Package ‘fingertipscharts’

October 7, 2019

Type Package
Version 0.0.10
Title Produce Charts that you See on the Fingertips Website
Description Use Fingertips charts to recreate the visualisations that are displayed on the Fingertips website (<http://fingertips.phe.org.uk/>).
Depends R (>= 3.4.0)
BugReports https://github.com/PublicHealthEngland/fingertipscharts/issues
Imports curl, dplyr, geojsonio, ggplot2 (>= 3.0), httr, leaflet, lemon, mapproj, purrr, rlang, scales, sf (>= 0.7), stats, stringr, tibble, tidyr (>= 1.0.0), utils
Suggests gdtools, knitr, rmarkdown, testthat, vdiffr
License GPL-3
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Author Sebastian Fox [aut, cre]
Maintainer Sebastian Fox <sebastian.fox@phe.gov.uk>
Repository CRAN
Date/Publication 2019-10-07 15:00:03 UTC

R topics documented:

area_profiles ... 2
box_plots ... 6
compare_areas .. 7
compare_indicators ... 8
createdatatable ... 9
create_test_data ... 10
area_profiles

Plot spine chart

Description

Returns ggplot of spine chart

Usage

area_profiles(data, value, count, area_code, local_area_code, indicator,
timeperiod, polarity, significance, area_type, cols = "fingertips",
median_line_area_code = "E92000001", comparator_area_code = NA,
bar_width = 0.75, local_point_shape = 21,
local_point_outline = "black", comparator_point_shape = 23,
comparator_point_outline = "gray30",
comparator_point_fill = "gray30", relative_point_size = 1,
relative_text_size = 1, header_positions = c(-1.43, -0.53, -0.35,
-0.25, -0.15, -0.05, 1.05), header_labels = c("Indicator",
"Time\nperiod", "Local\n\n\ncount", "Local\n\nvalue", "England\n\nvalue",
"Worst/\n\n\nLowest", "Best/\n\n\nHighest"), indicator_label_nudgex = -0.075,
domain = no_domains, relative_domain_text_size = 1,
show_dividers = "none", datatable = TRUE,
datatable_line_height = 0.6, dps = 1, percent_display = 0.25)

Arguments

data a data frame to create the spine chart from. the data frame should contain data
for all area types included in the chart (eg, if plotting for County & UA with
a comparator of region and a median line for national, the data frame should
contain all of these data)

dataframe value unquoted field name containing the values to be plotted
value count unquoted field name where the count (numerator) is stored

Index

area_profiles 22

Plot spine chart

Description

Returns ggplot of spine chart

Usage

area_profiles(data, value, count, area_code, local_area_code, indicator,
timeperiod, polarity, significance, area_type, cols = "fingertips",
median_line_area_code = "E92000001", comparator_area_code = NA,
bar_width = 0.75, local_point_shape = 21,
local_point_outline = "black", comparator_point_shape = 23,
comparator_point_outline = "gray30",
comparator_point_fill = "gray30", relative_point_size = 1,
relative_text_size = 1, header_positions = c(-1.43, -0.53, -0.35,
-0.25, -0.15, -0.05, 1.05), header_labels = c("Indicator",
"Time\nperiod", "Local\n\n\ncount", "Local\n\nvalue", "England\n\nvalue",
"Worst/\n\n\nLowest", "Best/\n\n\nHighest"), indicator_label_nudgex = -0.075,
domain = no_domains, relative_domain_text_size = 1,
show_dividers = "none", datatable = TRUE,
datatable_line_height = 0.6, dps = 1, percent_display = 0.25)
area_profiles

area_code unquoted field name where area codes are stored (local_area_code, median_line_area_code and comparator_area_code, if using, should all exist in this field)

local_area_code string; the code of the area that the spine chart is being drawn for

indicator unquoted field name of the field containing the indicator labels. Take care as errors will occur where indicator labels are the same but data exist for multiple sub-categories (for example, sex or age)

timeperiod unquoted field name of the time period field

polarity unquoted field name containing the polarity information (currently only handles polarity returned by fingertipsR package)

