Package ‘ferrn’

October 13, 2022

Title Facilitate Exploration of touRR optimisatioN

Version 0.0.2

Description Diagnostic plots for optimisation, with a focus on projection pursuit. These show paths the optimiser takes in the high-dimensional space in multiple ways: by reducing the dimension using principal component analysis, and also using the tour to show the path on the high-dimensional space. Several botanical colour palettes are included, reflecting the name of the package. A paper describing the methodology can be found at <https://journal.r-project.org/archive/2021/RJ-2021-105/index.html>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/huizezhang-sherry/ferrn/

BugReports https://github.com/huizezhang-sherry/ferrn/issues

Imports rlang (>= 0.1.2), dplyr, magrittr, scales, gganimate, ggplot2, tibble, purrr, geozoo, tourr, stringr, ggrepel, ggforce, tidyr

RoxygenNote 7.2.0

Depends R (>= 2.10)

Suggests roxygen2, covr, pkgdown, testthat, forcats, patchwork

Language en-GB

NeedsCompilation no

Author H. Sherry Zhang [aut, cre] (<https://orcid.org/0000-0002-7122-1463>), Dianne Cook [aut] (<https://orcid.org/0000-0002-3813-7155>), Ursula Laa [aut] (<https://orcid.org/0000-0002-0249-6439>), Nicolas Langrené [aut] (<https://orcid.org/0000-0001-7601-4618>), Patricia Menéndez [aut] (<https://orcid.org/0000-0003-0701-6315>)

Maintainer H. Sherry Zhang <huize.zhang@monash.edu>

Repository CRAN

Date/Publication 2022-08-06 13:50:02 UTC
R topics documented:

add_anchor .. 3
add_anno ... 3
add_dir_search .. 4
add_end ... 5
add_interp ... 5
add_interp_last ... 6
add_interrupt .. 7
add_search .. 8
add_space .. 9
add_start .. 10
add_theo ... 11
bind_random .. 12
bind_random_matrix .. 12
bind_theoretical ... 13
botanical_palettes ... 14
clean_method .. 15
explore_space_pca ... 15
explore_space_tour .. 17
explore_trace_interp ... 18
explore_trace_search ... 19
format_label .. 20
get_anchor ... 21
get_basis_matrix ... 21
get_best ... 22
get_dir_search .. 23
get_interp ... 23
get_interp_last ... 24
get_interrupt .. 25
get_search .. 26
get_search_count ... 26
get_space_param ... 27
get_start .. 28
get_theo ... 28
holes_1d_geo .. 29
scale_color_continuous_botanical 31
theme_fern .. 32

Index 33
add_anchor

A ggproto for drawing anchor points

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```r
add_anchor(dt, anchor_size = 3, anchor_alpha = 0.5, anchor_color = NULL, ...)
```

Arguments

- **dt**: A data object from the running the optimisation algorithm in guided tour
- **anchor_size**: numeric; the size of the anchor points
- **anchor_alpha**: numeric; the alpha of the anchor points
- **anchor_color**: the variable to be coloured by
- **...**: other aesthetics inherent from `explore_space_pca()`

Value

A wrapper for drawing anchor points in `explore_space_pca()`

See Also

Other draw functions: `add_anno()`, `add_dir_search()`, `add_end()`, `add_interp_last()`, `add_interp()`, `add_interrupt()`, `add_search()`, `add_space()`, `add_start()`, `add_theo()`

add_anno

A ggproto for annotating the symmetry of the starting points

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```r
add_anno(dt, anno_color = "black", anno_lty = "dashed", anno_alpha = 0.1, ...)
```
add_dir_search

Arguments

- **dt**: A data object from the running the optimisation algorithm in guided tour
- **anno_color**: character; the colour of the annotation line
- **anno_lty**: character; the linetype of the annotation line
- **anno_alpha**: numeric; the alpha of the annotation line
- **...**: other aesthetics inherent from `explore_space_pca()`

Value

A wrapper for drawing directional search points (used in pseudo derivative search) with buffer in `explore_space_pca()`

See Also

Other draw functions: `add_anchor()`, `add_dir_search()`, `add_anno()`, `add_end()`, `add_interp_last()`, `add_interp()`, `add_interrupt()`, `add_search()`, `add_space()`, `add_start()`, `add_theo()`
add_end

