Package ‘fiberLD’

February 18, 2019

Encoding UTF-8

Version 0.1-6

Author Natalya Pya Arnqvist[aut, cre],
Sara Sjöstedt de Luna [aut]
Konrad Abramowicz [aut]

Maintainer Natalya Pya Arnqvist <nat.pya@gmail.com>

Title Fiber Length Determination

Date 2019-02-08

Description Routines for estimating tree fiber (tracheid) length distributions in the standing tree
based on increment core samples. Two types of data can be used with the package, increment
core data measured by means of an optical fiber analyzer (OFA), e.g. such as the Kajaani
Fiber Lab, or measured by microscopy. Increment core data analyzed by OFAs consist of the cell
lengths of both cut and uncut fibres (tracheids) and fines (such as ray parenchyma cells)
without being able to identify which cells are cut or if they are fines or fibres. The
microscopy measured data consist of the observed lengths of the uncut fibres in the increment
core. A censored version of a mixture of the fine and fiber length distributions is proposed to
fit the OFA data, under distributional assumptions (Svensson et al., 2006) <doi:10.1111/j.1467-
9469.2006.00501.x>. The package offers two choices for the
assumptions of the underlying density functions of the true fiber (fine) lengths of those fibers
(fines) that at least partially appear in the increment core, being the generalized gamma and
the log normal densities.

Depends R (>= 2.15.0)
Imports stats, graphics, Matrix, VGAM, parallel, foreach, doParallel
Suggests MASS
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN

Date/Publication 2019-02-18 10:30:10 UTC
Description

fiberLD provides functions for estimating tree fiber (tracheid) length distributions in the standing tree based on increment core samples. Two types of data can be used with the package, increment core data measured by means of an optical fiber analyzer (OFA), e.g. such as the Kajaani Fiber Lab, or measured by microscopy. Increment core data analyzed by OFAs consist of the cell lengths of both cut and uncut fibres (tracheids) and fines (such as ray parenchyma cells) without being able to identify which cells are cut or if they are fines or fibres. The microscopy measured data consist of the observed lengths of the uncut fibres in the increment core. A censored version of a mixture of the fine and fiber length distributions is proposed to fit the OFA data, under distributional assumptions. The package offers two choices for the assumptions of the underlying density functions of the true fiber (fine) lengths of those fibers (fines) that at least partially appear in the increment core, being the generalized gamma and the log normal densities.

Maximum likelihood estimation is used for estimating the model parameters for both the OFA analyzed data and the microscopy measured data. In addition a stochastic version of the expectation-maximization method is provided to fit the log normal model to the increment core data analyzed by OFAs. Details about methods and data can be found in references.

Details

Package: fiberLD
Type: Package
License: GPL (>= 2)
Author(s)

Sara Sjöstedt de Luna, Konrad Abramowicz, Natalya Pya Arnbqvist

Maintainer: Natalya Pya Arnbqvist<nat.pya@gmail.com>

References

cell.length

Example of increment core data

Description

Simulated data of cell lengths of both cut and uncut fines and fibres from an increment core (as measured by means of an optical fiber abalyzer). The data were simulated from a censored version of a mixture of the fine and fiber length distributions under the assumption that the true lengths of those cells (fines and fibers) that at least partially appear in the increment core follow generalized gamma distributions. Useful for illustrating the use of f1ed().

Usage

data(cell.length)

Format

cell.length is a vector of 3000 cell lengths simulated from the density
dx.mixture(x, par, r=6, model="ggamma") with parameters
par=c(0.32, 0.001, 0.276, 5.02, 2.31, 3.41, 1.69).

References

Density functions of the fiber lengths

Description

Functions to get values of the density functions of the fiber length on three different scales: as observed in the increment core corresponding to cut and uncut fiber lengths in the core (`dx.fibers`), as true fiber lengths of the fibres that at least partially appear in the increment core (`dy.fibers`) and as the true fiber lengths in the standing tree (`dw.fibers`).

Usage

```r
dx.fibers(x, par, r, model="ggamma")
dy.fibers(x, par, model="ggamma")
dw.fibers(x, par, r, model="ggamma")
```

Arguments

- `x` : vector of fiber lengths
- `par` : vector of parameters for fiber length distribution
- `r` : radius of the increment core
- `model` : either `ggamma` (default) or `lognorm`

Value

returns a vector of density values

Author(s)

Sara Sjöstedt de Luna, Konrad Abramowicz, Natalya Pya Arnqvist

See Also

`dx.mixture`, `dy.mixture`, `dw.mixture`

Examples

```r
library(fiberLD)
r <- 2.5
par <- c(1.8, 2.7, 2.6)
x <- seq(.01, 2*r-.01, length=100)
f1 <- dy.fibers(x, par)
plot(x, f1, type="l")

f2 <- dx.fibers(x, par, r)
f3 <- dw.fibers(x, par, r)

## the same functions can be used for plotting fine densities...
```
Density functions of the fiber length based on microscopy data

Description

Functions to get values of the density functions of the fiber length on three different scales based on microscopy data, being the uncut fibres in the core: the uncut fibres in the increment core (dx.fibers.micro), as true fiber lengths of those fibres that at least partially appears in the increment core (dy.fibers.micro) and as the true fiber lengths in the standing tree (dw.fibers.micro).

