Package ‘finnts’

April 14, 2023

Title Microsoft Finance Time Series Forecasting Framework

Version 0.2.4

Description
Automated time series forecasting developed by Microsoft Finance. The Microsoft Finance Time Series Forecasting Framework, aka Finn, can be used to forecast any component of the income statement, balance sheet, or any other area of interest by finance. Any numerical quantity over time,
Finn can be used to forecast it. While it can be applied outside of the finance domain, Finn was built to meet the needs of financial analysts to better forecast their businesses within a company, and has a lot of built in features that are specific to the needs of financial forecasters. Happy forecasting!

URL https://microsoft.github.io/finnts/,
 https://github.com/microsoft/finnts

BugReports https://github.com/microsoft/finnts/issues

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Imports cli, Cubist, dials, doParallel, dplyr, earth, foreach,
 generics, glmnet, gtools, hts, kernlab, lubridate, magrittr,
 methods, modeltime, resample, parallel, parsnip, plyr, purrr,
 recipes, rsample, rules, stringr, tibble, tidyr, tidyselect,
 timetk, tune, workflows

Suggests knitr, reactive, rmarkdown, sparklyr, testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 3.6.0), modeltime

VignetteBuilder knitr

NeedsCompilation no

Author Mike Tokic [aut, cre] (<https://orcid.org/0000-0002-7630-7055>),
 Aadharsh Kannan [aut] (<https://orcid.org/0000-0002-6475-8211>)

Maintainer Mike Tokic <mftokic@gmail.com>

Repository CRAN

Date/Publication 2023-04-14 16:40:08 UTC
Description

Calls the Finn forecast framework to automatically forecast any historical time series.