A ggproto for drawing start points

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```r
add_end(dt, end_size = 5, end_alpha = 1, end_color = NULL, ...)
```

Arguments

- `dt`: A data object from the running the optimisation algorithm in guided tour
- `end_size`: numeric; the size of the end point
- `end_alpha`: numeric; the alpha of the end point
- `end_color`: the variable to be coloured by
- `...`: other aesthetics inherent from `explore_space_pca()`

Value

a wrapper for drawing end points in `explore_space_pca()`

See Also

Other draw functions: `add_anchor()`, `add_anno()`, `add_dir_search()`, `add_interp_last()`, `add_interp()`, `add_interrupt()`, `add_search()`, `add_space()`, `add_start()`, `add_theo()`

add_interp

A ggproto for drawing interpolation path

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```r
add_interp(
  dt,
  interp_size = 1.5,
  interp_alpha = NULL,
  interp_color = NULL,
  interp_group = NULL,
  ...
)
```
add_interp_last

Arguments

- **dt**: A data object from the running the optimisation algorithm in guided tour
- **interp_size**: numeric; the size of the interpolation path
- **interp_alpha**: numeric; the alpha of the interpolation path
- **interp_color**: the variable to be coloured by
- **interp_group**: the variable to label different interpolation path
- **...**: other aesthetics inherent from `explore_space_pca()`

Value

A ggproto for drawing finish points

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```r
add_interp_last(
  dt,
  interp_last_size = 3,
  interp_last_alpha = 1,
  interp_last_color = NULL,
  ...
)
```

Arguments

- **dt**: A data object from the running the optimisation algorithm in guided tour
- **interp_last_size**: numeric; the size of the last interpolation points in each iteration
- **interp_last_alpha**: numeric; the alpha of the last interpolation points in each iteration
- **interp_last_color**: the variable to be coloured by
- **...**: other aesthetics inherent from `explore_space_pca()`

See Also

Other draw functions: `add_anchor()`, `add_anno()`, `add_dir_search()`, `add_end()`, `add_interp_last()`, `add_interrupt()`, `add_search()`, `add_space()`, `add_start()`, `add_theo()`
add_interrupt

Value

a wrapper for drawing the last interpolation points of each iteration in `explore_space_pca()`

See Also

Other draw functions: `add_anchor()`, `add_anno()`, `add_dir_search()`, `add_end()`, `add_interp()`, `add_interrupt()`, `add_search()`, `add_space()`, `add_start()`, `add_theo()`

Description

This is a wrapper function used by `explore_space_pca()` and should be be called directly by the user

Usage

```r
add_interrupt(
  dt,
  interrupt_size = 0.5,
  interrupt_alpha = NULL,
  interrupt_color = NULL,
  interrupt_group = NULL,
  interrupt_linetype = "dashed",
  ...
)
```

Arguments

- **dt**: A data object from the running the optimisation algorithm in guided tour
- **interrupt_size**: numeric; the size of the interruption path
- **interrupt_alpha**: numeric; the alpha of the interruption path
- **interrupt_color**: the variable to be coloured by
- **interrupt_group**: the variable to label different interruption
- **interrupt_linetype**: character; the linetype to annotate the interruption
- **...**: other aesthetics inherent from `explore_space_pca()`

Value

a wrapper for annotating the interruption in `explore_space_pca()`
add_search

See Also

Other draw functions: `add_anchor()`, `add_anno()`, `add_dir_search()`, `add_end()`, `add_interp_last()`, `add_interp()`, `add_search()`, `add_space()`, `add_start()`, `add_theo()`

add_search

A ggproto for drawing search points

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```
add_search(dt, search_size = 0.5, search_alpha = 0.5, search_color = NULL, ...)
```

Arguments

- **dt**: A data object from the running the optimisation algorithm in guided tour
- **search_size**: numeric; the size of the search points
- **search_alpha**: numeric; the alpha of the anchor points
- **search_color**: the variable to be coloured by
- **...**: other aesthetics inherent from `explore_space_pca()`

Value

A wrapper for drawing search points in `explore_space_pca()`

See Also

Other draw functions: `add_anchor()`, `add_anno()`, `add_dir_search()`, `add_end()`, `add_interp_last()`, `add_interp()`, `add_interrupt()`, `add_space()`, `add_start()`, `add_theo()`
add_space

A ggproto for drawing circle

Description

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user.

