Package ‘fgm’

October 13, 2022

Type Package
Title Partial Separability and Functional Gaussian Graphical Models

Version 1.0
Maintainer Javier Zapata <jzapata@ucsb.edu>
License GPL (>= 2)
Encoding UTF-8
LazyData true
Imports JGL, fdapace
Suggests mvtnorm, fda, knitr, rmarkdown
RoxygenNote 6.1.1
NeedsCompilation no
Author Javier Zapata [cre],
Sang-Yun Oh [aut],
Alexander Petersen [aut]
Repository CRAN
Date/Publication 2019-10-22 12:20:02 UTC

R topics documented:

fgm .. 2
pfpca .. 3

Index 6
Description

Estimates a sparse adjacency matrix representing the conditional dependency structure between features of a multivariate Gaussian process.

Usage

```r
fgm(y, L, alpha, gamma, t = seq(0, 1, length.out = dim(y[[1]])[2]),
   thr.FVE = 95, include.Omega = FALSE)
```

Arguments

- `y`: list of length `p` containing densely observed multivariate (p-dimensional) functional data. `y[[j]]` is an `nxm` matrix of functional data for `n` subjects observed on a grid of length `m`.
- `L`: the number of eigenfunctions used for dimension reduction using the partially separable Karhunen-Loeve (PSKL) expansion obtained using `pfpca()`. This argument can take positive integer values greater or equal to `1`.
- `alpha`: penalty parameter for the common sparsity pattern taking values in `[0,1]`.
- `gamma`: penalty parameter for the overall sparsity pattern taking positive values.
- `t`: (optional) grid on which functional data is observed, defaults to `seq(0, 1, m)` where `m = dim(data[[1]])[2]`.
- `thr.FVE`: this parameter sets a threshold for the minimum percentage of functional variance explained (FVE) by the PSLK eigenfunctions (obtained using `pfpca()`). This criterion is used only if a value for `L` is not provided or is greater than the maximum possible number of eigenfunctions estimated from `y` using `pfpca()`.
- `include.Omega`: logical variable indicating whether to include the list of precision matrices in the output. Default value is `FALSE`.

Details

This function implements the functional graphical model in Zapata, Oh, and Petersen (2019). The arguments `alpha` and `gamma` are a reparameterization of the Group Graphical Lasso tuning parameters when using the JGL package. When using `JGL::JGL`, the tuning parameters are computed as `lambda1 = alpha*gamma` and `lambda2 = (1-alpha)*gamma`.

Value

- `A`: Resulting adjacency matrix as the union of all the Omega matrices.
- `L`: number of PSLK expansion eigenfunctions considered for the estimation of the graphical model.
- `Omega`: list of precision matrices obtained using the multivariate functional principal component scores theta obtained using `fpca()`.
Author(s)
Javier Zapata, Sang-Yun Oh and Alexander Petersen

References

Examples

```r
## Variables
# Omega - list of precision matrices, one per eigenfunction
# Sigma - list of covariance matrices, one per eigenfunction
# theta - list of functional principal component scores
# phi - list of eigenfunctions densely observed on a time grid
# y - list containing densely observed multivariate (p-dimensional) functional data

library(mvtnorm)
library(fda)

## Generate data y
source(system.file("exec", "getOmegaSigma.R", package = "fgm"))
theta = lapply(1:nbasis, function(b) t(rmvnorm(n = 100, sigma = Sigma[[b]]))
theta.reshaped = lapply( 1:p, function(j){
  t(sapply(1:nbasis, function(i) theta[[i]][j,]))
})
phi.basis=create.fourier.basis(rangeval=c(0,1), nbasis=21, period=1)
t = seq(0, 1, length.out = time.grid.length)
chosen.basis = c(2, 3, 6, 7, 10, 11, 16, 17, 20, 21)
phi = t(predict(phi.basis, t))[chosen.basis,]
y = lapply(theta.reshaped, function(th) t(th)%*%phi)

## Solve
fgm(y, alpha=0.5, gamma=0.8)
```

pfpca

Partially Separable Karhunen-Loeve Expansion

Description
Estimates the Karhunen-Loeve expansion for a partially separable multivariate Gaussian process.

Usage

```
fgm(y, t = seq(0, 1, length.out = dim(y[[1]])[2]))
```
Arguments

- **y**: list of length p containing densely observed multivariate (p-dimensional) functional data. \(y[[j]] \) is an nxm matrix of functional data for n subjects observed on a grid of length m.
- **t** (optional): grid on which functional data is observed, defaults to seq(0, 1, m) where \(m = \text{dim(data[[1]]')[2]} \)

Details

This function implements the functional graphical model in Zapata, Oh, and Petersen (2019). This code uses functions from the testing version of fdapace available at: https://github.com/functionaldata/tPACE.

Value

A list with three variables:

- **phi**: Lxm matrix where each row denotes the value of a basis function evaluated at a grid of length m.
- **theta**: list of length L of functional principal component scores. \(\text{theta}[[1]] \) is an nxp matrix of vector scores corresponding to the basis function \(\text{phi}[[1]] \).
- **FVE**: fraction of functional variance explained (FVE) by the first L components.

Author(s)

Javier Zapata, Sang-Yun Oh and Alexander Petersen

References

Examples

```r
## Variables
# Omega - list of precision matrices, one per eigenfunction
# Sigma - list of covariance matrices, one per eigenfunction
# theta - list of functional principal component scores
# phi - list of eigenfunctions densely observed on a time grid
# y - list containing densely observed multivariate (p-dimensional) functional data

library(mvtnorm)
library(fda)

## Generate data y
source(system.file("exec", "getOmegaSigma.R", package = "fgm"))
theta = lapply(1:nbasis, function(b) t(rmvnorm(n = 100, sigma = Sigma[[b]])))
theta.reshaped = lapply(1:p, function(j){
  t(sapply(1:nbasis, function(i) theta[[i]][j,]))
})
```
phi.basis = create.fourier.basis(rangeval = c(0, 1), nbasis = 21, period = 1)

t = seq(0, 1, length.out = time.grid.length)

chosen.basis = c(2, 3, 6, 7, 10, 11, 16, 17, 20, 21)

phi = t(predict(phi.basis, t))[chosen.basis,]

y = lapply(theta.reshaped, function(th) t(th) %*% phi)

Solve
pfpca(y)
Index

* components
 fgm, 2
 pfPCA, 3
* fda
 fgm, 2
 pfPCA, 3
* fpca
 fgm, 2
 pfPCA, 3
* partial
 fgm, 2
 pfPCA, 3
* pca
 fgm, 2
 pfPCA, 3
* pfPCA
 fgm, 2
 pfPCA, 3
* principal
 fgm, 2
 pfPCA, 3
* separability
 fgm, 2
 pfPCA, 3

fgm, 2
pfPCA, 3