Usage

\[
\begin{align*}
\text{dx.fibers.micro}(x, \text{par}, r, \text{model} = \text{"ggamma"}) \\
\text{dy.fibers.micro}(x, \text{par}, \text{model} = \text{"ggamma"}) \\
\text{dw.fibers.micro}(x, \text{par}, r, \text{model} = \text{"ggamma"})
\end{align*}
\]

Arguments

- **x**: vector of fiber length
- **par**: vector of parameters for fiber length distribution
- **r**: radius of the increment core
- **model**: either ggamma (default) or lognorm

Value

returns a vector of density values

Author(s)

Sara Sjöstedt de Luna, Konrad Abramowicz, Natalya Pya Arnqvist
dx.mixture

Mixture density functions of the cell lengths in the increment core

Description

Functions to get values of the mixture density functions of the cell lengths on three different scales: as observed in the increment core, i.e. cut or uncut fibers or fines (dx.mixture), as true cell lengths (fibers or fines) that at least partially appears in the increment core (dy.mixture) and as the true cell lengths (fines or fibres) in the standing tree (dw.mixture).

Usage

dx.mixture(x, par, r, model="ggamma")
dy.mixture(x, par, model="ggamma")
dw.mixture(x, par, r, model="ggamma")

Arguments

- x: vector of cell length values
- par: vector of mixture model parameters
- r: radius of the increment core
- model: either ggamma (default) or lognorm

Value

returns a vector of density values

See Also

dx.fibers, dy.mixture

Examples

```r
library(fiberLD)
 r <- 2.5
 par <- c(1.8, 2.7, 2.6)
x <- seq(.01, 2*r-.01, length=100)
f1 <- dy.fibers.micro(x, par)
plot(x, f1, type="l")

f2 <- dx.fibers.micro(x, par, r)

## getting the density in the tree that goes beyond the length
## of the diameter, 2r,...
w <- seq(0,8, length=200)
f3 <- dw.fibers.micro(w, par, r)
plot(w, f3, type="l")
```
Fiber length determination

This function estimates fiber (tracheid) and fine (e.g. ray parenchyma cells and other small particles) lengths distribution in standing trees based on increment cores (cylindric wood samples). The data from the increment cores contain uncut fiber, fibers cut once or twice (cut by the borer) as well as non-fiber cells so-called 'fines'. A censored version of a mixture of the fine and fiber length distributions is therefore proposed to fit the data. The function offers two choices for the underlying density functions of the true unobserved uncut lengths of the fines and fibers in the increment core such as generalized gamma and log normal densities. The parameters of the mixture models are estimated by log likelihood maximization. The routine calls an `optim()` or `nlm()` functions for optimization procedure with the possibility to use a supplied gradient function. Some parameters of the generalized gamma mixture model can be fixed (rather than estimated) at the given values.

Usage

```r
fled(data=stop("No data supplied"), data.type="ofa", r=2.5, model="ggamma", method="ML", parStart=NULL, fixed=NULL, optimizer=c("optim","L-BFGS-B","grad"),lower=-Inf,upper=Inf,...)
```
Arguments

`data` A numeric vector of cell lengths from increment cores.

`data.type` type of data supplied: "ofa" (default) measured by an optical fiber analyser, or measured by "microscopy" (only the lengths of uncut fibers in the core).

`r` radius of the increment core (default 2.5).

`model` if `model`="ggamma" then the distributions of the true lengths of the fibers (fines) that at least partially appear in the increment core are assumed to follow generalized gamma distributions; if `model`="lognorm" then log normal distributions are assumed on those fiber (fine) lengths.

`method` Currently only maximum likelihood method 'ML' is available.

`parStart` numerical vector of starting values of parameters (or fixed values for ggamma model when `!is.null(fixed)`). The parameter values of the generalized gamma model should be given in the following order,

\[(\epsilon, b_{fines}, d_{fines}, k_{fines}, b_{fibers}, d_{fibers}, k_{fibers})\]

The parameter values of the log normal model are in the order

\[(\epsilon, \mu_{fines}, \sigma_{fines}, \mu_{fibers}, \sigma_{fibers})\] (see Details below).

