Package ‘finetune’

March 21, 2024

Title Additional Functions for Model Tuning

Version 1.2.0

Description The ability to tune models is important. ‘finetune’ enhances
the ‘tune’ package by providing more specialized methods for finding
reasonable values of model tuning parameters. Two racing methods
described by Kuhn (2014) <arXiv:1405.6974> are included. An iterative
search method using generalized simulated annealing (Bohachevsky,
Johnson and Stein, 1986) <doi:10.1080/00401706.1986.10488128> is also
included.

License MIT + file LICENSE

URL https://github.com/tidymodels/finetune,
 https://finetune.tidymodels.org

BugReports https://github.com/tidymodels/finetune/issues

Depends R (>= 3.5), tune (>= 1.2.0)

Imports cli, dials (>= 0.1.0), dplyr (>= 1.1.1), ggplot2, parsnip (>=
 1.1.0), purrr, rlang, tibble, tidyselect, utils, vctrs,
 workflows (>= 0.2.6)

Suggests BradleyTerry2, covr, discrim, kknn, klaR, lme4, modeldata,
 ranger, recipes (>= 0.2.0), rpart, rsample, spelling, testthat,
 yardstick

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

Language en-US

RoxygenNote 7.3.1

NeedsCompilation no

Author Max Kuhn [aut, cre] (<https://orcid.org/0000-0003-2402-136X>),
 Posit Software, PBC [cph, fnd]

Maintainer Max Kuhn <max@posit.co>

Repository CRAN

Date/Publication 2024-03-21 03:30:02 UTC
collect_predictions

Obtain and format results produced by racing functions

Description

Obtain and format results produced by racing functions

Usage

```r
## S3 method for class 'tune_race'
collect_predictions(
x,  
...,  
summarize = FALSE,  
parameters = NULL,  
all_configs = FALSE
)
```

```r
## S3 method for class 'tune_race'
collect_metrics(
x,  
...,  
summarize = TRUE,  
type = c("long", "wide"),  
all_configs = FALSE
)
```

Arguments

- **x**

 The results of `tune_grid()`, `tune_bayes()`, `fit_resamples()`, or `last_fit()`. For `collect_predictions()`, the control option `save_pred = TRUE` should have been used.

- **...**

 Not currently used.
collect_predictions

summarize A logical; should metrics be summarized over resamples (TRUE) or return the values for each individual resample. Note that, if x is created by last_fit(), summarize has no effect. For the other object types, the method of summarizing predictions is detailed below.

parameters An optional tibble of tuning parameter values that can be used to filter the predicted values before processing. This tibble should only have columns for each tuning parameter identifier (e.g. "my_param" if tune("my_param") was used).

all_configs A logical: should we return the complete set of model configurations or just those that made it to the end of the race (the default).

type One of "long" (the default) or "wide". When type = "long", output has columns .metric and one of .estimate or mean. .estimate/mean gives the values for the .metric. When type = "wide", each metric has its own column and the n and std_err columns are removed, if they exist.

Details

For collect_metrics() and collect_predictions(), when unsummarized, there are columns for each tuning parameter (using the id from tune(), if any). collect_metrics() also has columns .metric, and .estimator. When the results are summarized, there are columns for mean, n, and std_err. When not summarized, the additional columns for the resampling identifier(s) and .estimate.

For collect_predictions(), there are additional columns for the resampling identifier(s), columns for the predicted values (e.g., .pred, .pred_class, etc.), and a column for the outcome(s) using the original column name(s) in the data.

collect_predictions() can summarize the various results over replicate out-of-sample predictions. For example, when using the bootstrap, each row in the original training set has multiple holdout predictions (across assessment sets). To convert these results to a format where every training set same has a single predicted value, the results are averaged over replicate predictions.

For regression cases, the numeric predictions are simply averaged. For classification models, the problem is more complex. When class probabilities are used, these are averaged and then re-normalized to make sure that they add to one. If hard class predictions also exist in the data, then these are determined from the summarized probability estimates (so that they match). If only hard class predictions are in the results, then the mode is used to summarize.

