Package ‘fglsnet’

April 26, 2021

Type Package

Title A Feasible Generalized Least Squares Estimator for Regression Analysis of Outcomes with Network Dependence

Version 1.0

Date 2021-04-20

Description The function estimates a multivariate regression model for outcomes with network dependence.

Author Weihua An

Maintainer Weihua An <weihua.an@emory.edu>

Imports network, sna, matrixcalc, Matrix, MASS, sandwich, lmtest

License GPL-3

LazyData true

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-04-26 09:40:02 UTC

R topics documented:

dat ... 2
fglsnet .. 2

Index 4
dat Simulated data for demonstrating "fglsnet".

Description
Simulated data for demonstrating "fglsnet".

Usage
data(dat)

Format
An object of class list of length 3.

Details
Y is the outcome. X contains the regressors including the intercept. M is the dependence network.

fglsnet A Feasible Generalized Least Squares Estimator for Regression Analysis of Outcomes with Network Dependence

Description
fglsnet estimates a multivariate regression model for analyzing outcomes with network dependence.

Usage
fglsnet(
 formula,
 M = NULL,
 directed = TRUE,
 mcorr = TRUE,
 CSE = FALSE,
 k = 10,
 data = data
)
fglsnet

Arguments

- `formula`: A formula indicating the regression model.
- `M`: The dependence network.
- `directed`: Whether the dependence network is directed or undirected.
- `mcorr`: Whether request multiple correlation coefficients to distinguish triadic, mutual, and asymmetric error dependence.
- `CSE`: Whether use clustered standard error for the residual regression. Default cluster is the ego unit.
- `k`: The number of iterations in the fgls estimation.
- `data`: The data that are used for the regression.

Details

The function estimates a multivariate regression model for analyzing outcomes with network dependence.

Value

A list containing the coefficient `coef`, the testing results on the error correlations `rtest`, the estimated error variance `Sigma`, the estimated error correlation matrix `Omega`, and the OLS estimates `ols`.

References

Examples

```r
data(dat)

g <- fglsnet(Y ~ X-1, M = dat$M, directed = TRUE, mcorr = 1, k = 5, data = dat)

g$coef```

Index

* datasets
  dat, 2

dat, 2

fglsnet, 2