`fixed` TRUE/FALSE vector of seven components used to tell which parameters of ggamma model to fix. These are fixed at the values given in the argument `parStart`. The positive values in `parStart` for non-fixed parameters are starting values for the optimiser, the negative or zero values indicate that no starting values are assumed. Note, fixing parameter values currently works only with 'optim'.

`optimizer` numerical optimization method used to minimize 'minus' the loglikelihood function of the observed data: 'optim', 'nlm' or 'nlm.fd' (nlm is based on finite-difference approximation of the derivatives). If `optimizer`="optim" then the second argument specifies the numerical method to be used in 'optim' ("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"). The third element of `optimizer` indicates whether the finite difference approximation should be used ('fd') or analytical gradient ('grad') for the 'BFGS', 'CG' and 'L-BFGS-B' methods. The default is `optimizer=c("optim", "L-BFGS-B", "grad")`.

`lower, upper` Bounds on the parameters for the "L-BFGS-B" method. The order of the bounds values has to be the same as the order of the `parStart`. Note that these bounds are on the original rather than transformed scale of the parameters used for optimization.

`...` Further arguments to be passed to `optim`.

Details

The probability density function of the three-parameter generalized gamma distribution proposed by Stacy (1962) can be written as

\[f(y; b, d, k) = db^{-d/dk} y^{dk-1} \exp\left[-(y/b)^d\right]/\Gamma(k), \]

where \(b > 0, d > 0, k > 0, \) and \(y > 0. \)
The probability density function of the log normal distribution can be written as

\[f(y; \mu, \sigma) = \exp\left[-\frac{(\log(y) - \mu)^2}{2\sigma^2}\right] / (y\sigma\sqrt{2\pi}), \]

where \(\sigma > 0 \) and \(y > 0 \).

Value

- `cov.par` approximate covariance matrix of the estimated parameters.
- `cov.logpar` approximate covariance matrix of the transformed estimated parameters.
- `loglik` the log likelihood value corresponding to the estimated parameters.
- `model` model used
- `mu.fibers` estimated mean value of the fiber lengths in the standing tree.
- `mu.fines` estimated mean value of the fine lengths in the standing tree.
- `mu.cell` estimated mean value of the cell lengths in the standing tree.
- `prop.fines` estimated proportion of fines in the standing tree.
- `par` the estimated parameters on the original scale.
- `logpar` the estimated values of the transformed parameters.
- `termcode` an integer indicating why the optimization process terminated (see `optim`).
- `conv` indicates why the optimization algorithm terminated.
- `iterations` number of iterations of the optimization method taken to get convergence.
- `fixed` TRUE/FALSE vector denoting if a parameter of ggamma model is fixed or not.
- `n` number of observations

Warning

Fixing the parameters with the generalized gamma model may lead to unstable results of the optim method.

Note

The idea and some of the code for fixing parameters with `optim()` is due to Barry Rowlingson, October 2011.

Author(s)

Sara Sjöstedt de Luna, Konrad Abramowicz, Natalya Pya Arnqvist

References

determination from increment cores for large-scale population analyses in Norway spruce. *Holzforschung*. Volume 70(9), 829–838.

Examples

```r
library(fiberLD)
## using microscopy data (uncut fiber lengths in the increment core)
data(microscopy)
dat <- microscopy[1:200]
m1 <- f1ed(data=dat,data.type="microscopy",model="ggamma",r=2.5)
summary(m1)
plot(m1)

## and with log normal model...
m2 <- f1ed(data=dat,data.type="microscopy",model="lognorm",r=2.5)
summary(m2)
plot(m2)

## Not run:
## using data measured by an optical fiber analyser
data(cellNlength)
d1 <- f1ed(data=cell.length,model="lognorm",r=6)
summary(d1)
plot(d1)
x11()
plot(d1,density.scale="uncut.core")

## change the model to generalized gamma
## and set lower and upper bounds on the parameters for
## the "L-BFGS-B" method ...
d2 <- f1ed(data=cell.length,model="ggamma",r=6,lower=c(.12,.1e-3,.05,rep(.3,4)), upper=c(.5,2,rep(7,5)))
d2
summary(d2)
plot(d2,select=1)
```

microscopy
Data of uncut fiber lengths in the increment core

Description

Simulated data of lengths of uncut fibers in the increment core (as measured by microscopy), under the assumption that the true lengths of those fibers that at least partially appear in the increment core follow a generalized gamma distribution with parameters \(\text{par}=c(2.4, \ 3.3, \ 1.5) \). Useful for illustrating the use of \(\text{f1ed()} \).
Usage

data(microscopy)