For racing results, it is best to only collect model configurations that finished the race (i.e., were completely resampled). Comparing performance metrics for configurations averaged with different resamples is likely to lead to inappropriate results.

Value

A tibble. The column names depend on the results and the mode of the model.
control_race

Control aspects of the grid search racing process

Usage

control_race(
 verbose = FALSE,
 verbose_elim = FALSE,
 allow_par = TRUE,
 extract = NULL,
 save_pred = FALSE,
 burn_in = 3,
 num_ties = 10,
 alpha = 0.05,
 randomize = TRUE,
 pkgs = NULL,
 save_workflow = FALSE,
 event_level = "first",
 parallel_over = "everything",
 backend_options = NULL
)

Arguments

verbose A logical for logging results (other than warnings and errors, which are always shown) as they are generated during training in a single R process. When using most parallel backends, this argument typically will not result in any logging. If using a dark IDE theme, some logging messages might be hard to see; try setting the tidymodels.dark option with options(tidymodels.dark = TRUE) to print lighter colors.

verbose_elim A logical for whether logging of the elimination of tuning parameter combinations should occur.

allow_par A logical to allow parallel processing (if a parallel backend is registered).

extract An optional function with at least one argument (or NULL) that can be used to retain arbitrary objects from the model fit object, recipe, or other elements of the workflow.

save_pred A logical for whether the out-of-sample predictions should be saved for each model evaluated.

burn_in An integer for how many resamples should be completed for all grid combinations before parameter filtering begins.
num_ties An integer for when tie-breaking should occur. If there are two final parameter combinations being evaluated, num_ties specified how many more resampling iterations should be evaluated. After num_ties more iterations, the parameter combination with the current best results is retained.

alpha The alpha level for a one-sided confidence interval for each parameter combination.

randomize Should the resamples be evaluated in a random order? By default, the resamples are evaluated in a random order so the random number seed should be control prior to calling this method (to be reproducible). For repeated cross-validation the randomization occurs within each repeat.

pkgs An optional character string of R package names that should be loaded (by namespace) during parallel processing.

save_workflow A logical for whether the workflow should be appended to the output as an attribute.

event_level A single string containing either "first" or "second". This argument is passed on to yardstick metric functions when any type of class prediction is made, and specifies which level of the outcome is considered the "event".

parallel_over A single string containing either "resamples" or "everything" describing how to use parallel processing. Alternatively, NULL is allowed, which chooses between "resamples" and "everything" automatically. If "resamples", then tuning will be performed in parallel over resamples alone. Within each resample, the preprocessor (i.e. recipe or formula) is processed once, and is then reused across all models that need to be fit. If "everything", then tuning will be performed in parallel at two levels. An outer parallel loop will iterate over resamples. Additionally, an inner parallel loop will iterate over all unique combinations of preprocessor and model tuning parameters for that specific resample. This will result in the preprocessor being re-processed multiple times, but can be faster if that processing is extremely fast. If NULL, chooses "resamples" if there are more than one resample, otherwise chooses "everything" to attempt to maximize core utilization. Note that switching between parallel_over strategies is not guaranteed to use the same random number generation schemes. However, re-tuning a model using the same parallel_over strategy is guaranteed to be reproducible between runs.

backend_options An object of class "tune_backend_options" as created by tune::new_backend_options(), used to pass arguments to specific tuning backend. Defaults to NULL for default backend options.

Value

An object of class control_race that echos the argument values.

Examples

control_race()
control_sim_anneal Control aspects of the simulated annealing search process

Description

Control aspects of the simulated annealing search process

Usage

control_sim_anneal(
 verbose = FALSE,
 verbose_iter = TRUE,
 no_improve = Inf,
 restart = 8L,
 radius = c(0.05, 0.15),
 flip = 3/4,
 cooling_coef = 0.02,
 extract = NULL,
 save_pred = FALSE,
 time_limit = NA,
 pkgs = NULL,
 save_workflow = FALSE,
 save_history = FALSE,
 event_level = "first",
 parallel_over = NULL,
 allow_par = TRUE,
 backend_options = NULL
)