Usage

```r
add_space(
  dt,
  space_alpha = 0.5,
  space_fill = "grey92",
  space_color = "white",
  cent_size = 1,
  cent_alpha = 1,
  cent_color = "black",
  ...
)
```

Arguments

- `dt` A data object from the running the optimisation algorithm in guided tour
- `space_alpha` numeric; the alpha of the basis space
- `space_fill` character; the colour of the space filling
- `space_color` character; the colour of the space brim
- `cent_size` numeric; the size of the centre point
- `cent_alpha` numeric; an alpha of the centre point
- `cent_color` character; the colour of the centre point
- `...` other aesthetics inherent from `explore_space_pca()`

Value

a wrapper for drawing the space in `explore_space_pca()`

See Also

Other draw functions: `add_anchor()`, `add_ann()`, `add_dir_search()`, `add_end()`, `add_interp_last()`, `add_interp()`, `add_interrupt()`, `add_search()`, `add_start()`, `add_theo()`
add_start

A ggproto for drawing start points

Description

This is a wrapper function used by explore_space_pca() and should be be called directly by the user.

Usage

add_start(dt, start_size = 5, start_alpha = 1, start_color = NULL, ...)

Arguments

dt
 A data object from the running the optimisation algorithm in guided tour
start_size
 numeric; the size of start point
start_alpha
 numeric; the alpha of start point
start_color
 the variable to be coloured by
...
 other aesthetics inherent from explore_space_pca()

Value

a wrapper for drawing start points in explore_space_pca()

See Also

Other draw functions: add_anchor(), add_anno(), add_dir_search(), add_end(), add_interp_last(), add_interp(), add_interrupt(), add_search(), add_space(), add_theo()

Examples

library(ggplot2)
construct the space and start df for plotting
space <- tibble::tibble(x0 = 0, y0 = 0, r = 5)
ggplot() +
 add_space(space) +
 theme_void() +
 theme(aspect.ratio = 1)
add_theo

A ggproto for drawing the theoretical basis, if applicable

Description

This is a wrapper function used by explore_space_pca() and should be be called directly by the user

Usage

add_theo(dt, theo_label = "*", theo_size = 25, theo_alpha = 0.8, ...)

Arguments

dt A data object from the running the optimisation algorithm in guided tour
theo_label character; a symbol to label the theoretical point
theo_size numeric; the size of the theoretical point
theo_alpha numeric; the alpha of the theoretical point
... other aesthetics inherent from explore_space_pca()

Value

a wrapper for drawing theoretical points in explore_space_pca()

See Also

Other draw functions: add_anchor(), add_anno(), add_dir_search(), add_end(), add_interp_last(), add_interp(), add_interrupt(), add_search(), add_space(), add_start()
bind_random
Bind random bases in the projection bases space

Description

Given the orthonormality constraint, the projection bases live in a high dimensional hollow sphere. Generating random points on the sphere is useful to perceive the data object in the high dimensional space.

Usage

```r
bind_random(dt, n = 500, seed = 1)
```

Arguments

- `dt` a data object collected by the projection pursuit guided tour optimisation in the `tourr` package
- `n` numeric; the number of random bases to generate in each dimension by geozoo
- `seed` numeric; a seed for generating reproducible random bases from geozoo

Value

a tibble object containing both the searched and random bases

See Also

Other bind: `bind_random_matrix()`, `bind_theoretical()`

Examples

```r
bind_random(holes_1d_better) %>% tail(5)
```

bind_random_matrix
Bind random bases in the projection bases space as a matrix

Description

Bind random bases in the projection bases space as a matrix

Usage

```r
bind_random_matrix(basis, n = 500, front = FALSE, seed = 1)
```
Arguments

- **basis**: a matrix returned by `get_basis_matrix()`
- **n**: numeric; the number of random bases to generate in each dimension by geozoo
- **front**: logical; if the random bases should be bound before or after the original bases
- **seed**: numeric; a seed for generating reproducible random bases from geozoo

Value

matrix

a matrix containing both the searched and random bases

See Also

Other bind: `bind_random()`, `bind_theoretical()`

Examples

data <- get_basis_matrix(holes_1d_geo)
bind_random_matrix(data) %>% tail(5)

bind_theoretical

Bind the theoretical best record

Description

The theoretical best basis is usually known for a simulated problem. Augment this information into the data object allows for evaluating the performance of optimisation against the theory.

Usage

`bind_theoretical(dt, matrix, index, raw_data)`

Arguments

- **dt**: a data object collected by the projection pursuit guided tour optimisation in the tourr package
- **matrix**: a matrix of the theoretical basis
- **index**: the index function used to calculate the index value
- **raw_data**: a tibble of the original data used to calculate the index value

Value

a tibble object containing both the searched and theoretical best bases
botanical_palettes

A customised colour palette based on Australian botanies

Description

Available colours in the palettes

Usage

botanical_palettes

botanical_pal(palette = "fern", reverse = FALSE)

Arguments

palette Colour palette from the botanical_palette
reverse logical, if the colour should be reversed

Format

An object of class list of length 5.