significance unquoted field name describing the statistical significance for that indicator (eg, Better, Worse, Similar etc)

area_type unquoted field name containing area type information. This ensures the vertabra are only plotted for the same area types as the local_area area type (eg, when plotting a spine chart for County & UA areas, regions and national area types will be removed)

cols named character vector for the cols that will be applied to the significance field. The names should contain all of the levels in the significance field of the data frame. Defaults to the Fingertips colours based on the outputs from the API

median_line_area_code string; area code for the median line. Defaults to "E92000001" (England)

comparator_area_code string; area code for the comparator point. Defaults to NA

bar_width numeric value; the distance between bars (0 to 1)

local_point_shape numeric value; shape type for local area point (defaults to 21, circle). See ggplot2 shape types for different values

local_point_outline string; control colour of the outline of the local point in the spine chart

comparator_point_shape numeric value; shape type for regional area point (defaults to 23, diamond). See ggplot2 shape types for different values

comparator_point_outline string; control colour of the outline of the regional point in the spine chart

comparator_point_fill string; control the fill colour of the regional point in the spine chart

relative_point_size numeric value; control the size of the points on the spine chart

relative_text_size numeric value; control the size of the text in the accompanying table

header_positions numeric vector; used to adjust columns of data table if they are overlapping. The final value shouldn’t be less than 1. Must have a length of 7. Defaults to c(-1.43, -.53, -.35, -.25, -.15, -0.05, 1.05)
header_labels character vector; labels used for the titles of the columns for a data table. Must have a length of 7. Defaults to c("Indicator", "Time period", "Local count", "Local value", "England value", "Worst/Lowest", "Best/Highest")

indicator_label_nudgex number; nudge the placement of the indicator label in the x direction. Negative values nudge to the left

domain unquoted field name describing the grouping of the domains if wishing to split the spine chart into domains

relative_domain_text_size numeric; control the text size for the domain labels (if include.domains = TRUE) relative to 1

show_dividers string; whether to display horizontal lines between indicators. Values can be "all" or "outer". Any other value will not generate lines

datatable logical; default = TRUE, display data table alongside spine chart

datatable_line_height number; height of wrapped lines in the data table

dps number; number of decimal places to be displayed in the data table. The default is 1. Set to NA if this should be the same as the input data

percent_display number between 0 and 1; the percentage of values that needs to exist for a spine to display. Default is 0.25

Details

the function draws a bar chart (which is the spine) and then plots the data table (if datatable = TRUE) using geom_text. The bar chart is always plotted between 0 and 1 on the x scale. The columns in the data table are controlled by the header_positions argument. To adjust the length of the bars in the visualisation, amend the header_positions argument. The more negative the first value of the vector that goes into header_positions, the more condensed the bar part of the visualisation will be.

This function filters for the area type that is the same as your local area type and then calculates the "vertebra" from those data. Therefore, if you are comparing outputs with those seen on the Fingertips website, ensure you perform the same preprocessing. For example, some profiles display spine charts where small areas, such as Isles of Scilly, are removed before the spine is produced.