Format

microscopy is a vector of 300 fiber lengths simulated from the density

dx.fibers.micro(x, par, r=2.5, model="ggamma") with parameters par=c(2.4, 3.3, 1.5)

plot.fled FLED plotting

Description

The function takes a fled object produced by fled() and creates several density plots. When the
data consists of cell lengths from the increment core measured by an optical fiber analyzer ("ofa"),
the function creates a histogram of the given data values together with the estimated density of the
mixture model and two separate plots of the estimated fiber and fine lengths densities in the standing
tree. With a microscopy sample (consisting of the lengths of uncut fibers in the increment core) the
function creates two plots, a histogram of the given data with the estimated density of lengths of the
uncut fibers in the increment core and the estimated fiber length density in the standing tree.

Usage

S3 method for class 'fled'
plot(x, select=NULL, density.scale="tree", rvec=NULL, xlab=NULL,
ylab=NULL, main=NULL, col=4, lwd=2, ...)

Arguments

x a fled object as produced by fled().

select allows one plot to be selected for printing. e.g., if you just want the plot for the
fiber length density set select=2. When 'NULL' (default) all three plots are
plotted.

density.scale one of three options which define the scale on which the fiber/fine length den-
sities should be plotted: "tree" (default) plots the estimated densities of the
fiber/fine lengths in the tree, "uncut.core" plots densities of cell lengths of those
cells that at least partially appear in the increment core, "core" plots densities of
the observed (cut or uncut) cell lengths in the increment core

rvec values of cell lengths used to get estimates of densities.

xlab If supplied then this will be used as the x label for all plots.

ylab If supplied then this will be used as the y label for all plots.

main Used as title for plots if supplied.

col defines the color used for density plotting.

lwd defines the line width.

... other graphics parameters to pass on to plotting commands.
Value

The function generates plots.

Author(s)

Sara Sjöstedt de Luna, Konrad Abramowicz, Natalya Pya Arnqvist

References

See Also

fled

Examples

see ?fled help files

```r
print.fled
```

Description

The default print method for a fled object.

Usage

```r
## S3 method for class 'fled'
print(x, ...)
```

Arguments

- `x, ...` fitted model objects of class fled as produced by fled().

Details

Prints the model, type of data, estimated model parameters, optimized value of the minus log likelihood and number of observations supplied.

Author(s)

Sara Sjöstedt de Luna, Konrad Abramowicz, Natalya Pya Arnqvist
summary.fled

Summary for a fled fit

Description

Takes a fled object produced by fled() and produces various useful summaries from it.

Usage

```r
## S3 method for class 'fled'
summary(object, ...)

## S3 method for class 'summary.fled'
print(x, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

- `object`: a fitted fled object as produced by fled().
- `x`: a summary.fled object produced by summary.fled().
- `digits`: controls the number of digits printed in the output.
- `...`: other arguments.

Value

`summary.fled` produces the following list of summary information for a fled object.

- **fixed**: is a logical vector for any model parameters that are fixed
- **n**: number of observations
- **loglik**: minimized minus log likelihood for the model
- **model**: the model used
- **method**: 'ML' method used
- **data.type**: type of data used
- **conv**: indicates why the optimization algorithm terminated
- **p.table**: table of model parameters
- **ss.table**: table of summary statistics for cell lengths in the increment core
- **w.fine**: table of summary statistics for fine lengths in the standing tree
- **w.fiber**: table of summary statistics for fiber lengths in the standing tree
- **mean.w**: expected value of the cell lengths in the standing tree
- **eps.tree**: proportion of fines in the standing tree
- **se.eps.tree**: standard error of eps.tree
Author(s)
Sara Sjöstedt de Luna, Konrad Abramowicz, Natalya Pya Arnqvist

References

See Also
fled

Examples
see ?fled help files
Index

*Topic fiber length
 summary.fled, 13

*Topic generalized gamma
 summary.fled, 13

*Topic mixture model
 summary.fled, 13

cell.length, 3

dw.fibers, 7
dw.fibers (dx.fibers), 4
dw.fibers.micro (dx.fibers.micro), 5
dw.mixture, 4
dw.mixture (dx.mixture), 6
dx.fibers, 4, 6, 7
dx.fibers.micro, 5
dx.mixture, 4, 6
dy.fibers, 7
dy.fibers (dx.fibers), 4
dy.fibers.micro (dx.fibers.micro), 5
dy.mixture, 4, 6
dy.mixture (dx.mixture), 6

fiberLD-package, 2
fled, 7, 12, 14

microscopy, 10

optim, 9

plot.fled, 11
print.fled, 12
print.summary.fled (summary.fled), 13

summary.fled, 13