Arguments

verbose A logical for logging results (other than warnings and errors, which are always shown) as they are generated during training in a single R process. When using most parallel backends, this argument typically will not result in any logging. If using a dark IDE theme, some logging messages might be hard to see; try setting the tidymodels.dark option with options(tidymodels.dark = TRUE) to print lighter colors.

verbose_iter A logical for logging results of the search process. Defaults to FALSE. If using a dark IDE theme, some logging messages might be hard to see; try setting the tidymodels.dark option with options(tidymodels.dark = TRUE) to print lighter colors.

no_improve The integer cutoff for the number of iterations without better results.

restart The number of iterations with no improvement before new tuning parameter candidates are generated from the last, overall best conditions.
control_sim_anneal

radius Two real numbers on (0, 1) describing what a value "in the neighborhood" of the current result should be. If all numeric parameters were scaled to be on the [0, 1] scale, these values set the min. and max. of a radius of a circle used to generate new numeric parameter values.

flip A real number between [0, 1] for the probability of changing any non-numeric parameter values at each iteration.

cooling_coef A real, positive number to influence the cooling schedule. Larger values decrease the probability of accepting a sub-optimal parameter setting.

extract An optional function with at least one argument (or NULL) that can be used to retain arbitrary objects from the model fit object, recipe, or other elements of the workflow.

save_pred A logical for whether the out-of-sample predictions should be saved for each model evaluated.

time_limit A number for the minimum number of minutes (elapsed) that the function should execute. The elapsed time is evaluated at internal checkpoints and, if over time, the results at that time are returned (with a warning). This means that the time_limit is not an exact limit, but a minimum time limit.

pkgs An optional character string of R package names that should be loaded (by namespace) during parallel processing.

save_workflow A logical for whether the workflow should be appended to the output as an attribute.

save_history A logical to save the iteration details of the search. These are saved to tempdir() named sa_history.RData. These results are deleted when the R session ends. This option is only useful for teaching purposes.

event_level A single string containing either "first" or "second". This argument is passed on to yardstick metric functions when any type of class prediction is made, and specifies which level of the outcome is considered the "event".

parallel_over A single string containing either "resamples" or "everything" describing how to use parallel processing. Alternatively, NULL is allowed, which chooses between "resamples" and "everything" automatically. If "resamples", then tuning will be performed in parallel over resamples alone. Within each resample, the preprocessor (i.e. recipe or formula) is processed once, and is then reused across all models that need to be fit. If "everything", then tuning will be performed in parallel at two levels. An outer parallel loop will iterate over resamples. Additionally, an inner parallel loop will iterate over all unique combinations of preprocessor and model tuning parameters for that specific resample. This will result in the preprocessor being re-processed multiple times, but can be faster if that processing is extremely fast. If NULL, chooses "resamples" if there are more than one resample, otherwise chooses "everything" to attempt to maximize core utilization. Note that switching between parallel_over strategies is not guaranteed to use the same random number generation schemes. However, re-tuning a model using the same parallel_over strategy is guaranteed to be reproducible between runs.

allow_par A logical to allow parallel processing (if a parallel backend is registered).
backend_options

An object of class "tune_backend_options" as created by tune::new_backend_options(), used to pass arguments to specific tuning backend. Defaults to NULL for default backend options.

Value

An object of class control_sim_anneal that echoes the argument values.

Examples

control_sim_anneal()

plot_race

Plot racing results

Description

Plot the model results over stages of the racing results. A line is given for each submodel that was tested.