Value

a function for interpolating colour in the botanical palette

See Also

Other bind: bind_random_matrix(), bind_random()

Examples

best <- matrix(c(0, 1, 0, 0, 0), nrow = 5)
tail(holes_1d_better %>% bind_theoretical(best, tourr::holes(), raw_data = boa5), 1)
clean_method

Clean method names

Description

Clean method names

Usage

```r
clean_method(dt)
```

Arguments

- `dt`: a data object

Value

a tibble with method cleaned

Examples

```r
head(clean_method(holes_1d_better), 5)
```

explore_space_pca

Plot the PCA projection of the projection bases space

Description

The set of functions returns a primary ggplot object that plots the data object in a space reduced by PCA. `compute_pca()` computes the PCA and `explore_space_pca()` plots the bases in the PCA-projected space

Usage

```r
explore_space_pca(
  dt,
  details = FALSE,
  pca = TRUE,
  group = NULL,
  color = NULL,
  ...
  animate = FALSE
)
```

```r
flip_sign(dt, group = NULL, ...)
```

```r
compute_pca(dt, group = NULL, random = TRUE, flip = TRUE, ...)
```
Arguments

dt a data object collected by the projection pursuit guided tour optimisation in tourr
details logical; if components other than start, end and interpolation need to be shown
cosa logical; if PCA coordinates need to be computed for the data
group the variable to label different runs of the optimiser(s)
color the variable to be coloured by
... other arguments received from explore_space_pca()
animate logical; if the interpolation path needs to be animated
random logical; if random bases from the basis space need to be added to the data
flip logical; if the sign flipping need to be performed

Value

explore_space_pca() a ggplot object for diagnosing the optimisers in the PCA-projected basis space
flip_sign() a list containing
 • a matrix of all the bases
 • a logical value whether a flip of sign is performed
 • a dataframe of the original dataset
compute_pca() a list containing
 • the PCA summary
 • a dataframe with PC coordinates augmented

See Also

Other main plot functions: explore_space_tour(), explore_trace_interp(), explore_trace_search()

Examples

dplyr::bind_rows(holes_1d_geo, holes_1d_better) %>%
 bind_theoretical(matrix(c(0, 1, 0, 0, 0), nrow = 5),
 index = tourr::holes(), raw_data = boa5)
 %>%
 explore_space_pca(group = method, details = TRUE) +
 scale_color_discrete_botanical()
dplyr::bind_rows(holes_1d_geo, holes_1d_better) %>%
 flip_sign(group = method) %>%
 str(max = 1)
dplyr::bind_rows(holes_1d_geo, holes_1d_better) %>%
 compute_pca(group = method)
explore_space_tour

Plot the grand tour animation of the bases space in high dimension

Description
Plot the grand tour animation of the bases space in high dimension

Usage

explore_space_tour(...)

prep_space_tour(
 dt,
 group = NULL,
 flip = FALSE,
 color = NULL,
 rand_size = 1,
 point_size = 1.5,
 end_size = 5,
 theo_size = 3,
 theo_shape = 17,
 theo_color = "black",
 palette = botanical_palettes$fern,
 ...
)

Arguments

... other argument passed to tourr::animate_xy() and prep_space_tour()
dt a data object collected by the projection pursuit guided tour optimisation in tourr
group the variable to label different runs of the optimiser(s)
flip logical; if the sign flipping need to be performed
color the variable to be coloured by
rand_size numeric; the size of random points
point_size numeric; the size of points searched by the optimiser(s)
end_size numeric; the size of end points
theo_size numeric; the size of theoretical point(s)
theo_shape numeric; the shape symbol in the basic plot
theo_color character; the color of theoretical point(s)
palette the colour palette to be used
explore_trace_interp

Value

explore_space_tour() an animation of the search path in the high-dimensional sphere
prep_space_tour() a list containing various components needed for producing the animation

See Also

Other main plot functions: explore_space_pca(), explore_trace_interp(), explore_trace_search()

Examples

explore_space_tour(dplyr::bind_rows(holes_1d_better, holes_1d_geo),
 group = method, palette = botanical_palettes$fern[c(1, 6)]
)

explore_trace_interp(dplyr::bind_rows(holes_1d_better, holes_1d_geo),
 group = method, palette = botanical_palettes$fern[c(1, 6)]
)

