Package ‘finbipartite’

February 22, 2023

Title Learning Bipartite Graphs: Heavy Tails and Multiple Components
Version 0.1.0
Date 2023-02-02
Description Learning bipartite and k-component bipartite graphs from financial datasets. This package contains implementations of the algorithms described in the paper: Cardoso JVM, Ying J, and Palomar DP (2022).
<https://openreview.net/pdf?id=WNSyF9qZaMd>
``Learning bipartite graphs: heavy tails and multiple components, Advances in Neural Informations Processing Systems” (NeurIPS).

URL https://github.com/convexfi/bipartite/
BugReports https://github.com/convexfi/bipartite/issues
License GPL-3
Encoding UTF-8
Depends spectralGraphTopology, quadprog
Imports MASS, stats, progress, mvtorm, CVXR
Suggests testthat, igraph,
RoxygenNote 7.1.1
NeedsCompilation no
Author Ze Vinicius [cre, aut]
Maintainer Ze Vinicius <jvmirca@gmail.com>
Repository CRAN
Date/Publication 2023-02-22 14:40:06 UTC

R topics documented:

learn_bipartite_graph_nie .. 2
learn_connected_bipartite_graph_pgd .. 4
learn_heavy_tail_bipartite_graph_pgd ... 6
learn_heavy_tail_kcomp_bipartite_graph 8

Index 11
learn_bipartite_graph_nie

Laplacian matrix of a k-component bipartite graph via Nie’s method

Computes the Laplacian matrix of a bipartite graph on the basis of an observed similarity matrix.

Description

Laplacian matrix of a k-component bipartite graph via Nie’s method

Computes the Laplacian matrix of a bipartite graph on the basis of an observed similarity matrix.

Usage

```r
learn_bipartite_graph_nie(
  S,  # a p x p similarity matrix, where p is the number of nodes in the graph.
  r,  # number of nodes in the objects set.
  q,  # number of nodes in the classes set.
  k,  # number of components of the graph.
  learning_rate = 1e-04,  # gradient descent parameter.
  eta = 1,  # rank constraint hyperparameter.
  maxiter = 1000,  # maximum number of iterations.
  reltol = 1e-06,  # relative tolerance as a convergence criteria.
  verbose = TRUE,  # whether or not to show a progress bar during the iterations.
  record_objective = FALSE  # whether or not to record the objective function value during iterations.
)
```

Arguments

- `S`: a p x p similarity matrix, where p is the number of nodes in the graph.
- `r`: number of nodes in the objects set.
- `q`: number of nodes in the classes set.
- `k`: number of components of the graph.
- `learning_rate`: gradient descent parameter.
- `eta`: rank constraint hyperparameter.
- `maxiter`: maximum number of iterations.
- `reltol`: relative tolerance as a convergence criteria.
- `verbose`: whether or not to show a progress bar during the iterations.
- `record_objective`: whether or not to record the objective function value during iterations.
learn_bipartite_graph_nie

Value
A list containing possibly the following elements:
laplacian estimated Laplacian matrix
adjacency estimated adjacency matrix
B estimated graph weights matrix
maxiter number of iterations taken to reach convergence
convergence boolean flag to indicate whether or not the optimization converged
obj_fun objective function value per iteration

References

Examples
library(finbipartite)
library(igraph)
set.seed(42)
r <- 50
q <- 5
p <- r + q

bipartite <- sample_bipartite(r, q, type="Gnp", p = 1, directed=FALSE)
randomly assign edge weights to connected nodes
E(bipartite)$weight <- 1
Lw <- as.matrix(laplacian_matrix(bipartite))
B <- -Lw[1:r, (r+1):p]
B[,] <- runif(length(B))
B <- B / rowSums(B)
utils functions
from_B_to_laplacian <- function(B) {
 A <- from_B_to_adjacency(B)
 return(diag(rowSums(A)) - A)
}
from_B_to_adjacency <- function(B) {
 r <- nrow(B)
 q <- ncol(B)
 zeros_rxr <- matrix(0, r, r)
 zeros_qxq <- matrix(0, q, q)
 return(rbind(cbind(zeros_rxr, B), cbind(t(B), zeros_qxq)))
}
Ltrue <- from_B_to_laplacian(B)
X <- MASS::mvrnorm(100*p, rep(0, p), MASS::ginv(Ltrue))
S <- cov(X)
bipartite_graph <- learn_bipartite_graph_nie(S = S,
 r = r,
 q = q,
learn_connected_bipartite_graph_pgd

Laplacian matrix of a connected bipartite graph with Gaussian data
Computes the Laplacian matrix of a bipartite graph on the basis of an observed data matrix.