Usage

plot_race(x)

Arguments

x A object with class tune_results

Value

A ggplot object.

show_best.tune_race

Investigate best tuning parameters

Description

show_best() displays the top sub-models and their performance estimates.
Usage

```r
## S3 method for class 'tune_race'
show_best(
  x,
  ...,
  metric = NULL,
  eval_time = NULL,
  n = 5,
  call = rlang::current_env()
)
```

Arguments

- `x` - The results of `tune_grid()` or `tune_bayes()`
- `...` - For `select_by_one_std_err()` and `select_by_pct_loss()`, this argument is passed directly to `dplyr::arrange()` so that the user can sort the models from most simple to most complex. That is, for a parameter `p`, pass the unquoted expression `p` if smaller values of `p` indicate a simpler model, or `desc(p)` if larger values indicate a simpler model. At least one term is required for these two functions. See the examples below.
- `metric` - A character value for the metric that will be used to sort the models. (See https://yardstick.tidymodels.org/articles/metric-types.html for more details). Not required if a single metric exists in `x`. If there are multiple metric and none are given, the first in the metric set is used (and a warning is issued).
- `eval_time` - A single numeric time point where dynamic event time metrics should be chosen (e.g., the time-dependent ROC curve, etc). The values should be consistent with the values used to create `x`. The `NULL` default will automatically use the first evaluation time used by `x`.
- `n` - An integer for the maximum number of top results/rows to return.
- `call` - The call to be shown in errors and warnings.

Details

For racing results (from the `finetune` package), it is best to only report configurations that finished the race (i.e., were completely resampled). Comparing performance metrics for configurations averaged with different resamples is likely to lead to inappropriate results.

tune_race_anova

Efficient grid search via racing with ANOVA models

Description

`tune_race_anova()` computes a set of performance metrics (e.g., accuracy or RMSE) for a pre-defined set of tuning parameters that correspond to a model or recipe across one or more resamples of the data. After an initial number of resamples have been evaluated, the process eliminates tuning parameter combinations that are unlikely to be the best results using a repeated measure ANOVA model.
Usage

```r
tune_race_anova(object, ...)  
```

S3 method for class 'model_spec'

```r
tune_race_anova(  
  object,  
  preprocessor,  
  resamples,  
  ...,  
  param_info = NULL,  
  grid = 10,  
  metrics = NULL,  
  eval_time = NULL,  
  control = control_race()  
)
```

S3 method for class 'workflow'

```r
tune_race_anova(  
  object,  
  resamples,  
  ...,  
  param_info = NULL,  
  grid = 10,  
  metrics = NULL,  
  eval_time = NULL,  
  control = control_race()  
)
```

Arguments

- **object**: A `parsnip` model specification or a `workflows::workflow()`. Not currently used.
- **preprocessor**: A traditional model formula or a recipe created using `recipes::recipe()`. This is only required when `object` is not a workflow.
- **resamples**: An `rset()` object that has multiple resamples (i.e., is not a validation set).
- **param_info**: A `dials::parameters()` object or `NULL`. If none is given, a parameters set is derived from other arguments. Passing this argument can be useful when parameter ranges need to be customized.
- **grid**: A data frame of tuning combinations or a positive integer. The data frame should have columns for each parameter being tuned and rows for tuning parameter candidates. An integer denotes the number of candidate parameter sets to be created automatically.
- **metrics**: A `yardstick::metric_set()` or `NULL`.
- **eval_time**: A numeric vector of time points where dynamic event time metrics should be computed (e.g. the time-dependent ROC curve, etc). The values must be non-negative and should probably be no greater than the largest event time in the training set (See Details below).
control An object used to modify the tuning process. See control_race() for more details.

Details

The technical details of this method are described in Kuhn (2014).
Racing methods are efficient approaches to grid search. Initially, the function evaluates all tuning parameters on a small initial set of resamples. The burn_in argument of control_race() sets the number of initial resamples.

The performance statistics from these resamples are analyzed to determine which tuning parameters are not statistically different from the current best setting. If a parameter is statistically different, it is excluded from further resampling.

The next resample is used with the remaining parameter combinations and the statistical analysis is updated. More candidate parameters may be excluded with each new resample that is processed.

This function determines statistical significance using a repeated measures ANOVA model where the performance statistic (e.g., RMSE, accuracy, etc.) is the outcome data and the random effect is due to resamples. The control_race() function contains are parameter for the significance cutoff applied to the ANOVA results as well as other relevant arguments.

There is benefit to using racing methods in conjunction with parallel processing. The following section shows a benchmark of results for one dataset and model.

