102
CART, 14, 15–18, 119
cartdepth, 15, 15, 16–18
cartinfo, 15, 16, 17, 18
cartleafs, 15, 16, 16, 17, 18
cartnodes, 15–17, 17, 18
cartplot, 15–17, 18
CDA, 18, 19, 84, 94, 98, 99
cda-class, 19
closegraphics, 20, 51, 52
compare, 20, 21–23, 60, 118
compare.accuracy, 21, 21, 22, 23
compare.jaccard, 21, 22, 23
compare.kappa, 21, 22, 22
correlation, 23, 41, 83, 87
cookies, 24
cookplot, 25
cor, 26
correlated, 25
cost.curves, 26, 83, 109
create_vocabulary, 57
credit, 27
data.diag, 27, 29–33
data.gauss, 28, 33
data.parabol, 28, 29, 30–33
data.target1, 28, 29, 30, 31, 32
data.target2, 28–30, 31, 32, 33
data.twomoons, 28–31, 32, 33
data.xor, 28–32, 33
data1, 34
data2, 34
data3, 35
dataset-class, 35
dbs-class, 36
DBSCAN, 36, 36, 38, 95
dbscan, 36, 38
decathlon, 37
dendrogram, 131
dev.off, 20
Devices, 51
difftime, 110
distplot, 36, 38
download.file, 71
EM, 38, 39, 95
decom, 39
dem-class, 39
eucalyptus, 40
evaluation, 23, 40, 42–50, 83
evaluation.accuracy, 41, 41, 43–47, 49, 50, 87
evaluation.adjr2, 42
evaluation.fmeasure, 41, 42, 43, 44–47, 49, 50, 87
evaluation.fowlkesmallows, 41–43, 44, 45–47, 49, 50, 87
evaluation.goodness, 41–44, 45, 46, 47, 49, 50, 87
evaluation.jaccard, 41–45, 46, 47, 49, 50, 87
evaluation.kappa, 41–47, 47, 49, 50, 87
evaluation.msep, 41, 42, 47, 49, 87
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>print.apriori</td>
<td>8, 101, 120</td>
</tr>
<tr>
<td>print.CA</td>
<td>102</td>
</tr>
<tr>
<td>print.factorial</td>
<td>101</td>
</tr>
<tr>
<td>print.MCA</td>
<td>102</td>
</tr>
<tr>
<td>print.PCA</td>
<td>102</td>
</tr>
<tr>
<td>pseudoF</td>
<td>66, 102</td>
</tr>
<tr>
<td>QDA</td>
<td>103</td>
</tr>
<tr>
<td>qda</td>
<td>103</td>
</tr>
<tr>
<td>query.docs</td>
<td>103, 133, 135</td>
</tr>
<tr>
<td>query.words</td>
<td>104, 135</td>
</tr>
<tr>
<td>RANDOMFOREST</td>
<td>105</td>
</tr>
<tr>
<td>randomForest</td>
<td>106</td>
</tr>
<tr>
<td>reg1</td>
<td>107</td>
</tr>
<tr>
<td>reg2</td>
<td>107</td>
</tr>
<tr>
<td>regplot</td>
<td>107</td>
</tr>
<tr>
<td>regsubsets</td>
<td>70</td>
</tr>
<tr>
<td>resplot</td>
<td>108</td>
</tr>
<tr>
<td>roc.curves</td>
<td>26, 83, 108</td>
</tr>
<tr>
<td>rotation</td>
<td>109</td>
</tr>
<tr>
<td>rpart</td>
<td>15</td>
</tr>
<tr>
<td>Rtsne</td>
<td>131</td>
</tr>
<tr>
<td>runningtime</td>
<td>110</td>
</tr>
<tr>
<td>scatterplot</td>
<td>88, 110</td>
</tr>
<tr>
<td>selectfeatures</td>
<td>53, 111, 113</td>
</tr>
<tr>
<td>selection-class</td>
<td>112</td>
</tr>
<tr>
<td>sim2</td>
<td>104, 105</td>
</tr>
<tr>
<td>snore</td>
<td>113</td>
</tr>
<tr>
<td>SOM</td>
<td>86, 114, 115</td>
</tr>
<tr>
<td>som</td>
<td>114, 115</td>
</tr>
<tr>
<td>som-class</td>
<td>115</td>
</tr>
<tr>
<td>SPECTRAL</td>
<td>115, 116</td>
</tr>
<tr>
<td>spectral-class</td>
<td>116</td>
</tr>
<tr>
<td>spine</td>
<td>116</td>
</tr>
<tr>
<td>splitdata</td>
<td>23, 35, 117</td>
</tr>
<tr>
<td>stability</td>
<td>21, 60, 118</td>
</tr>
<tr>
<td>stopwords</td>
<td>57, 133, 135</td>
</tr>
<tr>
<td>STUMP</td>
<td>119</td>
</tr>
<tr>
<td>subset</td>
<td>54</td>
</tr>
<tr>
<td>summary.apriori</td>
<td>8, 101, 120</td>
</tr>
<tr>
<td>SVD</td>
<td>120</td>
</tr>
<tr>
<td>svd</td>
<td>121</td>
</tr>
<tr>
<td>SVM</td>
<td>81, 121, 123, 124</td>
</tr>
<tr>
<td>svm</td>
<td>122–127</td>
</tr>
<tr>
<td>SVM1</td>
<td>122, 122</td>
</tr>
<tr>
<td>SVMr</td>
<td>122, 123</td>
</tr>
<tr>
<td>SVR</td>
<td>81, 124, 126, 127</td>
</tr>
<tr>
<td>SVRl</td>
<td>125, 125</td>
</tr>
<tr>
<td>SVRr</td>
<td>125, 127</td>
</tr>
<tr>
<td>temperature</td>
<td>128</td>
</tr>
<tr>
<td>TEXTMINING</td>
<td>100, 128, 129</td>
</tr>
<tr>
<td>textmining-class</td>
<td>129</td>
</tr>
<tr>
<td>Titanic</td>
<td>130</td>
</tr>
<tr>
<td>titanic</td>
<td>130</td>
</tr>
<tr>
<td>toggleexport</td>
<td>20, 51</td>
</tr>
<tr>
<td>toggleexport (exportgraphics.off)</td>
<td>51</td>
</tr>
<tr>
<td>treeplot</td>
<td>88, 130</td>
</tr>
<tr>
<td>TSNE</td>
<td>131</td>
</tr>
<tr>
<td>universite</td>
<td>132</td>
</tr>
<tr>
<td>unzip</td>
<td>71</td>
</tr>
<tr>
<td>vectorize.docs</td>
<td>104, 129, 132, 135</td>
</tr>
<tr>
<td>vectorize.words</td>
<td>105, 129, 134</td>
</tr>
<tr>
<td>vectorizer-class</td>
<td>135</td>
</tr>
<tr>
<td>vectorizers</td>
<td>133, 135</td>
</tr>
<tr>
<td>vowels</td>
<td>136</td>
</tr>
<tr>
<td>wheat</td>
<td>136</td>
</tr>
<tr>
<td>wine</td>
<td>137</td>
</tr>
<tr>
<td>wordcloud</td>
<td>87</td>
</tr>
<tr>
<td>xgboost</td>
<td>58</td>
</tr>
<tr>
<td>zoo</td>
<td>137</td>
</tr>
</tbody>
</table>