Value

a ggplot object containing a spine chart

Examples

```r
library(dplyr)
df <- create_test_data() %>%
  mutate(Value = case_when(
    grepl("2\$|4\$|6\$", IndicatorName) ~ round(Value,1),
    TRUE ~ round(Value,0)))
```
```r
full_p <- area_profiles(df,
  value = Value,
  count = Count,
  area_code = AreaCode,
  local_area_code = "AC122",
  indicator = IndicatorName,
  timeperiod = Timeperiod,
  polarity = Polarity,
  significance = Significance,
  area_type = AreaType,
  median_line_area_code = "C001",
  comparator_area_code = "PAC12",
  datatable = TRUE,
  relative_domain_text_size = 0.75,
  relative_text_size = 1.2,
  bar_width = 0.68,
  indicator_label_nudgex = -0.1,
  show_dividers = "outer",
  header_positions = c(-0.7, -0.44, -0.35, -0.25,
                       -0.15, -0.05, 1.08),
  dps = NA)

full_p

## An example with domains and non-default indicator ordering

df <- create_test_data()
label_order <- c(1, 2, 4, 3, 6, 5)
df <- df %>%
  mutate(IndicatorName = factor(IndicatorName,
                                levels = paste("Indicator", label_order)))

p <- area_profiles(df,
  value = Value,
  count = Count,
  area_code = AreaCode,
  local_area_code = "AC122",
  indicator = IndicatorName,
  timeperiod = Timeperiod,
  polarity = Polarity,
  significance = Significance,
  area_type = AreaType,
  median_line_area_code = "C001",
  comparator_area_code = "PAC12",
  datatable = TRUE,
  relative_domain_text_size = 0.75,
  relative_text_size = 1.2,
  bar_width = 0.68,
  indicator_label_nudgex = -0.1,
  show_dividers = "outer",
  header_positions = c(-0.7, -0.44, -0.35, -0.25,
                       -0.15, -0.05, 1.08),
  domain = Domain
)
```
box_plots

Plot a series of boxplots

Description

Plot a series of boxplots

Usage

box_plots(data, timeperiod, value, title = "", subtitle = "", xlab = "", ylab = ")

Arguments

data data.frame object to plot using ggplot2 functions
timeperiod field containing the time period (unquoted)
value field containing variable to be plotted on x axis (unquoted)
title string; title of chart
subtitle string; text to use as subtitle to graph
xlab string; x-axis title
ylab string; y-axis title

Value

a ggplot of boxplots for many areas over time

See Also

Other quick charts: compare_areas, compare_indicators, map, overview, population, trends

Examples

library(dplyr)
df <- create_test_data()
df_box <- df %>%
 filter(AreaType == "Local") %>%
 arrange(IndicatorName) %>%
 mutate(Timeperiod = rep(c("2011", "2012", "2013", "2014", "2015", "2016"), each = 100))
p <- box_plots(df_box,
 timeperiod = Timeperiod,
 value = Value,
 title = "Title of chart",
 subtitle = "Boxplot over time",
 ylab = "Proportion (%)")
compare_areas

Plot compare areas chart

Description

Returns ggplot of compare areas chart

Usage

```r
compare_areas(data, area, value, lowerci, upperci, fill, order = "desc", top_areas, title = "", xlab = "", ylab = "", legend.position = "bottom", display.values = FALSE, dps = 1)
```

Arguments

- `data` : data.frame object to plot using ggplot2 functions
- `area` : field containing variable to be plotted on y axis (unquoted)
- `value` : field containing variable to be plotted on x axis (unquoted)
- `lowerci` : field containing variable to be plotted as lower confidence interval (unquoted - not required)
- `upperci` : string; field containing variable to be plotted as upper confidence interval (unquoted - not required)
- `fill` : field to be used to determine the colouring of the bars (unquoted)
- `order` : one of "alphabetical", "asc" or "desc" - to determine how to order the bars
- `top_areas` : character vector; the areas to fix at the top of the chart
- `title` : string; title of chart
- `xlab` : string; x-axis title
- `ylab` : string; y-axis title
- `legend.position` : the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)
- `display.values` : logical; where or not to display the rounded values next to the bars on the chart
- `dps` : number; number of decimal places to be displayed when `display.values = TRUE`. The default is 1.

Value

a ggplot of a compare areas chart

See Also

Other quick charts: `box_plots, compare_indicators, map, overview, population, trends`
Examples

```r
library(dplyr)

df <- create_test_data()
parent <- "PAC11"
top_names <- c("C001", parent)
ordered_levels <- c("Better", "Similar", "Worse", "Not compared")

df_ca <- df %>%
  filter(IndicatorName == "Indicator 3",
         (AreaCode %in% top_names | ParentAreaCode == parent))
p <- compare_areas(df_ca, AreaCode, Value, 
                   fill = Significance, 
                   lowerci = LCI, 
                   upperci = UCI, 
                   order = "desc", 
                   top_areas = top_names, 
                   title = "Compare the local areas")
p
```