Censored regression models:
With dynamic performance metrics (e.g. Brier or ROC curves), performance is calculated for every value of eval_time but the first evaluation time given by the user (e.g., eval_time[1]) is analyzed during racing.

Also, values of eval_time should be less than the largest observed event time in the training data. For many non-parametric models, the results beyond the largest time corresponding to an event are constant (or NA).

Benchmarking results:
To demonstrate, we use a SVM model with the kernlab package.

library(kernlab)
library(tidymodels)
library(finetune)
library(doParallel)

##--
data(cells, package = "modeldata")
cells <- cells %>% select(-case)

##--
set.seed(6376)
rs <- bootstraps(cells, times = 25)

We’ll only tune the model parameters (i.e., not recipe tuning):
```r
## SVM specification

```{r, eval = TRUE}
svm_spec <-
 svm_rbf(cost = tune(), rbf_sigma = tune()) %>%
 set_engine("kernlab") %>%
 set_mode("classification")

svm_rec <-
 recipe(class ~ ., data = cells) %>%
 step_YeoJohnson(all_predictors()) %>%
 step_normalize(all_predictors())

svm_wflow <-
 workflow() %>%
 add_model(svm_spec) %>%
 add_recipe(svm_rec)

set.seed(1)
svm_grid <-
 svm_spec %>%
 parameters() %>%
 grid_latin_hypercube(size = 25)

We’ll get the times for grid search and ANOVA racing with and without parallel processing:

```{r, eval = TRUE}
## Regular grid search

system.time({
  set.seed(2)
  svm_wflow %>% tune_grid(resamples = rs, grid = svm_grid)
})

## With racing

system.time({
  set.seed(2)
  svm_wflow %>% tune_race_anova(resamples = rs, grid = svm_grid)
})

Speed-up of 5.56-fold for racing.

```
cores <- parallel::detectCores(logical = FALSE)
cores
[1] 10
cl <- makePSOCKcluster(cores)
registerDoParallel(cl)
##---
Parallel grid search

system.time({
 set.seed(2)
 svm_wflow %>% tune_grid(resamples = rs, grid = svm_grid)
})
user system elapsed
1.112 0.190 126.650

Parallel processing with grid search was 6.01-fold faster than sequential grid search.

##---
Parallel racing

system.time({
 set.seed(2)
 svm_wflow %>% tune_race_anova(resamples = rs, grid = svm_grid)
})
user system elapsed
1.908 0.261 21.442

Parallel processing with racing was 35.51-fold faster than sequential grid search.
There is a compounding effect of racing and parallel processing but its magnitude depends on the type of model, number of resamples, number of tuning parameters, and so on.

Value

An object with primary class `tune_race` in the same standard format as objects produced by `tune::tune_grid()`.

References

See Also

tune::tune_grid(), control_race(), tune_race_win_loss()
Examples

```r
library(parsnip)
library(rsample)
library(dials)

## -----------------------------------------------------------------------------
if (rlang::is_installed(c("discrim", "lme4", "modeldata"))) {
  library(discrim)
  data(two_class_dat, package = "modeldata")

  set.seed(6376)
  rs <- bootstraps(two_class_dat, times = 10)

  ## -----------------------------------------------------------------------------
  # optimize an regularized discriminant analysis model
  rda_spec <-
      discrim_regularized(frac_common_cov = tune(), frac_identity = tune()) %>%
          set_engine("klaR")

  ## -----------------------------------------------------------------------------
  ctrl <- control_race(verbose_elim = TRUE)
  set.seed(11)
  grid_anova <-
      rda_spec %>%
          tune_race_anova(Class ~ ., resamples = rs, grid = 10, control = ctrl)

  # Shows only the fully resampled parameters
  show_best(grid_anova, metric = "roc_auc", n = 2)

  plot_race(grid_anova)
}
```

tune_race_win_loss
Efficient grid search via racing with win/loss statistics

Description

tune_race_win_loss() computes a set of performance metrics (e.g. accuracy or RMSE) for a pre-defined set of tuning parameters that correspond to a model or recipe across one or more resamples of the data. After an initial number of resamples have been evaluated, the process eliminates tuning parameter combinations that are unlikely to be the best results using a statistical model. For each pairwise combinations of tuning parameters, win/loss statistics are calculated and a logistic regression model is used to measure how likely each combination is to win overall.
tune_race_win_loss