Description

Laplacian matrix of a connected bipartite graph with Gaussian data
Computes the Laplacian matrix of a bipartite graph on the basis of an observed data matrix.

Usage

learn_connected_bipartite_graph_pgd(
 S,
 r,
 q,
 init = "naive",
 learning_rate = 1e-04,
 maxiter = 1000,
 reltol = 1e-05,
 verbose = TRUE,
 record_objective = FALSE,
 backtrack = TRUE
)

Arguments

S a p x p covariance matrix, where p is the number of nodes in the graph.
r number of nodes in the objects set.
q number of nodes in the classes set.
init string denoting how to compute the initial graph.
learning_rate gradient descent parameter.
maxiter maximum number of iterations.
reitol relative tolerance as a convergence criteria.
verbose whether or not to show a progress bar during the iterations.
record_objective whether or not to record the objective function value during iterations.
backtrack whether or not to optimize the learning rate via backtracking.
Value

A list containing possibly the following elements:

- **laplacian**: estimated Laplacian matrix
- **adjacency**: estimated adjacency matrix
- **B**: estimated graph weights matrix
- **maxiter**: number of iterations taken to reach convergence
- **convergence**: boolean flag to indicate whether or not the optimization converged
- **lr_seq**: learning rate value per iteration
- **obj_seq**: objective function value per iteration
- **elapsed_time**: time taken per iteration until convergence is reached

Examples

```r
library(finbipartite)
library(igraph)
set.seed(42)
r <- 50
q <- 5
p <- r + q

bipartite <- sample_bipartite(r, q, type="Gnp", p = 1, directed=FALSE)
# randomly assign edge weights to connected nodes
E(bipartite)$weight <- 1
Lw <- as.matrix(laplacian_matrix(bipartite))
B <- -Lw[1:r, (r+1):p]
B[,] <- runif(length(B))
B <- B / rowSums(B)
# utility functions
from_B_to_laplacian <- function(B) {
  A <- from_B_to_adjacency(B)
  return(diag(rowSums(A)) - A)
}
from_B_to_adjacency <- function(B) {
  r <- nrow(B)
  q <- ncol(B)
  zeros_rxr <- matrix(0, r, r)
  zeros_qxq <- matrix(0, q, q)
  return(rbind(cbind(zeros_rxr, B), cbind(t(B), zeros_qxq)))
}
Ltrue <- from_B_to_laplacian(B)
X <- MASS::mvrnorm(100*p, rep(0, p), MASS::ginv(Ltrue))
S <- cov(X)
bipartite_graph <- learn_connected_bipartite_graph_pgd(S = S,
  r = r,
  q = q,
  verbose=FALSE)
```
learn_heavy_tail_bipartite_graph_pgd

Laplacian matrix of a connected bipartite graph with heavy-tailed data

Computes the Laplacian matrix of a bipartite graph on the basis of an observed data matrix whose distribution is assumed to be Student-t.

Description

Laplacian matrix of a connected bipartite graph with heavy-tailed data

Computes the Laplacian matrix of a bipartite graph on the basis of an observed data matrix whose distribution is assumed to be Student-t.

Usage

learn_heavy_tail_bipartite_graph_pgd(
 X,
 r,
 q,
 nu = 2.001,
 learning_rate = 1e-04,
 maxiter = 1000,
 reltol = 1e-05,
 init = "default",
 verbose = TRUE,
 record_objective = FALSE,
 backtrack = TRUE
)

Arguments

X a n x p data matrix, where p is the number of nodes in the graph and n is the number of observations.

r number of nodes in the objects set.

q number of nodes in the classes set.

nu degrees of freedom of the Student-t distribution.

learning_rate gradient descent parameter.

maxiter maximum number of iterations.

reltol relative tolerance as a convergence criteria.

init string denoting how to compute the initial graph or a r x q matrix with initial graph weights.

verbose whether or not to show a progress bar during the iterations.

record_objective whether or not to record the objective function value during iterations.

backtrack whether or not to optimize the learning rate via backtracking.
Value

A list containing possibly the following elements:

- `laplacian` estimated Laplacian matrix
- `adjacency` estimated adjacency matrix
- `B` estimated graph weights matrix
- `maxiter` number of iterations taken to reach convergence
- `convergence` boolean flag to indicate whether or not the optimization converged
- `lr_seq` learning rate value per iteration
- `obj_seq` objective function value per iteration
- `elapsed_time` time taken per iteration until convergence is reached