Description

Plot compare indicators plot

Usage

```r
compare_indicators(data, x, y, xlab = "", ylab = "", point_size = 4, 
                    highlight_area, area, add_R2 = FALSE)
```

Arguments

data: data.frame object to plot using ggplot2 functions

x: field containing x variable (unquoted)
y: field containing y variable (unquoted)
xlab: string; x-axis title
ylab: string; y-axis title
point_size: number; size of point
highlight_area: character vector; list of areas for highlighting
area: field containing areas - should contain contents of highlight_area. Only required if highlight_area has a value (unquoted)
add_R2: boolean; should R2 be displayed?
create_datatable

Value

a ggplot of compare indicators for 2 indicators

See Also

Other quick charts: box_plots, compare_areas, map, overview, population, trends

Examples

```r
library(tidyr)
library(dplyr)
df <- create_test_data()

df_ci <- df %>%
  filter(IndicatorName %in% c("Indicator 1", "Indicator 3")) %>%
  select(IndicatorName, AreaCode, Value) %>%
  pivot_wider(names_from = IndicatorName,
              values_from = Value) %>%
  rename(Ind1 = 'Indicator 1',
         Ind3 = 'Indicator 3') %>%
  mutate(Ind2 = runif(nrow(.), min = Ind1 * 0.5, max = Ind1 * 1.5))
p <- compare_indicators(df_ci,
                         x = Ind1,
                         y = Ind3,
                         xlab = "Indicator 1 label",
                         ylab = "Indicator 3 label",
                         highlight_area = c("C001", "AC172"),
                         area = AreaCode,
                         add_R2 = TRUE)
p
```

data.frame

create_datatable

Data table supporting information

Description

Returns a data frame containing the data that sits next to the spine chart

Usage

```r
create_datatable(data, indicator, area_code, timeperiod, count, value,
                  local_area_code, median_line_area_code, comparator_area_code, dps = 1)
```

Arguments

data a data frame to create the spine chart from. the data frame should contain data for all area types included in the chart (eg, if plotting for County & UA with a comparator of region and a median line for national, the data frame should contain all of these data)
create_test_data

indicator unquoted field name of the field containing the indicator labels. Take care as
errors will occur where indicator labels are the same but data exist for multiple
sub-categories (for example, sex or age)

area_code unquoted field name where area codes are stored (local_area_code, median_line_area_code
and comparator_area_code, if using, should all exist in this field)

timeperiod unquoted field name of the time period field

count unquoted field name where the count (numerator) is stored

value unquoted field name containing the values to be plotted

local_area_code
 string; the code of the area that the spine chart is being drawn for

median_line_area_code
 string; area code for the median line. Defaults to "E92000001" (England)

comparator_area_code
 string; area code for the comparator point. Defaults to NA

dps number of decimal places to use in the data table

Value

A data frame containing the information that sits alongside the spine chart

create_test_data Create test data

Description

Create dataset to be used in tests (useful for demo purposes too)

Usage

create_test_data()

Value

a dummy data.frame of data

Examples

df <- create_test_data()
ensure_ons_api_available

Check if the given ONS json is available

Description

Check if the given ONS json is available

Usage

```r
ensure_ons_api_available(ons_api)
```

Arguments

- **ons_api**: string; GeoJSON address provided from the ONS geography portal

Value

TRUE if the API is available, otherwise `stop()` is called.

fingertipscharts

fingertipscharts: A package for creating the visualisations displayed in Fingertips

Description

The fingertipscharts package provides one type of function

quick charts functions

Easy to produce Fingertips charts using tidyverse syntax
map

Plot a choropleth map for an indicator

Description

Plot a choropleth map for an indicator

Usage

map(data, ons_api, area_code, fill, type = "static", value, name_for_label, title = "", subtitle = "", copyright_size = 4, copyright_year = Sys.Date())