Usage

```r
tune_race_win_loss(object, ...)  
## S3 method for class 'model_spec'  
tune_race_win_loss(  
  object,  
  preprocessor,  
  resamples,  
  ...,  
  param_info = NULL,  
  grid = 10,  
  metrics = NULL,  
  eval_time = NULL,  
  control = control_race()  
)
```

```r  
## S3 method for class 'workflow'  
tune_race_win_loss(  
  object,  
  resamples,  
  ...,  
  param_info = NULL,  
  grid = 10,  
  metrics = NULL,  
  eval_time = NULL,  
  control = control_race()  
)
```

Arguments

- `object`: A `parsnip` model specification or a `workflows::workflow()`. Not currently used.
- `preprocessor`: A traditional model formula or a recipe created using `recipes::recipe()`. This is only required when object is not a workflow.
- `resamples`: An `rset()` object that has multiple resamples (i.e., is not a validation set).
- `param_info`: A `dials::parameters()` object or NULL. If none is given, a parameters set is derived from other arguments. Passing this argument can be useful when parameter ranges need to be customized.
- `grid`: A data frame of tuning combinations or a positive integer. The data frame should have columns for each parameter being tuned and rows for tuning parameter candidates. An integer denotes the number of candidate parameter sets to be created automatically.
- `metrics`: A `yardstick::metric_set()` or NULL.
- `eval_time`: A numeric vector of time points where dynamic event time metrics should be computed (e.g., the time-dependent ROC curve, etc). The values must be non-negative and should probably be no greater than the largest event time in the training set (See Details below).
control An object used to modify the tuning process. See `control_race()` for more details.

Details

The technical details of this method are described in Kuhn (2014).

Racing methods are efficient approaches to grid search. Initially, the function evaluates all tuning parameters on a small initial set of resamples. The `burn_in` argument of `control_race()` sets the number of initial resamples.

The performance statistics from the current set of resamples are converted to win/loss/tie results. For example, for two parameters (\(j \) and \(k \)) in a classification model that have each been resampled three times:

<table>
<thead>
<tr>
<th>area under the ROC curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>resample</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

After the third resample, parameter \(k \) has a 2:1 win/loss ratio versus \(j \). Parameters with equal results are treated as a half-win for each setting. These statistics are determined for all pairwise combinations of the parameters and a Bradley-Terry model is used to model these win/loss/tie statistics. This model can compute the ability of a parameter combination to win overall. A confidence interval for the winning ability is computed and any settings whose interval includes zero are retained for future resamples (since it is not statistically different form the best results).

The next resample is used with the remaining parameter combinations and the statistical analysis is updated. More candidate parameters may be excluded with each new resample that is processed.

The `control_race()` function contains are parameter for the significance cutoff applied to the Bradley-Terry model results as well as other relevant arguments.

Censored regression models:

With dynamic performance metrics (e.g. Brier or ROC curves), performance is calculated for every value of `eval_time` but the first evaluation time given by the user (e.g., `eval_time[1]`) is analyzed during racing.

Also, values of `eval_time` should be less than the largest observed event time in the training data. For many non-parametric models, the results beyond the largest time corresponding to an event are constant (or `NA`).