Description

Trace the index value of search/interpolation points in guided tour optimisation

Usage

explore_trace_interp(
 dt,
 iter = NULL,
 color = NULL,
 group = NULL,
 cutoff = 50,
 target_size = 3,
 interp_size = 1,
 accuracy_x = 5,
 accuracy_y = 0.01
)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in tourr
iter the variable to be plotted on the x-axis
color the variable to be coloured by
group the variable to label different runs of the optimiser(s)
cutoff numeric; if the number of interpolating points is smaller than cutoff, all the interpolation points will be plotted as dots
target_size numeric; the size of target points in the interpolation
explore_trace_search

interp_size numeric; the size of interpolation points
accuracy_x numeric; If the difference of two neighbour x-labels is smaller than accuracy_x, only one of them will be displayed. Used for better axis label
accuracy_y numeric; the precision of y-axis label

Value

a ggplot object for diagnosing how the index value progresses during the interpolation

See Also

Other main plot functions: explore_space_pca(), explore_space_tour(), explore_trace_search()

Examples

Compare the trace of interpolated points in two algorithms
holes_1d_better %>%
 explore_trace_interp(interp_size = 2) +
 scale_color_continuous_botanical(palette = "fern")

explore_trace_search Plot the count in each iteration

Description

Plot the count in each iteration

Usage

explore_trace_search(
 dt,
 iter = NULL,
 color = NULL,
 cutoff = 15,
 extend_lower = 0.95,
 ...
)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in tourr
iter the variable to be plotted on the x-axis
color the variable to be coloured by
cutoff numeric; if the number of searches in one iteration is smaller than cutoff, a point geom, rather than boxplot geom, will be used.
extend_lower a numeric for extending the y-axis to display text labels
... arguments passed into geom_label_repel() for displaying text labels
Value

a ggplot object for diagnosing how many points the optimiser(s) have searched

See Also

Other main plot functions: `explore_space_pca()`, `explore_space_tour()`, `explore_trace_interp()`

Examples

```r
# Summary plots for search points in two algorithms
library(patchwork)
library(dplyr)
library(ggplot2)
p1 <- holes_1d_better %>% explore_trace_search() +
     scale_color_continuous_botanical(palette = "fern")
p2 <- holes_2d_better_max_tries %>% explore_trace_search() +
     scale_color_continuous_botanical(palette = "daisy")
p1 / p2
```

format_label

Better label formatting to avoid overlapping

Description

Better label formatting to avoid overlapping

Usage

`format_label(labels, accuracy)`

Arguments

- `labels`: a numerical vector of labels
- `accuracy`: the accuracy of the label

Value

a vector of adjusted labels

Examples

```r
format_label(c(0.87, 0.87, 0.9, 0.93, 0.95), 0.01)
format_label(c(0.87, 0.87, 0.9, 0.93, 0.95, 0.96, 0.96), 0.01)
```
get_anchor

Extract the anchor points on the geodesic path

Description

Extract the anchor points on the geodesic path

Usage

get_anchor(dt, group = NULL)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in the tourr package
group the variable to label different runs of the optimiser(s)

Value

a tibble object containing the target bases in each iteration

See Also

Other get functions: get_basis_matrix(), get_best(), get_dir_search(), get_interp_last(), get_interp(), get_interrupt(), get_search_count(), get_search(), get_space_param(), get_start(), get_theo()

Examples

holes_1d_better %>% get_anchor()
holes_1d_geo %>% get_anchor()

get_basis_matrix

Extract all the bases as a matrix

Description

Extract all the bases as a matrix

Usage

get_basis_matrix(dt)

Arguments

dt a data object collected by the projection pursuit guided tour optimisation in the tourr package
Value

a matrix that flattens each basis into a row

See Also

Other get functions: `get_anchor()`, `get_best()`, `get_dir_search()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_space_param()`, `get_start()`, `get_theo()`

Examples

```r
head(get_basis_matrix(holes_1d_better), 5)
```

get_best

Extract the record with the largest index value

Description

Extract the record with the largest index value

Usage

```r
get_best(dt, group = NULL)
```

Arguments

dt

a data object collected by the projection pursuit guided tour optimisation in the `tourr` package

group

the variable to label different runs of the optimiser(s)

Value

a tibble object containing the best basis found by the optimiser(s)

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_dir_search()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_space_param()`, `get_start()`, `get_theo()`

Examples

```r
dplyr::bind_rows(holes_1d_better, holes_1d_geo) %>% get_best(group = method)
```
get_dir_search

Extract directional search points during the optimisation

Usage

get_dir_search(dt, ratio = 5, ...)