Arguments

data: data.frame object to plot using ggplot2 functions
ons_api: string; GeoJSON address provided from the ONS geography portal
area_code: field containing area codes to join to shape file imported from ONS API
fill: field to be used to determine the colouring of the areas (unquoted)
type: string; the output map required. Can be "static" or "interactive"
value: field containing variable to be plotted on x axis (unquoted)
name_for_label: if interactive map, name of field containing area names to be used for label (unquoted) - optional
title: string; title of chart
subtitle: string; text to use as subtitle to graph
copyright_size: number; fix the size of the copyright text
copyright_year: number (length 4 characters) or Date class; the copyright year displayed at bottom of the map. Applies to static maps only

Value

a either a static or interactive ggplot choropleth map

See Also

Other quick charts: box_plots, compare_areas, compare_indicators, overview, population, trends
mapdata

Examples

```r
ons_api <- "https://opendata.arcgis.com/datasets/687f346f5023410ba86615655ff33ca9_4.geojson"

p <- map(mapdata,
  ons_api = ons_api,
  area_code = AreaCode,
  fill = Significance,
  title = "Map example",
  subtitle = "An indicator for Upper Tier Local Authorities England",
  copyright_year = 2019)

p
```

```r
## For an interactive (leaflet) map
p <- map(mapdata,
  ons_api = ons_api,
  area_code = AreaCode,
  fill = Significance,
  type = "interactive",
  value = Value,
  name_for_label = AreaName,
  title = "An indicator for Upper Tier Local Authorities England")

p
```

mapdata

Dummy data for Upper Tier Local Authorities so dummy maps can be produced

Description

A dataset of indicator values for all Upper Tier Local Authorities

Usage

```r
mapdata
```

Format

A data frame with 152 records and 4 fields:

- **AreaCode**: Office for National Statistics area codes
- **AreaName**: Office for National Statistics area names
- **Significance**: The statistical significance of the area compared to a benchmark
- **Value**: The indicator value for the data
overview

Plot an overview (tartan rug) of multiple indicators

Description
Plot an overview (tartan rug) of multiple indicators

Usage
overview(data, area, indicator, value, fill, timeperiod, top_areas,
wrap_length = 50, value_label_size = 1)

Arguments
data data.frame object to plot using ggplot2 functions
area field containing area names (unquoted)
indicator field containing indicator names (unquoted)
value field containing variable to be plotted (unquoted)
fill field to be used to determine the colouring of the bars (unquoted)
timeperiod field containing the time period (unquoted)
top_areas character vector; the areas to fix at the left
wrap_length number; maximum number of characters in indicator before wrapping it
value_label_size number; amount to scale the size of the value label

Value
a ggplot of the overview/tartan rug plot

See Also
Other quick charts: box_plots, compare_areas, compare_indicators, map, population, trends

Examples
library(dplyr)
df <- create_test_data()

parent <- "PAC14"
top_names <- c("C001", parent)
df_over <- df %>%
 filter((AreaCode %in% top_names | ParentAreaCode == parent)) %>%
 mutate(Value = round(Value, 1))
p <- overview(df_over,
 area = AreaCode,
population = IndicatorName,
value = Value,
timeperiod = Timeperiod,
fill = Significance,
top_areas = top_names,
wrap_length = 40,
value_label_size = 0.8)

population Plot population pyramid

Description
Plot population pyramid

Usage
population(data, value, sex, age, area, area_name, comparator_1,
 comparator_2, title, subtitle, xlab)

Arguments
- data: data.frame object to plot using ggplot2 functions
- value: field containing variable to be plotted on x axis (unquoted)
- sex: field containing sex variable (unquoted)
- age: field containing age variable (unquoted)
- area: field containing variable to be plotted on y axis (unquoted)
- area_name: string; name of the local area (this should exist in the field described by the area parameter)
- comparator_1: string; name of comparator area (this should exist in the field described by the area parameter)
- comparator_2: string; name of comparator area (this should exist in the field described by the area parameter)
- title: string; title of chart
- subtitle: string; text to use as subtitle to graph
- xlab: string; x-axis title