Value

An object with primary class `tune_race` in the same standard format as objects produced by `tune::tune_grid()`.
tune_race_win_loss

References

See Also

tune::tune_grid(), control_race(), tune_race_anova()

Examples

```r
library(parsnip)
library(rsample)
library(dials)

##----------------------------------------------------------------------------
if (rlang::is_installed(c("discrim", "modeldata"))) {
  library(discrim)
  data(two_class_dat, package = "modeldata")

  set.seed(6376)
  rs <- bootstraps(two_class_dat, times = 10)

  # optimize an regularized discriminant analysis model
  rda_spec <-
    discrim_regularized(frac_common_cov = tune(), frac_identity = tune()) %>%
    set_engine("klaR")

  ctrl <- control_race(continue_elim = FALSE)

  set.seed(11)
  grid_wl <-
    rda_spec %>%
    tune_race_win_loss(Class ~ ., resamples = rs, grid = 10, control = ctrl)

  # Shows only the fully resampled parameters
  show_best(grid_wl, metric = "roc_auc")

  plot_race(grid_wl)
}
```
tune_sim_anneal

Optimization of model parameters via simulated annealing

Description

tune_sim_anneal() uses an iterative search procedure to generate new candidate tuning parameter combinations based on previous results. It uses the generalized simulated annealing method of Bohachevsky, Johnson, and Stein (1986).

Usage

tune_sim_anneal(object, ...)

S3 method for class 'model_spec'
tune_sim_anneal(
 object,
 preprocessor,
 resamples,
 ...,
 iter = 10,
 param_info = NULL,
 metrics = NULL,
 eval_time = NULL,
 initial = 1,
 control = control_sim_anneal()
)

S3 method for class 'workflow'
tune_sim_anneal(
 object,
 resamples,
 ...,
 iter = 10,
 param_info = NULL,
 metrics = NULL,
 eval_time = NULL,
 initial = 1,
 control = control_sim_anneal()
)

Arguments

object
A parsnip model specification or a workflows::workflow().

...
Not currently used.

preprocessor
A traditional model formula or a recipe created using recipes::recipe().
This is only required when object is not a workflow.
tune_sim_anneal

resamples An rset() object.
iter The maximum number of search iterations.
param_info A dials::parameters() object or NULL. If none is given, a parameter set is derived from other arguments. Passing this argument can be useful when parameter ranges need to be customized.
metrics A yardstick::metric_set() object containing information on how models will be evaluated for performance. The first metric in metrics is the one that will be optimized.
eval_time A numeric vector of time points where dynamic event time metrics should be computed (e.g. the time-dependent ROC curve, etc). The values must be non-negative and should probably be no greater than the largest event time in the training set (See Details below).
initial An initial set of results in a tidy format (as would the result of tune_grid(), tune_bayes(), tune_race_win_loss(), or tune_race_anova()) or a positive integer. If the initial object was a sequential search method, the simulated annealing iterations start after the last iteration of the initial results.
control The results of control_sim_anneal().

Details

Simulated annealing is a global optimization method. For model tuning, it can be used to iteratively search the parameter space for optimal tuning parameter combinations. At each iteration, a new parameter combination is created by perturbing the current parameters in some small way so that they are within a small neighborhood. This new parameter combination is used to fit a model and that model’s performance is measured using resampling (or a simple validation set).

If the new settings have better results than the current settings, they are accepted and the process continues.

If the new settings has worse performance, a probability threshold is computed for accepting these sub-optimal values. The probability is a function of how sub-optimal the results are as well as how many iterations have elapsed. This is referred to as the “cooling schedule” for the algorithm. If the sub-optimal results are accepted, the next iterations settings are based on these inferior results. Otherwise, new parameter values are generated from the previous iteration’s settings.

This process continues for a pre-defined number of iterations and the overall best settings are recommended for use. The control_sim_anneal() function can specify the number of iterations without improvement for early stopping. Also, that function can be used to specify a restart threshold; if no globally best results have not be discovered within a certain number if iterations, the process can restart using the last known settings that globally best.

Creating new settings:

For each numeric parameter, the range of possible values is known as well as any transformations. The current values are transformed and scaled to have values between zero and one (based on the possible range of values). A candidate set of values that are on a sphere with random radii between rmin and rmax are generated. Infeasible values are removed and one value is chosen at random. This value is back transformed to the original units and scale and are used as the new settings. The argument radius of control_sim_anneal() controls the range neighborhood sizes.
For categorical and integer parameters, each is changed with a predefined probability. The `flip` argument of `control_sim_anneal()` can be used to specify this probability. For integer parameters, a nearby integer value is used.