Arguments

- **dt**: a data object collected by the projection pursuit guided tour optimisation in the `tourr` package
- **ratio**: numeric; a buffer value to deviate directional search points from the anchor points
- **...**: arguments passed to `compute_pca()`

Value

a tibble object containing the directional search bases in pseudo derivative search

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_best()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_space_param()`, `get_start()`, `get_theo()`

Examples

```r
holes_1d_geo %>%
  compute_pca() %>%
  purrr::pluck("aug") %>%
  get_dir_search()
```

get_interp

Extract interpolated records

Description

Extract interpolated records

Usage

get_interp(dt, group = NULL)
get_interp_last

Arguments

- **dt**: a data object collected by the projection pursuit guided tour optimisation in the `tourr` package.
- **group**: the variable to label different runs of the optimiser(s).

Value

A tibble object containing the last interpolating basis in each iteration.

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_best()`, `get_dir_search()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_space_param()`, `get_start()`, `get_theo()`.

Examples

```r
holes_1d_better %>%
  get_interp() %>%
  head()

get_interp(dplyr::bind_rows(holes_1d_better, holes_1d_geo), group = method) %>%
  head()
```

Description

Extract the end point at each interpolation.

Usage

```r
get_interp_last(dt, group = NULL)
```

Arguments

- **dt**: a data object collected by the projection pursuit guided tour optimisation in the `tourr` package.
- **group**: the variable to label different runs of the optimiser(s).

Value

A tibble object containing the last interpolating basis in each iteration.

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_best()`, `get_dir_search()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_space_param()`, `get_start()`, `get_theo()`.
get_interrupt

Examples

holes_1d_better %>% get_interp_last()
get_interp_last(dplyr::bind_rows(holes_1d_better, holes_1d_geo), group = method)

get_interrupt

Extract the end point of the interpolation and the target point in the
iteration when an interruption happens

Description

The optimiser can find better basis on the interpolation path, an interruption is implemented to stop
further interpolation from the highest point to the target point. This discrepancy is highlighted in
the PCA plot. You should not use geodesic search on this function.

Usage

get_interrupt(dt, group = NULL, precision = 0.001)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| dt | a data object collected by the projection pursuit guided tour optimisation in the
tourr package |
| group | the variable to label different runs of the optimiser(s) |
| precision| numeric; if the index value of the last interpolating point and the anchor point
differ by precision, an interruption is registered |

Value

a tibble object containing the target and anchor bases for the iteration when an interruption happens

See Also

Other get functions: get_anchor(), get_basis_matrix(), get_best(), get_dir_search(),
get_interp_last(), get_interp(), get_search_count(), get_search(), get_space_param(),
get_start(), get_theo()

Examples

holes_1d_better %>% get_interrupt()
holes_1d_geo %>% get_interrupt()
get_search

Extract search points during the optimisation

Description

Extract search points during the optimisation

Usage

```r
get_search(dt)
```

Arguments

- `dt`: a data object collected by the projection pursuit guided tour optimisation in the `tourr` package

Value

A tibble object containing the search bases

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_best()`, `get_dir_search()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_space_param()`, `get_start()`, `get_theo()`

Examples

```r
holes_1d_better %>% get_search()
holes_1d_geo %>% get_search()
```

get_search_count

Extract the count in each iteration

Description

Extract the count in each iteration

Usage

```r
get_search_count(dt, iter = NULL, group = NULL)
```

Arguments

- `dt`: a data object collected by the projection pursuit guided tour optimisation in the `tourr` package
- `iter`: the variable to be counted by
- `group`: the variable to label different runs of the optimiser(s)

Examples

```r
holes_1d_better %>% get_search() %>% get_search_count()
holes_1d_geo %>% get_search() %>% get_search_count()
```
Value

a tibble object of the number of searches conducted by the optimiser(s) in each iteration

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_best()`, `get_dir_search()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search()`, `get_space_param()`, `get_start()`, `get_theo()`

Examples

```r
get_search_count(holes_1d_better)
get_search_count(dplyr::bind_rows(holes_1d_better, holes_1d_geo), group = method)
```

Description

The space of projected bases is a circle when reduced to 2D. A radius is estimated using the largest distance from the bases in the data object to the centre point.