Value
a ggplot of a population pyramid against 2 optional comparators

See Also
Other quick charts: box_plots, compare_areas, compare_indicators, map, overview, trends
Examples

```r
library(dplyr)
areas <- c("Area 1", "Area 2", "Area 3")
pops <- data.frame(Age = factor(rep(agelevels, length(areas) * 2), levels = agelevels),
                  Value = rep(sample(1000:3000, length(agelevels), replace = TRUE), length(areas) * 2),
                  Sex = rep(rep(c("Male", "Female"), each = length(agelevels)), length(areas)),
                  AreaName = rep(areas, each = length(agelevels) * 2))

p <- population(pops,
                 value = Value,
                 sex = Sex,
                 age = Age,
                 area = AreaName,
                 area_name = "Area 1",
                 comparator_1 = "Area 3",
                 comparator_2 = "Area 2",
                 title = "Age Profile",
                 subtitle = "2015/16",
                 xlab = "% of total population")

p
```

round2

Proper rounding of values

Description

Proper rounding of values

Usage

```r
round2(val, dps)
```

Arguments

- **val** numeric value to round
- **dps** numeric, number of decimal places

Details

function taken from this link (https://stackoverflow.com/questions/12688717/round-up-from-5)

scale_fill_phe

Fingertips scale fill

Description

Fingertips scale fill

Usage

scale_fill_phe(theme = "fingertips", ...)

Arguments

- theme: string; current options are fingertips only for discrete scales
- ...: inputs to the scale_manual (for discrete values)

spine_data_check

Check function for multiple values for an area in an indicator for spine chart

Description

Check function for multiple values for an area in an indicator for spine chart

Usage

spine_data_check(data, indicator, area_code)

Arguments

- data: a data frame to create the spine chart from. the data frame should contain data for all area types included in the chart (eg, if plotting for County & UA with a comparator of region and a median line for national, the data frame should contain all of these data)
- indicator: unquoted field name of the field containing the indicator labels. Take care as errors will occur where indicator labels are the same but data exist for multiple sub-categories (for example, sex or age)
- area_code: unquoted field name where area codes are stored (local_area_code, median_line_area_code and comparator_area_code, if using, should all exist in this field)
spine_preprocess
Preprocess data for spine chart

Description
Returns a data frame with the latest time period of data for each indicator name.

Usage
spine_preprocess(data, indicator, timeperiod_sortable)

Arguments
- data: a data frame to create the spine chart from. The data frame should contain data for all area types included in the chart (e.g., if plotting for County & UA with a comparator of region and a median line for national, the data frame should contain all of these data).
- indicator: unquoted field name for indicators. This should be what is presented as the label for the final spine chart, hence should be unique for each vertebra. Be careful the indicator doesn’t have sub-categories based on other fields, such as sex (male, female, persons) or age group.
- timeperiod_sortable: unquoted field name containing the time period that is numeric and sortable, such that higher values are a later time period.

Details
This processing only takes place on the indicator field and the time period field provided. If the data contains multiple sexes or age groups for an indicator, make sure the indicator field reflects this.

Value
A processed data frame for latest time periods of given indicators.

spine_rescaler
Rescale spine data

Description
Rescales data so it can be plotted on a spine chart.

Usage
spine_rescaler(data, area_code, indicator, significance, polarity, area_type, value, timeperiod, local_area_code, median_line_area_code, comparator_area_code = NA, percent_display, dps = 1)
Arguments

data a data frame to create the spine chart from. the data frame should contain data for all area types included in the chart (eg, if plotting for County & UA with a comparator of region and a median line for national, the data frame should contain all of these data)

area_code unquoted field name where area codes are stored (local_area_code, median_line_area_code and comparator_area_code, if using, should all exist in this field)

indicator unquoted field name of the field containing the indicator labels. Take care as errors will occur where indicator labels are the same but data exist for multiple sub-categories (for example, sex or age)

significance unquoted field name describing the statistical significance for that indicator (eg, Better, Worse, Similar etc)