Examples

```r
library(finbipartite)
library(igraph)
set.seed(42)
r <- 50
q <- 5
p <- r + q

bipartite <- sample_bipartite(r, q, type="Gnp", p = 1, directed=FALSE)
# randomly assign edge weights to connected nodes
E(bipartite)$weight <- 1
Lw <- as.matrix(laplacian_matrix(bipartite))
B <- -Lw[1:r, (r+1):p]
B[,] <- runif(length(B))
B <- B / rowSums(B)

# utils functions
from_B_to_laplacian <- function(B) {
  A <- from_B_to_adjacency(B)
  return(diag(rowSums(A)) - A)
}

from_B_to_adjacency <- function(B) {
  r <- nrow(B)
  q <- ncol(B)
  zeros_rxr <- matrix(0, r, r)
  zeros_qxq <- matrix(0, q, q)
  return(rbind(cbind(zeros_rxr, B), cbind(t(B), zeros_qxq)))
}

Ltrue <- from_B_to_laplacian(B)
X <- MASS::mvrnorm(100*p, rep(0, p), MASS::ginv(Ltrue))
bipartite_graph <- learn_heavy_tail_bipartite_graph_pgd(X = X,
  r = r,
  q = q,
  nu = 1e2,
  verbose=FALSE)
```
learn_heavy_tail_kcomp_bipartite_graph

Laplacian matrix of a k-component bipartite graph with heavy-tailed data
Computes the Laplacian matrix of a k-component bipartite graph on the basis of an observed data matrix whose distribution is assumed to be Student-t.

Description

Laplacian matrix of a k-component bipartite graph with heavy-tailed data
Computes the Laplacian matrix of a k-component bipartite graph on the basis of an observed data matrix whose distribution is assumed to be Student-t.

Usage

learn_heavy_tail_kcomp_bipartite_graph(
 X,
 r,
 q,
 k,
 nu = 2.001,
 rho = 1,
 learning_rate = 1e-04,
 maxiter = 1000,
 reltol = 1e-05,
 init = "default",
 verbose = TRUE,
 record_objective = FALSE
)

Arguments

X a n x p data matrix, where p is the number of nodes in the graph and n is the number of observations.

r number of nodes in the objects set.

q number of nodes in the classes set.

k number of components of the graph.

nu degrees of freedom of the Student-t distribution.

rho ADMM hyperparameter.

learning_rate gradient descent parameter.

maxiter maximum number of iterations.

reitol relative tolerance as a convergence criteria.

init string denoting how to compute the initial graph or a r x q matrix with initial graph weights.
verbosethe whether or not to show a progress bar during the iterations.
record_objective whether or not to record the objective function value during iterations.

Value

A list containing possibly the following elements:

- **laplacian**: estimated Laplacian matrix
- **adjacency**: estimated adjacency matrix
- **B**: estimated graph weights matrix
- **maxiter**: number of iterations taken to reach convergence
- **convergence**: boolean flag to indicate whether or not the optimization converged
- **dual_residual**: dual residual value per iteration
- **primal_residual**: primal residual value per iteration
- **aug_lag**: augmented Lagrangian value per iteration
- **rho_seq**: constraint relaxation hyperparameter value per iteration
- **elapsed_time**: time taken per iteration until convergence is reached

Examples

```r
library(finbipartite)
library(igraph)
set.seed(42)
r <- 50
q <- 5
p <- r + q
bipartite <- sample_bipartite(r, q, type="Gnp", p = 1, directed=FALSE)
# randomly assign edge weights to connected nodes
E(bipartite)$weight <- 1
Lw <- as.matrix(laplacian_matrix(bipartite))
B <- -Lw[1:r, (r+1):p]
B[,] <- runif(length(B))
B <- B / rowSums(B)
# utils functions
from_B_to_laplacian <- function(B) {
  A <- from_B_to_adjacency(B)
  return(diag(rowSums(A)) - A)
}
from_B_to_adjacency <- function(B) {
  r <- nrow(B)
  q <- ncol(B)
  zeros_rxr <- matrix(0, r, r)
  zeros_qxq <- matrix(0, q, q)
  return(rbind(cbind(zeros_rxr, B), cbind(t(B), zeros_qxq)))
}
```
\[L_{\text{true}} \leftarrow \text{from}_B\text{to}_\text{laplacian}(B) \]
\[X \leftarrow \text{MASS}\text{:}\text{mvrnorm}(100*P, \text{rep}(0, P), \text{MASS}\text{:}\text{ginv}(L_{\text{true}})) \]
\[\text{bipartite_graph} \leftarrow \text{learn}_\text{heavy_tail}_\text{kcomp_bipartite_graph}(X = X, \]
\[r = r, \]
\[q = q, \]
\[k = 1, \]
\[\nu = 1e2, \]
\[\text{verbose}\text{=}FALSE) \]
Index

learn_bipartite_graph_nie, 2
learn_connected_bipartite_graph_pgd, 4
learn_heavy_tail_bipartite_graph_pgd, 6
learn_heavy_tail_kcomp_bipartite_graph, 8