Usage

```r
get_space_param(dt, ...)
```

Arguments

- `dt` a data object collected by the projection pursuit guided tour optimisation in the tourr package
- `...` other arguments passed to `compute_pca()`

Details

This is a wrapper function used by `explore_space_pca()` and should be called directly by the user

Value

a tibble object of the centre and radius of the basis space

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_best()`, `get_dir_search()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_start()`, `get_theo()`
get_start

Extract the starting records

Description

Extract the starting records

Usage

```
get_start(dt)
```

Arguments

- `dt`: a data object collected by the projection pursuit guided tour optimisation in the `tourr` package

Value

a tibble object containing the start basis

See Also

Other get functions: `get_anchor()`, `get_basis_matrix()`, `get_best()`, `get_dir_search()`, `get_interp_last()`, `get_interp()`, `get_interrupt()`, `get_search_count()`, `get_search()`, `get_space_param()`, `get_theo()`

Examples

```
holes_1d_better %>% get_start()
```

get_theo

Extract the theoretical best basis, if applicable

Description

Extract the theoretical best basis, if applicable

Usage

```
get_theo(dt)
```

Arguments

- `dt`: a data object collected by the projection pursuit guided tour optimisation in the `tourr` package
holes_1d_geo

Value

a tibble object containing the theoretical bases

See Also

Other get functions: get_anchor(), get_basis_matrix(), get_best(), get_dir_search(),
get_interp_last(), get_interp(), get_interrupt(), get_search_count(), get_search(),
get_space_param(), get_start()

Examples

best <- matrix(c(0, 1, 0, 0, 0), nrow = 5)
holes_1d_better %>%
 bind_theoretical(best, tourr::holes(), raw_data = boa5) %>%
 get_theo()

holes_1d_geo Simulated data

Description

The boa data is simulated using different Gaussian mixtures with varied centres and weights (see
section format for the simulation code). Theses data are simulated for demonstrating the usage
of four diagnostic plots in the package, users can create their own guided tour data objects and
diagnose with the visualisation designed in this package.

Usage

holes_1d_geo
holes_1d_better
holes_2d_better
holes_2d_better_max_tries
boa
boa5
boa6

Format

The code for simulating each data object is as follows:
```r
set.seed(123456);
holes_1d_geo <-
  animate_dist(boa5, tour_path = guided_tour(holes(), d = 1,
                        search_f = search_geodesic),
                        rescale = FALSE)

set.seed(123456)
holes_1d_better <-
  animate_dist(boa5, tour_path = guided_tour(holes(), d = 1,
                        search_f = search_better),
                        rescale = FALSE)

set.seed(123456)
holes_2d_better <-
  animate_xy(boa6, tour_path = guided_tour(holes(), d = 2,
                        search_f = search_better),
                        rescale = FALSE)

set.seed(123456)
holes_2d_better_max_tries <-
  animate_xy(boa6, tour_path = guided_tour(holes(), d = 2,
                        search_f = search_better,
                        max.tries = 500),
                        rescale = FALSE)

library(tidyverse)
set.seed(1234)
x1 <- rnorm(1000, 0, 1)
x2 <- sample(c(rnorm(500, -3, 1), rnorm(500, 3, 1)), size = 1000)
x3 <- sample(c(rep(-1, 500), rep(1, 500)), size = 1000)
x4 <- sample(c(rnorm(250, -3, 1), rnorm(750, 3, 1)), size = 1000)
x5 <- sample(c(rnorm(330, -5, 1), rnorm(340, 0, 1), rnorm(330, 5, 1)), size = 1000)
x6 <- sample(c(rnorm(450, -5, 1), rnorm(100, 0, 1), rnorm(450, 5, 1)), size = 1000)
x7 <- sample(c(rnorm(500, -5, 1), rnorm(500, 5, 1)), size = 1000)
x8 <- rnorm(1000, 0, 1)
x9 <- rnorm(1000, 0, 1)
x10 <- rnorm(1000, 0, 1)
boa <- tibble(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5,
               x6 = x6, x7 = x7, x8 = x8, x9 = x9, x10 = x10)
boa <- as_tibble(scale(boa))
boa5 <- select(boa, x1, x2, x8: x10)
boa6 <- select(boa, x1, x2, x7: x10)
```

An object of class `tbl_df` (inherits from `tbl, data.frame`) with 79 rows and 8 columns.
An object of class `tbl_df` (inherits from `tbl, data.frame`) with 98 rows and 8 columns.
An object of class `tbl_df` (inherits from `tbl, data.frame`) with 1499 rows and 8 columns.
An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 1000 rows and 10 columns.
An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 1000 rows and 5 columns.
An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 1000 rows and 6 columns.

Details

The prefix `holes_*` indicates the use of holes index in the guided tour. The suffix `*_better/geo` indicates the optimiser used: `search_better` and `search_geodesic`.

The name boa comes from the fact that the density plot of each variable in the data looks like boa constrictors swallowing multiple French baguettes, rather than elephants, as in the novella the little prince.