Simulated annealing search may not be the preferred method when many of the parameters are non-numeric or integers with few unique values. In these cases, it is likely that the same candidate set may be tested more than once.

Cooling schedule:
To determine the probability of accepting a new value, the percent difference in performance is calculated. If the performance metric is to be maximized, this would be \(d = \frac{\text{new} - \text{old}}{\text{old}} \times 100 \).

The probability is calculated as \(p = \exp(d \times \text{coef} \times \text{iter}) \) where \(\text{coef} \) is a user-defined constant that can be used to increase or decrease the probabilities.

The `cooling_coef` of `control_sim_anneal()` can be used for this purpose.

Termination criterion:
The restart counter is reset when a new global best results is found.
The termination counter resets when a new global best is located or when a suboptimal result is improved.

Parallelism:
The `tune` and `finetune` packages currently parallelize over resamples. Specifying a parallel back-end will improve the generation of the initial set of sub-models (if any). Each iteration of the search are also run in parallel if a parallel backend is registered.

Censored regression models:
With dynamic performance metrics (e.g., Brier or ROC curves), performance is calculated for every value of `eval_time` but the first evaluation time given by the user (e.g., `eval_time[1]`) is used to guide the optimization.

Also, values of `eval_time` should be less than the largest observed event time in the training data. For many non-parametric models, the results beyond the largest time corresponding to an event are constant (or `NA`).

Value
A tibble of results that mirror those generated by `tune_grid()`. However, these results contain an `iter` column and replicate the `rset` object multiple times over iterations (at limited additional memory costs).

References

See Also
`tune::tune_grid()`, `control_sim_anneal()`, `yardstick::metric_set()`
Examples

```r
library(finetune)
library(rpart)
library(dplyr)
library(tune)
library(rsample)
library(parsnip)
library(workflows)
library(ggplot2)

## -------------------------------------------------------------
if (rlang::is_installed("modeldata")) {
  data(two_class_dat, package = "modeldata")

  set.seed(5046)
  bt <- bootstraps(two_class_dat, times = 5)

  ## -------------------------------------------------------------
  cart_mod <-
    decision_tree(cost_complexity = tune(), min_n = tune()) %>%
    set_engine("rpart") %>%
    set_mode("classification")

  ## -------------------------------------------------------------
  # For reproducibility, set the seed before running.
  set.seed(10)
  sa_search <-
    cart_mod %>%
    tune_sim_anneal(Class ~ ., resamples = bt, iter = 10)

  autoplot(sa_search, metric = "roc_auc", type = "parameters") +
    theme_bw()

  ## -------------------------------------------------------------
  # More iterations. "initial" can be any other tune_* object or an integer
  # (for new values).
  set.seed(11)
  more_search <-
    cart_mod %>%
    tune_sim_anneal(Class ~ ., resamples = bt, iter = 10, initial = sa_search)

  autoplot(more_search, metric = "roc_auc", type = "performance") +
    theme_bw()
}
```
Index

collect_metrics(), 3
collect_metrics.tune_race
 (collect_predictions), 2
collect_predictions, 2
collect_predictions(), 2, 3
control_race, 4
control_race(), 11, 13, 16, 17
control_sim_anneal, 6
control_sim_anneal(), 19, 20
dials::parameters(), 10, 15, 19
dplyr::arrange(), 9
fit_resamples(), 2
last_fit(), 2, 3
plot_race, 8
recipes::recipe(), 10, 15, 18
select_by_one_std_err(), 9
select_by_pct_loss(), 9
show_best(), 8
show_best.tune_race, 8
tune(), 3
tune::tune_grid(), 13, 16, 17, 20
tune_bayes(), 2, 9, 19
tune_grid(), 2, 9, 19, 20
tune_race_anova, 9
tune_race_anova(), 9, 17, 19
tune_race_win_loss, 14
tune_race_win_loss(), 13, 14, 19
tune_sim_anneal, 18
tune_sim_anneal(), 18
workflows::workflow(), 10, 15, 18
yardstick::metric_set(), 10, 15, 19, 20