Usage

```r
forecast_time_series(
  input_data,
  combo_variables,
  target_variable,
  date_type,
  forecast_horizon,
  external_regressors = NULL,
  run_name = "finnts_forecast",
  hist_start_date = NULL,
  hist_end_date = NULL,
  combo_cleanup_date = NULL,
  fiscal_year_start = 1,
  clean_missing_values = TRUE,
  clean_outliers = FALSE,
  back_test_scenarios = NULL,
  back_test_spacing = NULL,
  modeling_approach = "accuracy",
  forecast_approach = "bottoms_up",
  parallel_processing = NULL,
  run_model_parallel = FALSE,
  num_cores = NULL,
  target_log_transformation = FALSE,
  negative_forecast = FALSE,
  fourier_periods = NULL,
  lag_periods = NULL,
  rolling_window_periods = NULL,
  recipes_to_run = NULL,
  pca = NULL,
  models_to_run = NULL,
  models_not_to_run = NULL,
  run_global_models = NULL,
  run_local_models = TRUE,
  run_ensemble_models = NULL,
)```
average_models = TRUE,
max_model_average = 3,
weekly_to_daily = TRUE,
seed = 123
)

Arguments

input_data A data frame or tibble of historical time series data. Can also include external regressors for both historical and future data.

combo_variables List of column headers within input data to be used to separate individual time series.

target_variable The column header formatted as a character value within input data you want to forecast.

date_type The date granularity of the input data. Finn accepts the following as a character string day, week, month, quarter, year.

forecast_horizon Number of periods to forecast into the future.

external_regressors List of column headers within input data to be used as features in multivariate models.

run_name Name used when submitting jobs to external compute like Azure Batch. Formatted as a character string.

hist_start_date Date value of when your input_data starts. Default of NULL is to use earliest date value in input_data.

hist_end_date Date value of when your input_data ends. Default of NULL is to use the latest date value in input_data.

combo_cleanup_date Date value to remove individual time series that don’t contain non-zero values after that specified date. Default of NULL is to not remove any time series and attempt to forecast all of them.

fiscal_year_start Month number of start of fiscal year of input data, aids in building out date features. Formatted as a numeric value. Default of 1 assumes fiscal year starts in January.

clean_missing_values If TRUE, cleans missing values. Only impute values for missing data within an existing series, and does not add new values onto the beginning or end, but does provide a value of 0 for said values. Turned off when running hierarchical forecasts.

clean_outliers If TRUE, outliers are cleaned and inputted with values more in line with historical data
back_test_scenarios
Number of specific back test folds to run when determining the best model. Default of NULL will automatically choose the number of back tests to run based on historical data size, which tries to always use a minimum of 80% of the data when training a model.

back_test_spacing
Number of periods to move back for each back test scenario. Default of NULL moves back 1 period at a time for year, quarter, and month data. Moves back 4 for week and 7 for day data.

modeling_approach
How Finn should approach your data. Current default and only option is 'accuracy'. In the future this could evolve to other areas like optimizing for interpretability over accuracy.

forecast_approach
How the forecast is created. The default of 'bottoms_up' trains models for each individual time series. 'grouped_hierarchy' creates a grouped time series to forecast at while 'standard_hierarchy' creates a more traditional hierarchical time series to forecast, both based on the hts package.

parallel_processing
Default of NULL runs no parallel processing and forecasts each individual time series one after another. 'local_machine' leverages all cores on current machine Finn is running on. 'azure_batch' runs time series in parallel on a remote compute cluster in Azure Batch. 'spark' runs time series in parallel on a spark cluster in Azure Databricks/Synapse.

run_model_parallel
If TRUE, runs specific components like hyperparameter tuning or model refitting in parallel, only works when parallel_processing is not set to 'local_machine'.

num_cores
Number of cores to run when parallel processing is set up. Used when running parallel computations on local machine or within Azure. Default of NULL uses total amount of cores on machine minus one. Can’t be greater than number of cores on machine minus 1.

target_log_transformation
If TRUE, log transform target variable before training models.

negative_forecast
If TRUE, allow forecasts to dip below zero.

fourier_periods
List of values to use in creating fourier series as features. Default of NULL automatically chooses these values based on the date_type.

lag_periods
List of values to use in creating lag features. Default of NULL automatically chooses these values based on date_type.

rolling_window_periods
List of values to use in creating rolling window features. Default of NULL automatically chooses these values based on date type.

recipes_to_run
List of recipes to run on multivariate models that can run different recipes. A value of NULL runs all recipes, but only runs the R1 recipe for weekly and daily date types, and also for global models to prevent memory issues. A value of "all"
runs all recipes, regardless of date type or if it’s a local/global model. A list like c("R1") or c("R2") would only run models with the R1 or R2 recipe.

pca
If TRUE, run principle component analysis on any lagged features to speed up model run time. Default of NULL runs PCA on day and week date types across all local multivariate models, and also for global models across all date types.

models_to_run
List of models to run. Default of NULL runs all models.

models_not_to_run
List of models not to run, overrides values in models_to_run. Default of NULL doesn’t turn off any model.

run_global_models
If TRUE, run multivariate models on the entire data set (across all time series) as a global model. Can be override by models_not_to_run. Default of NULL runs global models for all date types except week and day.

run_local_models
If TRUE, run models by individual time series as local models.

run_ensemble_models
If TRUE, run ensemble models. Default of NULL runs ensemble models only for quarter and month date types.

average_models
If TRUE, create simple averages of individual models.

max_model_average
Max number of models to average together. Will create model averages for 2 models up until input value or max number of models ran.

weekly_to_daily
If TRUE, convert a week forecast down to day by evenly splitting across each day of week. Helps when aggregating up to higher temporal levels like month or quarter.

seed
Set seed for random number generator. Numeric value.

Value

A list of three separate data sets: the future forecast, the back test results, and the best model per time series.

Examples

```
finn_forecast <- forecast_time_series(
 input_data = m750 %>% dplyr::rename(Date = date),
 combo_variables = c("id"),
 target_variable = "value",
 date_type = "month",
 forecast_horizon = 3,
 run_model_parallel = FALSE,
 models_to_run = c("arima", "ets", "snaive"))
```
Index

forecast_time_series, 2