Examples

```r
library(ggplot2)
library(tidyr)
library(dplyr)
boa %>%
pivot_longer(cols = x1:x10, names_to = "var", values_to = "value") %>%
mutate(var = forcats::fct_relevel(as.factor(var), paste0("x", 1:10))) %>%
ggplot(aes(x = value)) +
geom_density() +
facet_wrap(vars(var))
```

scale_color_continuous_botanical

continuous scale colour function

Description

continuous scale colour function
Discrete scale colour function
continuous scale fill function
discrete scale fill function

Usage

```r
scale_color_continuous_botanical(palette = "fern", reverse = FALSE, ...)
scale_color_discrete_botanical(palette = "fern", reverse = FALSE, ...)
scale_fill_continuous_botanical(palette = "fern", reverse = FALSE, ...)
scale_fill_discrete_botanical(palette = "fern", reverse = FALSE, ...)
```
theme_fern

Arguments

- **palette**: colour palette from the botanical_pallete
- **reverse**: logical; if the colour should be reversed
- ... other arguments passed into scale_color_gradientn

Value

- a wrapper for continuous scales in the botanical palette
- a wrapper for discrete scales in the botanical palette
- a wrapper for continuous fill in the botanical palette
- a wrapper for discrete fill in the botanical palette

Description

A specific theme for trace plots

Usage

```r
theme_fern()
```

Value

- a ggplot2 theme for `explore_trace_interp()`
Index

* bind
 bind_random, 12
 bind_random_matrix, 12
 bind_theoretical, 13

* datasets
 botanical_palettes, 14
 holes_1d_geo, 29

* draw functions
 add_anchor, 3
 add_anno, 3
 add_dir_search, 4
 add_end, 5
 add_interp, 5
 add_interp_last, 6
 add_interrupt, 7
 add_search, 8
 add_space, 9
 add_start, 10
 add_theo, 11

* get functions
 get_anchor, 21
 get_base_matrix, 21
 get_best, 22
 get_dir_search, 23
 get_interp, 23
 get_interp_last, 24
 get_interrupt, 25
 get_search, 26
 get_search_count, 26
 get_space_param, 27
 get_start, 28
 get_theo, 28

* main plot functions
 explore_space_pca, 15
 explore_space_tour, 17
 explore_trace_interp, 18
 explore_trace_search, 19

 add_anchor, 3, 4–11
 add_anno, 3, 4–11
 add_dir_search, 3, 4, 4, 5–11
 add_end, 3, 4, 5, 6–11
 add_interp, 3–5, 5, 7–11
 add_interp_last, 3–5, 6, 8–11
 add_interrupt, 3–7, 7, 8–11
 add_search, 3–8, 8, 9–11
 add_space, 3–8, 9, 10, 11
 add_start, 3–9, 10, 11
 add_theo, 3–10, 11
 bind_random, 12, 13, 14
 bind_random_matrix, 12, 12, 14
 bind_theoretical, 12, 12, 14
 boa (holes_1d_geo), 29
 boa5 (holes_1d_geo), 29
 boa6 (holes_1d_geo), 29
 botanical_pal (botanical_palettes), 14
 botanical_palettes, 14
 clean_method, 15
 compute_pca (explore_space_pca), 15
 explore_space_pca, 15, 18–20
 explore_space_tour, 16, 17, 19, 20
 explore_trace_interp, 16, 18, 18, 20
 explore_trace_search, 16, 18, 19, 19
 flip_sign (explore_space_pca), 15
 format_label, 20
 get_anchor, 21, 22–29
 get_base_matrix, 21, 21, 22–29
 get_best, 21, 22, 22, 23–29
 get_dir_search, 21, 22, 23, 24–29
 get_interp, 21–23, 23, 24–29
 get_interp_last, 21–24, 24, 25–29
 get_interrupt, 21–24, 25, 26–29
 get_search, 21–25, 26, 27–29
 get_search_count, 21–26, 26, 27–29
 get_space_param, 21–27, 27, 28, 29
 get_start, 21–27, 28, 29
get_theo, 27–28, 28
holes_1d_better (holes_1d_geo), 29
holes_1d_geo, 29
holes_2d_better (holes_1d_geo), 29
holes_2d_better_max_tries
 (holes_1d_geo), 29
prep_space_tour (explore_space_tour), 17
scale_color_continuous_botanical, 31
scale_color_discrete_botanical
 (scale_color_continuous_botanical),
 31
scale_fill_continuous_botanical
 (scale_color_continuous_botanical),
 31
scale_fill_discrete_botanical
 (scale_color_continuous_botanical),
 31
theme_fern, 32