polarity unquoted field name containing the polarity information (currently only handles polarity returned by fingertipsR package)

area_type unquoted field name containing area type information. This ensures the vertabra are only plotted for the same area types as the local_area area type (eg, when plotting a spine chart for County & UA areas, regions and national area types will be removed)

value unquoted field name containing the values to be plotted

timeperiod unquoted field name of the time period field

local_area_code string; the code of the area that the spine chart is being drawn for

median_line_area_code string; area code for the median line. Defaults to "E92000001" (England)

comparator_area_code string; area code for the comparator point. Defaults to NA

percent_display number between 0 and 1; the percentage of values that needs to exist for a spine to display. Default is 0.25

dps number; number of decimal places to be displayed in the data table. The default is 1. Set to NA if this should be the same as the input data

Value

A list containing "bars" and "points" which contains data that can be passed to the phe_spine_chart function

theme_phe

Fingertips theme for ggplot2

Description

fingertips theme
Usage

```r
theme_phe(theme = "fingertips", base_size = 11, base_family = "",
           base_line_size = base_size/22, base_rect_size = base_size/22)
```

Arguments

- **theme**: string; theme of chart, current are fingertips only
- **base_size**: base font size
- **base_family**: base font family
- **base_line_size**: base size for line elements
- **base_rect_size**: base size for rect elements

trends
Plot trend chart

Description

Plot trend chart

Usage

```r
trends(data, timeperiod, value, area, comparator, area_name, fill, lowerci,
       upperci, title = "", subtitle = "", xlab = "", ylab = ",
       point_size = 4)
```

Arguments

- **data**: data.frame object to plot using ggplot2 functions
- **timeperiod**: field containing the time period (unquoted)
- **value**: field containing variable to be plotted on x axis (unquoted)
- **area**: field containing variable to be plotted on y axis (unquoted)
- **comparator**: string; name of comparator area (this should exist in the field described by the area parameter)
- **area_name**: string; name of the local area (this should exist in the field described by the area parameter)
- **fill**: field to be used to determine the colouring of the bars (unquoted)
- **lowerci**: field containing variable to be plotted as lower confidence interval (unquoted - not required)
- **upperci**: string; field containing variable to be plotted as upper confidence interval (unquoted - not required)
- **title**: string; title of chart
- **subtitle**: string; text to use as subtitle to graph
- **xlab**: string; x-axis title
- **ylab**: string; y-axis title
- **point_size**: number; size of point
trends

Value

a ggplot of trends for an indicator alongside a comparator

See Also

Other quick charts: box_plots, compare_areas, compare_indicators, map, overview, population

Examples

library(dplyr)
df <- create_test_data()

df_trend <- df %>%
 arrange(IndicatorName) %>%
 each = 111))

p <- trends(df_trend,
 timeperiod = Timeperiod,
 value = Value,
 area = AreaCode,
 comparator = "C001",
 area_name = "AC142",
 fill = Significance,
 lowerci = LCI,
 upperci = UCI,
 title = "Trend compared to country",
 subtitle = "For area AC142",
 xlab = "Year",
 ylab = "Value (%)")

p
Index

※Topic datasets
 mapdata, 13

area_profiles, 2

box_plots, 6, 7, 9, 12, 14, 15, 21

compare_areas, 6, 7, 9, 12, 14, 15, 21
compare_indicators, 6, 7, 8, 12, 14, 15, 21
create_datatable, 9
create_test_data, 10

ensure_ons_api_available, 11

fingertipscharts, 11
fingertipscharts-package
 (fingertipscharts), 11

map, 6, 7, 9, 12, 14, 15, 21
mapdata, 13

overview, 6, 7, 9, 12, 14, 15, 21

population, 6, 7, 9, 12, 14, 15, 21

round2, 16

scale_fill_phe, 17
spine_data_check, 17
spine_preprocess, 18
spine_rescaler, 18

theme_phe, 19

trends, 6, 7, 9, 12, 14, 15, 20